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Abstract

We present a new computed tomographymethod, the low third derivative (LTD)method, that is particularly suited for
reconstructing the spatial distribution of gas concentrations from path-integral data for a small number of optical paths.
The method "nds a spatial distribution of gas concentrations that (1) has path integrals that agree with measured path
integrals, and (2) has a low third spatial derivative in each direction, at every point. The trade-o! between (1) and (2) is
controlled by an adjustable parameter, which can be set based on analysis of the path-integral data. The method
produces a set of linear equations, which can be solved with a single matrix multiplication if the constraint that all
concentrations must be positive is ignored; the method is therefore extremely rapid. Analysis of experimental data
from thousands of concentration distributions shows that the method works nearly as well as smooth basis
function minimization (the best method previously available), yet is about 100 times faster. � 2001 Published by
Elsevier Science Ltd.
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1. Introduction

For over a decade, researchers have investigated the
use of computed tomography (CT) as a way of mapping
two-dimensional tracer gas or pollutant distributions in
air (Todd and Leith, 1990; Yost et al., 1994; Drescher et
al., 1996). Path-integrated concentrations of the gas of
interest are measured*often, though not always, with
a Fourier-transform infrared spectrometer (FTIR)*typi-
cally along a few dozen optical paths. A computer algo-
rithm is used to solve the inverse problem of determining
a spatial distribution of gas concentrations that could
have produced the observed set of path integrals.
Due to the time required to orient the FTIR, and the

time required to measure an individual optical path in
order to obtain a su$ciently high signal-to-noise ratio,

FTIR experiments have usually taken several minutes to
measure all of the optical paths, and some have taken
over an hour. Given these speed limitations in collecting
the data, there has not been a strong need for CT algo-
rithms that work quickly. In particular, smooth basis
function minimization (SBFM), the method that has so
far been most successful for CT of gas concentrations in
air, is computationally intensive, typically requiring sev-
eral minutes (on a Pentium-class 300 MHz personal
computer running compiled Mathematica (TM) code) to
generate a reconstruction.
A recent set of experiments, fully described by Fischer

et al. (2001), used a new instrument that carries out
a complete measurement cycle of 28 optical paths in only
7 s, during which each path is sampled for about 150 ms.
In each of these experiments data were collected for more
than 30 minutes, thus generating data from over 300
measurement cycles. Complete CT reconstruction of all
of the measurement cycles, using SBFMwith our current
computational machinery, takes over 7 hours. The delay
between data collection and reconstruction precludes
real-time monitoring of experimental conditions, which
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would be useful for trouble-shooting and for ensuring
that the desired experimental conditions have been
attained. Also, practical industrial applications such as
monitoring chemical plants will require rapid CT.
In this paper, we introduce a reconstruction algorithm

that uses techniques from Bayesian modeling. Our in-
novations are (1) including prior information in a way
that tends to remove pixel-to-pixel oscillations in the
reconstructions (which are usually artifactual) while still
allowing large concentration gradients (which are com-
mon in reality), and (2) a mathematical statement of the
CT problem that can often be solved in a single step, thus
avoiding the need for iterative convergence.

2. Methods

Several computational methods have been suggested
for reconstruction of gas concentrations based on path
integral data. Most methods divide a planar area of
interest into pixels and attempt to assign a gas concentra-
tion to each pixel in such a way that the predicted path
integrals match the observed integrals, while also satisfy-
ing other criteria related to smoothness of the spatial
distribution.
The problem of pixel-based CT is to predict the vector

of pixel concentrations � (where �
�
denotes the concentra-

tion in pixel j) from y, the vector of measurements y
�
of

path-integrated concentrations along rays indexed with i.
Let S be the `system matrixa, so that S

���
is the path

length of path i through pixel j. Predicted path integrals
y( can be calculated from predicted pixel concentrations
�( with

y("S�( . (1)

With a su$ciently large number of rays, and if some
conditions on the spatial arrangement of rays are met,
the CT problem can be solved by "nding the set of pixel
concentrations that best "t the ray integrals, subject to
the constraint that �

�
*0; that is, by "nding the vector

�( that minimizes

�(�)"�
�

w
�
(y

�
![S�]

�
)�, (2)

where w
�
is the weight given to measurement i, as we

discuss below.
Unfortunately, minimizing the mean-squared di!er-

ence betweenmeasured and predicted path integrals does
not lead to a unique solution: in order to attain a spatial
resolution that is high enough to be useful, the number of
pixels will be much larger than the number of measured
path integrals. For instance, the experiments performed
by Fischer et al. use 28 optical paths in a plane, for
a chamber of 65 m�, so if each pixel represents 1 m� the
system is underdetermined by more than a factor of two.
There is therefore no unique set of � values that minim-

izes �(�), even under the constraint that all of the concen-
trations must be nonnegative.
Althoughmany sets of pixel values can lead to the path

integrals being "t about equally well, most are non-
physical or at least highly improbable, for instance,
involving concentrations that alternate between high
and low values for adjacent pixels. This problem has
previously been noted and discussed (Todd and
Ramachandran, 1994; Drescher et al., 1996; Park et al.,
2000) for the algebraic reconstruction technique (ART)
and related methods (Herman et al., 1973), all of which
generate reconstructions that are far too `noisya, in the
sense of having too much concentration variability on
small spatial scales.
Drescher et al. (1996) developed SBFM to constrain

the CT reconstruction to physically plausible solutions.
SBFMwrites the predicted concentration as a superposi-
tion of a small number of smooth basis functions, whose
parameters are estimated so as to minimize the weighted
or unweighted mean-squared di!erence between pre-
dicted and measured path integrals. Previous work has
used two-dimensional Gaussian distributions, for which
the parameters are position, amplitude, width in each
direction, and the angle between the x-axis and the major
axis of the Gaussian (Drescher et al., 1996, 1997; Price,
1999; Hashmonay et al., 1999). High predicted concentra-
tion gradients can be attained with small values for
Gaussian widths, but oscillatory solutions are avoided
because the number of local maxima cannot be more
than the number of Gaussian basis functions, which is
usually restricted to 5 or less. (Drescher et al. (1996),
suggested a method of determining the best number of
Gaussians to use, but in practice we have had success by
"xing the number at 4 or 5). SBFM works quite well, but
is unfortunately computationally intensive, as the search
for the best-"t set of parameters must contend with many
local minima of the goodness-of-"t function. Current
computational methods for SBFM rely on simulated
annealing (Metropolis et al., 1953; see Press et al., 1986)
and a single CT reconstruction takes 100}200 s on
a 300 MHz computer running compiled Mathematica
(TM) code. Although improvements in computer speed,
re-coding in a more e$cient computer language, or algo-
rithmic improvements that eliminate the need for
simulated annealing may eventually allow rapid SBFM
reconstructions, that prospect is still in the future. More-
over, extending SBFM to three dimensions will greatly
increase the computational burden. We do not expect
rapid 3D SBFM to be attainable in the near future.

2.1. Including prior information in computed tomography

The fundamental problem of CT is to select the desired
reconstruction (or reconstructions) from among the large
number of unlikely or unphysical reconstructions that
generate similar path integrals. Since the path integrals
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alone cannot determine the desired reconstruction, some
additional information must be included. One approach,
Bayesian modeling, uses so-called `informative prior in-
formationa: knowledge that is used to "t a model but that
is external to the data at hand. One can think of informa-
tive prior information as addressing the question `before
seeing any data, what can I say about the spatial distribu-
tion of concentrations?a Highly certain beliefs can be
given high statistical weight, while less certain informa-
tion can be given lower weight (and thus is easily over-
come if contradictory data are available).
Although none of the previously suggested gas concen-

tration CT methods were derived from a Bayesian ap-
proach, they do implicitly include prior information. For
example, SBFM with Gaussian basis functions assumes
that the gas concentration distribution has a small
number of local maxima, falls away smoothly from
these maxima, and indeed has a speci"c mathematical
form.
Park et al. (2000) recently applied penalized weighted

least-squares (PWLS), a technique developed by Sauer
and Bauman (1993) and Fessler (1994), to data collected
by Drescher et al. (1996). Using a `penalty functiona
suggested by Fessler in the context of medical imaging,
they searched for reconstructions with small concentra-
tion di!erences between adjacent pixels. This penalty
assumes that concentration gradients should be small,
with the strength of this assumption being controlled by
a parameter �. Reconstructions using this method had
systematic errors, such as substantially underestimating
the peak concentrations.
Other methods, such as ART and its relatives, are

harder to analyze in terms of prior information, but they
nevertheless "t some implicit model of what the spatial
distribution of the gas should look like.
Ideally, prior information would comprise a complete

statistical description of gas concentration distributions.
Currently, no such description exists, and in fact it is
di$cult to picture what mathematical form such a de-
scription would take. In principle, almost any two-di-
mensional map could represent actual concentrations; for
example, one could construct an experimental chamber
with laminar upward air #ow, and release gas into it
from a grid of release locations. Any distribution of
gas concentrations in a plane could be attained by
this method. Thus, given the underdetermined nature
of CT reconstructions using current experimental
technology, there is no method that will work perfectly
for all realizable concentration distributions. Instead,
the goal is to "nd a method that works for the types of
gas distributions that are likely to be encountered in
practice.
Examination of gas concentration distributions in

a plane as directly measured in experiments (Drescher et
al., 1996, 1997; Fischer et al., 2001), calculated with com-
putational #uid dynamics (Gadgil et al., 2000), and

simulated with dye distributions in a scale-model water
tank (Gadgil et al., 2000), reveals several features:

1. concentrations can have very large spatial gradients;
2. where very large gradients occur they are usually

near sources of gas, whereas areas far from all sour-
ces generally have lower gradients, even if they have
fairly high gas concentrations;

3. even with a single source, concentrations can have
several local maxima in a plane.

Any CT method must be able to accommodate at least
the features mentioned above. SBFM "ts this description,
but at great computational cost. Is there an alternative?
We propose a CT method that seeks reconstructed

concentration distributions in which the third spatial
derivative of concentration is near zero in each direction,
at every location. We refer to this approach as the `low
third derivativea (LTD) method. If the third derivative is
zero, then the second derivative is constant, so the con-
centration itself is a quadratic function of position. Set-
ting the third derivative exactly to zero everywhere would
not allow good "ts, as that would force a single global
quadratic form to "t the whole concentration distribu-
tion, whereas the intent is instead to generate solutions
that are locally quadratic, at least approximately.

2.2. LTD algorithm and computation

The notation �
�
for the pixel concentrations hides the

spatial relationship of the pixels, so we introduce an
alternative notation. The plane is gridded into pixels,
with n

�
rows and n

�
columns. Pixels are numbered from

1 to n
���

,n
�
�n

�
, with pixel 1 in the upper left corner of

a map, and pixel n
���

in the lower right. Pixels can be
speci"ed by row k and column l, with the concentration
in a pixel written as �(k, l),�

�� �������
. Note that k and

l denote row and column, not position along the x- and
y-axis. Each pixel corresponds to an area in the x}y
plane, but we use the notation that is standard for ma-
trices, not for algebraic geometry.
The concentration di!erence between adjacent pixels

approximates the "rst spatial derivative of concentration
at the midpoint of the pixels. To convert this derivative
into physical units, it must be divided by the distance
between pixel centers; for now, we remain in pixel units,
so this derivative represents the concentration change per
pixel, not (for example) per meter. If the pixels are square
(as we recommend, and as is the case in the data analyses
discussed below) then this distinction is merely a matter
of scaling.
The di!erence between "rst derivatives is a measure

of the second derivative, and the di!erence between
second derivatives is a measure of the third derivative.
For example, the third derivative in the l-direction
at the juncture between pixels (k, l) and (k, l#1) is
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given by

d��(k, l)
dl�

"�(k, l#2)!3�(k, l#1)#3�(k, l)! �(k, l!1).

(3)

Any prior information that can be expressed as the
expected value of a linear combination of pixel values can
be included in a linear model through matrix augmenta-
tion, a standard technique of Bayesian regression (e.g. see
Gelman et al., 1995). In essence, we are adding more
terms to the sum in Eq. (2); these terms penalize d��/dl�
terms in proportion to their distance from zero. This is
implemented as follows. Create a new matrix M by ap-
pending rows to the system matrix S; a new data vector y�
by appending elements to y; and assign weight w for each
of the new rows. Each row appended to the system
constitutes a mathematical statement; for example, the
statement that d��(k, l)/dl�"0 is implemented by con-
structing a row r of the M matrix that has 1,!3, 3, and
!1 in columns corresponding to pixels (k, l#2) through
(k, l!1), and setting the rth element of the y� vector to
zero; the weight for this statement is controlled by w

�
. We

refer to the weight w
�
as the `prior weighta, and to

equations such as Eq. (3) as `prior equationsa.
The third-derivative prior equations de"ned above

cannot be used for pixels near the walls, in the direction
perpendicular to the wall (because, for example, pixels
(k, l#1) and (k, l#2) would be outside the boundary of
the room for l'n

�
!2). Using third-derivative prior

equations alone would thus leave the pixel values at the
edges of the room relatively unconstrained, possibly
allowing a lot of variation in concentration among those
pixels, which would probably be non-physical. Several
remedies are available; the one we selected is to include
prior equations for the pixels near the walls so that the
second derivative perpendicular to the walls is small, and
assign this prior equation twice the weight as is given to
the third-derivative prior equations.
Including prior information for every pixel makes the

matrix system overdetermined, as required for a least-
squares solution: given some measured path integrals,
plus prior information about the third derivative in each
direction for every pixel, there are now more equations
(rows of the M matrix) than unknowns (pixel concentra-
tions �

�
). Finding the pixel values �( that minimize�(�), the

weighted squared di!erence between y� and y( �,M�( , is
just the problem of weighted least-squares regression. If
we ignore the constraint that all �

�
*0, the solution can

be found analytically (see Gelman et al. (1995), for
example): de"ne

H,(M�WM)��M�W, (4)

where W is a diagonal matrix whose diagonal elements
are w

�
. (Non-diagonal weight matrices can be used to

model covariance between pixels*the W matrix is the

inverse of the variance}covariance matrix*but we ig-
nore that issue here.) The value of �(�) is minimized by
letting

�("Hy�. (5)

For most reconstructions, all of the predicted pixel
concentrations are positive or only slightly negative (in
which case we simply set them to zero).
Solving a linear least-squares problem by direct calcu-

lation of H, as suggested by Eq. (5), is ordinarily not
recommended because much more computationally e$-
cient methods are available*matrix inversion is a slow
procedure for a large matrix. Although usually not
recommended, in our case it is actually highly e$cient to
directly compute H since the calculation needs to be done
only once for a given arrangement of optical paths and
set of prior equations and weights; then a matrix multi-
plication is all that is required in order to perform a re-
construction. The reduction of the CT problem to
a single matrix multiplication is responsible for the high
speed with which reconstructions can be performed with
this method.
A weight must be assigned to each equation*that is,

to each row of M. Short optical paths tend to have low
path integrals (e.g. in a completely mixed room, path
integrals are proportional to path length), so weighting
all optical paths equally would give shorter paths less
in#uence on the reconstruction. Indeed, a (hypothetical)
point sample would fail to in#uence the reconstruction at
all! To counteract this e!ect, for the path-integral equa-
tions we assign weights inversely proportional to path
length, scaled so that the longest path has weight 1. For
our current experimental set-up this is not a major issue,
since the longest paths are only a few times longer than
the shortest. Setting all of the weights of the path-integral
equations equal instead does not alter the solutions sub-
stantially in any of the cases we have examined.
We must also assign a weight to each of the prior

equations, as discussed following Eq. (3). For simplicity,
we use the same weight, �, for every pixel. Finally, for
pixels near the walls we constrain the second derivative
perpendicular to the wall, using a weight of 2�. The prior
weight for the third-derivative prior equations, �, is then
the only adjustable parameter.
The experiments of Fischer et al. (2001) included short-

path measurements (which are nearly point measure-
ments) throughout the plane. In principle, one could
select the weight � in order to maximize the agreement
with the point measurements, but such reliance on point
measurement would largely defeat the purpose of CT.
Fortunately, alternatives exist. In particular, we select the
highest weight for the prior equations that still allows
a good "t to the measured long-path integrals. In fact,
because the reconstructions vary only slowly with the
prior weights, precise selection of the weights is not
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necessary. Instead, we calculate and store H for three or
four widely varying prior weights, and use the one that
produces reconstructions that give suitable agreement
with the long-path integrals.

2.3. Performing reconstructions from a complete
experiment

To perform reconstructions for an entire experiment,
consisting of many measurements of every optical path,
the approach is as follows. First, calculate and store
H matrices for three or four widely varying prior weights
(e.g. � values of 1, 10, 100, 500). Then, for each time step:

1. Construct the data vector y�, by appending the prior
values (a vector of zeroes, in the present application)
to the long-path measurements y.

2. Calculate predicted pixel concentrations �("Hy�.
3. Handle negative predicted concentrations, either by

setting them to zero or by using the predictions as
the initial guess for a constrained optimization.

4. Calculate predicted long-path measurements y("S�( .
5. Calculate the agreement between predicted and

measured long-path integrals, R�
���	

"Correla-
tion(y, y( )�;
(a) if R�

���	
(0.92, choose a H matrix that was pre-

calculated with lower prior weights, and return
to step 2;

(b) if R�
���	

'0.96, choose a H matrix with higher
prior weights, and return to step 2.

6. Accept the reconstruction �( . Read in the data for the
next time step, and go to step 1.

The details of step 5 could be modi"ed: a measure of
agreement other than R�

���	
could be used, or the thre-

sholds for choosing a di!erent � value could be altered.
We chose the values 0.92 and 0.96 empirically: we found
that to achieve R�

���	
values higher than 0.96, reconstruc-

tions had to be highly spatially variable, to an extent that
seemed unreasonable. On the other hand, accepting
R�

���	
values below 0.92 implies accepting reconstructions

that do not "t the data particularly well. Enforcing the
range 0.92(R�

���	
(0.96 yielded reconstructions that

provided good agreement with measured path integrals
while also having a plausible amount of spatial variabil-
ity. If experimental conditions were changed, di!erent
values might be appropriate.
As with other choices discussed in this paper, we could

have selected the upper and lower R�
���	

thresholds so as
to optimize the "t to the short-path measurements, but
the goal is to produce reconstructions using only the
long-path measurements.

2.4. Including other prior information

Matrix augmentation allows the use of prior informa-
tion other than (or in addition to) the second- and

third-derivative priors suggested above. For example, the
functional equivalent of PWLS with the penalty function
suggested in Fessler (1994), and applied to gas concentra-
tion CT by Park et al. (2000), can be attained by includ-
ing prior information that the "rst derivatives should
be small. This is implemented by augmenting the
system matrix with one row for each pixel, and the
data vector with one entry for each pixel, so that
each new row corresponds to a statement such as
�(k, l#1)!�(k, l)"0. The statistical weights for these
rows play the role of Fessler's � parameter.
Prior information on individual pixel concentrations is

also easy to add; such informationmight come from a CT
reconstruction based on earlier data, or from a computa-
tional #uid dynamics solution.

3. Results and discussion

To investigate the performance of the LTD algorithm,
we analyzed data from the experiments described in
Fischer et al. (2001). In these experiments, a tracer gas
(methane) was released from a square-meter area source
near the #oor of a 7 m�9 m�11 m room. During every
7-s interval, the path-integrated methane concentration
was optically measured along each of 28 `long-patha rays
that cross the room in a plane about 2 m above the #oor.
In addition to the long-path measurements, the path-
integrated concentration was determined along each of
28 0.5-m `short-patha rays, using telescopes and receiv-
ing optics suspended from cables in the interior of the
room. The short-path measurements are used to examine
the performance of the CT reconstructions, as follows: (1)
perform a reconstruction using only the long-path
measurements, (2) calculate the predicted short-path con-
centration, based on the reconstruction, and (3) quantify
the agreement between predicted and measured short-
path concentration. For all of the reconstructions, we
used pixels about 0.5 m on a side.
Fig. 1 shows a map of the long-path rays. Each ray is

plotted with a width proportional to its concentration
measurement (the path integral divided by the path
length) during a 7-s measurement cycle from experiment
3 during which each path integral was measured once.
This "gure illustrates the input data to the CT algorithm.
Fig. 2 shows CT reconstructions, along with short-

path measurements, for four consecutive 7-s measure-
ment cycles in experiment 3. Methane was released just
above the #oor near x"4 m, y"2 m; a persistent eddy
in the experimental chamber carries the gas counter-
clockwise after release, so concentrations in the measure-
ment plane tend to be highest along the wall at x"7 m.
No single goodness-of-"t parameter provides an

adequate summary of "t between predictions and
measurements. For simplicity, here we discuss R�


����
, the

coe$cient of determination between the short-path
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Fig. 1. Plan view of the experimental chamber of Fischer et al.,
showing long-path rays. Each ray's width is proportional to the
average gas concentration along the ray (i.e. the ray integral
divided by the path length) as measured during a 7-s interval of
one experiment. Distances are in meters.

predictions and measurements, since this addresses one
major question of interest: is the actual gas concentration
low where the reconstruction says it is low, and high
where the reconstruction says it is high? The R�


����
values

for the sequence of reconstructions shown in Fig. 2 vary
over a wide range: they are 0.59, 0.45, 0.62, and 0.77. For
the experiment as a whole, the medianR�


����
value is 0.68.

The short-path data sometimes show rapid temporal
variability. For example, the measured concentration for
the short-path sensor near x"6 m, y"1 m changes by
more than a factor of 2.5 from the second to the third
measurement cycle in Fig. 2. Gas movement during the
measurement cycle can a!ect both the reconstruction
itself and the amount of agreement between the recon-
struction and the short-path measurements. Each optical
path is sampled for only 150 ms during each cycle, so the
measurement along a path does not represent the average
concentration over the 7-s interval that it takes to
measure all of the path integrals. If a high-concentration
wisp of gas passes through the measurement path during
the short interval during which the path is measured, the
path integral will be higher than the 7-s average. The
temporal variability can thus cause a discrepancy be-
tween the short-path measurements and their predicted
values based on the reconstruction, even if the recon-
struction does accurately reproduce the time-average gas
distribution.
Table 1 summarizes the performance of the method in

reconstructing several experiments performed by Fischer
et al. (2001). For each experiment, we performed recon-

structions beginning with the "rst appearance of substan-
tial gas concentrations in the measurement plane, and
ending 30 min later. To help assess the signi"cance of
temporal variability, we performed two series of recon-
structions. In the "rst series, each reconstruction was
based on data collected over a 7-s interval, and thus uses
one measurement of each optical path. In the second
series, each reconstruction was based on a moving aver-
age of data collected over a 21-s interval, in 7-s steps (so
that each path is measured 3 times, and the average of the
three is used for the reconstruction). Reconstructions
were compared to short-path data collected during the 7-
or 21-s time interval, respectively. Averaging over three
measurement cycles removes some of the rapid temporal
variation in the gas concentrations that can reduce the
agreement between the CT reconstructions and the
short-path measurements.
As Table 1 shows, averaging over three measurement

cycles substantially improves the worst reconstructions
(those with the lowest 5}10% of R�


����
values), while

leaving R�

����

for most of the rest essentially una!ected.
This suggests that temporal variation is one of the rea-
sons the poorest reconstructions are as poor as they are,
but such variability is not a major factor in causing
discrepancies between predicted and actual concentra-
tion distributions for most of the reconstructions.
Somewhat remarkably, ignoring the constraint that all

�
�
must be nonnegative almost never causes a problem: in

practice, the matrix solution to the unconstrained prob-
lem rarely predicts any pixel concentrations that are
substantially negative (e.g. with magnitude greater than
0.1 times that of the predicted peak). As discussed above,
when negative pixel predictions do occur, we set them to
zero. We have also solved the constrained system when
the unconstrained solutions generated negative predic-
tions, but the resulting solutions took more computer
time and were no better, in terms of agreement with the
short-path measurements, than were obtained from the
unconstrained solutions with negatives set to zero.
To compare the LTD method to SBFM, we calculated

SBFM reconstructions for the same experiments whose
LTD reconstructions are summarized in Table 1. The
SBFM reconstructions are consistently slightly better:
the SBFM R�


����
values exceed those from the LTD

method for every experiment and every quantile except
for the 0.05 and 0.10 quantiles of experiment 1. SBFM's
superiority (by this measure) is remarkably similar for all
quantiles and all experiments: the SBFM R�


����
value is

higher by about 0.05$0.02. For example, whereas the
median R�


����
values when the LTD pixel method is

applied to the four experiments in Table 1 are
0.64, 0.73, 0.68 and 0.70, respectively, the corresponding
SBFM values are higher by 0.08, 0.06, 0.04 and 0.03.
A similar pattern is present in the other quantiles.
The similarity between SBFM and the LTD method

goes beyond the similar values of R�

����

for each quantile;
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Fig. 2. Measured (left column) and reconstructed (middle column) concentration at the location of each of the short-path sensors: the
height of each bar shows the concentration (in ppm) at that sensor. Four consecutive 7-s time intervals are shown. The scatterplot in the
right column plots measurement against prediction for each short-path sensor location. The diagonal line is the 1-to-1 line representing
perfect agreement between prediction and measurement.

in fact, both methods perform similarly for each indi-
vidual reconstruction*when one method produces rela-
tively poor reconstructions, the other tends to do so as
well. In terms of reconstruction accuracy, SBFM remains
the gold standard for CT of gas concentrations by a nar-
row margin. However, the enormous speed advantage of
the LTD method, which is about 100 times faster than
SBFM, makes the LTD method appealing for most
applications in which large amounts of data require
analysis or when real-time reconstructions are desired.
A reconstruction using LTD takes less than 2 s on a
300 MHz Pentium-class personal computer running
Mathematica.

The LTD method produces CT reconstructions in
which path integrals agree with measurements and third
spatial derivatives of the gas concentration are low. The
method works well for data we have analyzed so far:
measured average concentrations over an array of short
optical paths are in good agreement with predicted con-
centrations from CT reconstructions. Modi"cations
might improve the method. For example, currently the
same prior weight is used for every pixel, in each direc-
tion. Allowing the weight to vary with position could
probably create better reconstructions, but for this ap-
proach to be useful it must be possible to determine the
best spatial variation of weights by analysis of the path
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Table 1
Quantiles of R�


����
for four of the experiments discussed by Fischer et al. (2001). For each experiment, each reconstruction was performed

from data in which every path integral was measured once (a 7-s interval), and from the average of three measurements (a 21-s interval).
In each case, the reconstructions are based on data acquired for 30 min after the "rst appearance of tracer gas in the measurement plane

Experiment no. Integration time (s) Quantiles of R�

����

0.05 0.10 0.25 0.50 0.75 0.90 0.95

1 7 0.34 0.46 0.57 0.64 0.73 0.79 0.82
21 0.41 0.50 0.61 0.67 0.75 0.81 0.85

2 7 0.52 0.58 0.65 0.73 0.80 0.83 0.86
21 0.58 0.62 0.68 0.76 0.81 0.85 0.87

3 7 0.32 0.43 0.57 0.68 0.74 0.79 0.82
21 0.45 0.50 0.62 0.71 0.76 0.83 0.85

4 7 0.30 0.41 0.59 0.70 0.77 0.83 0.86
21 0.37 0.49 0.63 0.73 0.80 0.85 0.87

integral data alone, without reference to point-sample
data. It is not obvious how that can be done. One
possibility is to produce a reconstruction with uniform
weights, calculate the third spatial derivatives of the
reconstruction, and check the extent to which the deriva-
tives are consistent with the prior equations. If there are
areas over which most of the derivatives are of small
(large) magnitude, better "ts may be possible by decreas-
ing (increasing) the prior weights for pixels in those areas.
Alternatively, spatial correlation in derivative values
could be incorporated by using a non-diagonal weight
matrix W; again, this will be a useful approach only if the
spatial covariance of derivatives can be estimated with-
out reference to point-sample data.
By combining hardware allowing measuring all 28

optical paths in an experimental chamber within about
7 s (see Fischer et al., 2001), with the LTD algorithm
described here for performing very rapid CT reconstruc-
tions from the resulting data, we have taken CT mapping
of air pollutant concentrations out of the realm of proof-
of-principle experiments and into the world of actual
application. We now use these tools at Lawrence Ber-
keley National Laboratory to investigate air #ows and
gas dispersion in a large experimental chamber.
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