This electronic document was downloaded from the GPO web site, November 2003, and is provided for information purposes only. The Code of Federal Regulations, Title 40, is updated July 1 of each year. The most current version of the regulations may be found at the GPO web site.
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.1]
 
[Page 335]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                           Subpart A--General
 
Sec. 141.1  Applicability.
 
 
    This part establishes primary drinking water regulations pursuant to 
section 1412 of the Public Health Service Act, as amended by the Safe 
Drinking Water Act (Pub. L. 93-523); and related regulations applicable 
to public water systems.
 
[[Page 336]]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.2]
 
[Page 336-341]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                           Subpart A--General
 
Sec. 141.2  Definitions.
 
    As used in this part, the term:
    Act means the Public Health Service Act, as amended by the Safe 
Drinking Water Act, Public Law 93-523.
    Action level, is the concentration of lead or copper in water 
specified in Sec. 141.80(c) which determines, in some cases, the 
treatment requirements contained in subpart I of this part that a water 
system is required to complete.
    Best available technology or BAT means the best technology, 
treatment techniques, or other means which the Administrator finds, 
after examination for efficacy under field conditions and not solely 
under laboratory conditions, are available (taking cost into 
consideration). For the purposes of setting MCLs for synthetic organic 
chemicals, any BAT must be at least as effective as granular activated 
carbon.
    Coagulation means a process using coagulant chemicals and mixing by 
which colloidal and suspended materials are destabilized and 
agglomerated into flocs.
    Community water system means a public water system which serves at 
least 15 service connections used by year-round residents or regularly 
serves at least 25 year-round residents.
    Compliance cycle means the nine-year calendar year cycle during 
which public water systems must monitor. Each compliance cycle consists 
of three three-year compliance periods. The first calendar year cycle 
begins January 1, 1993 and ends December 31, 2001; the second begins 
January 1, 2002 and ends December 31, 2010; the third begins January 1, 
2011 and ends December 31, 2019.
    Compliance period means a three-year calendar year period within a 
compliance cycle. Each compliance cycle has three three-year compliance 
periods. Within the first compliance cycle, the first compliance period 
runs from January 1, 1993 to December 31, 1995; the second from January 
1, 1996 to December 31, 1998; the third from January 1, 1999 to December 
31, 2001.
    Comprehensive performance evaluation (CPE) is a thorough review and 
analysis of a treatment plant's performance-based capabilities and 
associated administrative, operation and maintenance practices. It is 
conducted to identify factors that may be adversely impacting a plant's 
capability to achieve compliance and emphasizes approaches that can be 
implemented without significant capital improvements. For purposes of 
compliance with subpart P of this part, the comprehensive performance 
evaluation must consist of at least the following components: Assessment 
of plant performance; evaluation of major unit processes; identification 
and prioritization of performance limiting factors; assessment of the 
applicability of comprehensive technical assistance; and preparation of 
a CPE report.
    Confluent growth means a continuous bacterial growth covering the 
entire filtration area of a membrane filter, or a portion thereof, in 
which bacterial colonies are not discrete.
    Contaminant means any physical, chemical, biological, or 
radiological substance or matter in water.
    Conventional filtration treatment means a series of processes 
including coagulation, flocculation, sedimentation, and filtration 
resulting in substantial particulate removal.
    Corrosion inhibitor means a substance capable of reducing the 
corrosivity of water toward metal plumbing materials, especially lead 
and copper, by forming a protective film on the interior surface of 
those materials.
    CT or CTcalc is the product of "residual disinfectant 
concentration" (C) in mg/1 determined before or at the first customer, 
and the corresponding "disinfectant contact time" (T) in minutes, 
i.e., "C" x "T". If a public water system applies disinfectants at 
more than one point prior to the first customer, it must determine the 
CT of each disinfectant sequence before or at the first customer to 
determine the total percent inactivation or "total inactivation 
ratio." In determining the total inactivation ratio, the public water 
system must determine the residual disinfectant concentration of each 
disinfection sequence and corresponding contact time before any 
subsequent disinfection application point(s). "CT<INF>99.9</INF>" is 
the CT value required for 99.9 percent (3-log) inactivation of Giardia 
lamblia cysts. CT<INF>99.9</INF> for a variety of disinfectants and 
conditions
 
[[Page 337]]
 
appear in tables 1.1-1.6, 2.1, and 3.1 of Sec. 141.74(b)(3).
[GRAPHIC] [TIFF OMITTED] TC15NO91.129
 
 
is the inactivation ratio. The sum of the inactivation ratios, or total 
inactivation ratio shown as
[GRAPHIC] [TIFF OMITTED] TC15NO91.130
 
 
is calculated by adding together the inactivation ratio for each 
disinfection sequence. A total inactivation ratio equal to or greater 
than 1.0 is assumed to provide a 3-log inactivation of Giardia lamblia 
cysts.
    Diatomaceous earth filtration means a process resulting in 
substantial particulate removal in which (1) a precoat cake of 
diatomaceous earth filter media is deposited on a support membrance 
(septum), and (2) while the water is filtered by passing through the 
cake on the septum, additional filter media known as body feed is 
continuously added to the feed water to maintain the permeability of the 
filter cake.
    Direct filtration means a series of processes including coagulation 
and filtration but excluding sedimentation resulting in substantial 
particulate removal.
    Disinfectant means any oxidant, including but not limited to 
chlorine, chlorine dioxide, chloramines, and ozone added to water in any 
part of the treatment or distribution process, that is intended to kill 
or inactivate pathogenic microorganisms.
    Disinfectant contact time ("T" in CT calculations) means the time 
in minutes that it takes for water to move from the point of 
disinfectant application or the previous point of disinfectant residual 
measurement to a point before or at the point where residual 
disinfectant concentration ("C") is measured. Where only one "C" is 
measured, "T" is the time in minutes that it takes for water to move 
from the point of disinfectant application to a point before or at where 
residual disinfectant concentration ("C") is measured. Where more than 
one "C" is measured, "T" is (a) for the first measurement of "C", 
the time in minutes that it takes for water to move from the first or 
only point of disinfectant application to a point before or at the point 
where the first "C" is measured and (b) for subsequent measurements of 
"C", the time in minutes that it takes for water to move from the 
previous "C" measurement point to the "C" measurement point for 
which the particular "T" is being calculated. Disinfectant contact 
time in pipelines must be calculated based on "plug flow" by dividing 
the internal volume of the pipe by the maximum hourly flow rate through 
that pipe. Disinfectant contact time within mixing basins and storage 
reservoirs must be determined by tracer studies or an equivalent 
demonstration.
    Disinfection means a process which inactivates pathogenic organisms 
in water by chemical oxidants or equivalent agents.
    Disinfection profile is a summary of daily Giardia lamblia 
inactivation through the treatment plant. The procedure for developing a 
disinfection profile is contained in Sec. 141.172.
    Domestic or other non-distribution system plumbing problem means a 
coliform contamination problem in a public water system with more than 
one service connection that is limited to the specific service 
connection from which the coliform-positive sample was taken.
    Dose equivalent means the product of the absorbed dose from ionizing 
radiation and such factors as account for differences in biological 
effectiveness due to the type of radiation and its distribution in the 
body as specified by the International Commission on Radiological Units 
and Measurements (ICRU).
    Effective corrosion inhibitor residual, for the purpose of subpart I 
of this part only, means a concentration sufficient to form a 
passivating film on the interior walls of a pipe.
    Enhanced coagulation means the addition of sufficient coagulant for 
improved removal of disinfection byproduct precursors by conventional 
filtration treatment.
 
[[Page 338]]
 
    Enhanced softening means the improved removal of disinfection 
byproduct precursors by precipitative softening.
    Filter profile is a graphical representation of individual filter 
performance, based on continuous turbidity measurements or total 
particle counts versus time for an entire filter run, from startup to 
backwash inclusively, that includes an assessment of filter performance 
while another filter is being backwashed.
    Filtration means a process for removing particulate matter from 
water by passage through porous media.
    First draw sample means a one-liter sample of tap water, collected 
in accordance with Sec. 141.86(b)(2), that has been standing in plumbing 
pipes at least 6 hours and is collected without flushing the tap.
    Flocculation means a process to enhance agglomeration or collection 
of smaller floc particles into larger, more easily settleable particles 
through gentle stirring by hydraulic or mechanical means.
    GAC10 means granular activated carbon filter beds with an empty-bed 
contact time of 10 minutes based on average daily flow and a carbon 
reactivation frequency of every 180 days.
    Ground water under the direct influence of surface water means any 
water beneath the surface of the ground with significant occurrence of 
insects or other macroorganisms, algae, or large-diameter pathogens such 
as Giardia lamblia or (for subpart H systems serving at least 10,000 
people only) Cryptosporidium, or significant and relatively rapid shifts 
in water characteristics such as turbidity, temperature, conductivity, 
or pH which closely correlate to climatological or surface water 
conditions. Direct influence must be determined for individual sources 
in accordance with criteria established by the State. The State 
determination of direct influence may be based on site-specific 
measurements of water quality and/or documentation of well construction 
characteristics and geology with field evaluation.
    Gross alpha particle activity means the total radioactivity due to 
alpha particle emission as inferred from measurements on a dry sample.
    Gross beta particle activity means the total radioactivity due to 
beta particle emission as inferred from measurements on a dry sample.
    Haloacetic acids (five) (HAA5) mean the sum of the concentrations in 
milligrams per liter of the haloacetic acid compounds (monochloroacetic 
acid, dichloroacetic acid, trichloroacetic acid, monobromoacetic acid, 
and dibromoacetic acid), rounded to two significant figures after 
addition.
    Halogen means one of the chemical elements chlorine, bromine or 
iodine.
    Initial compliance period means the first full three-year compliance 
period which begins at least 18 months after promulgation, except for 
contaminants listed at Sec. 141.61(a) (19)-(21), (c) (19)-(33), and 
Sec. 141.62(b) (11)-(15), initial compliance period means the first full 
three-year compliance period after promulgation for systems with 150 or 
more service connections (January 1993-December 1995), and first full 
three-year compliance period after the effective date of the regulation 
(January 1996-December 1998) for systems having fewer than 150 service 
connections.
    Large water system, for the purpose of subpart I of this part only, 
means a water system that serves more than 50,000 persons.
    Lead service line means a service line made of lead which connects 
the water main to the building inlet and any lead pigtail, gooseneck or 
other fitting which is connected to such lead line.
    Legionella means a genus of bacteria, some species of which have 
caused a type of pneumonia called Legionnaires Disease.
    Man-made beta particle and photon emitters means all radionuclides 
emitting beta particles and/or photons listed in Maximum Permissible 
Body Burdens and Maximum Permissible Concentration of Radionuclides in 
Air or Water for Occupational Exposure, NBS Handbook 69, except the 
daughter products of thorium-232, uranium-235 and uranium-238.
    Maximum contaminant level means the maximum permissable level of a 
contaminant in water which is delivered to any user of a public water 
system.
    Maximum contaminant level goal or MCLG means the maximum level of a 
contaminant in drinking water at
 
[[Page 339]]
 
which no known or anticipated adverse effect on the health of persons 
would occur, and which allows an adequate margin of safety. Maximum 
contaminant level goals are nonenforceable health goals.
    Maximum residual disinfectant level (MRDL) means a level of a 
disinfectant added for water treatment that may not be exceeded at the 
consumer's tap without an unacceptable possibility of adverse health 
effects. For chlorine and chloramines, a PWS is in compliance with the 
MRDL when the running annual average of monthly averages of samples 
taken in the distribution system, computed quarterly, is less than or 
equal to the MRDL. For chlorine dioxide, a PWS is in compliance with the 
MRDL when daily samples are taken at the entrance to the distribution 
system and no two consecutive daily samples exceed the MRDL. MRDLs are 
enforceable in the same manner as maximum contaminant levels under 
Section 1412 of the Safe Drinking Water Act. There is convincing 
evidence that addition of a disinfectant is necessary for control of 
waterborne microbial contaminants. Notwithstanding the MRDLs listed in 
Sec. 141.65, operators may increase residual disinfectant levels of 
chlorine or chloramines (but not chlorine dioxide) in the distribution 
system to a level and for a time necessary to protect public health to 
address specific microbiological contamination problems caused by 
circumstances such as distribution line breaks, storm runoff events, 
source water contamination, or cross-connections.
    Maximum residual disinfectant level goal (MRDLG) means the maximum 
level of a disinfectant added for water treatment at which no known or 
anticipated adverse effect on the health of persons would occur, and 
which allows an adequate margin of safety. MRDLGs are nonenforceable 
health goals and do not reflect the benefit of the addition of the 
chemical for control of waterborne microbial contaminants.
    Maximum Total Trihalomethane Potential (MTP) means the maximum 
concentration of total trihalomethanes produced in a given water 
containing a disinfectant residual after 7 days at a temperature of 25 
deg.C or above.
    Medium-size water system, for the purpose of subpart I of this part 
only, means a water system that serves greater than 3,300 and less than 
or equal to 50,000 persons.
    Near the first service connection means at one of the 20 percent of 
all service connections in the entire system that are nearest the water 
supply treatment facility, as measured by water transport time within 
the distribution system.
    Non-community water system means a public water system that is not a 
community water system. A non-community water system is either a 
"transient non-community water system (TWS)" or a "non-transient non-
community water system (NTNCWS)."
    Non-transient non-community water system or NTNCWS means a public 
water system that is not a community water system and that regularly 
serves at least 25 of the same persons over 6 months per year.
    Optimal corrosion control treatment, for the purpose of subpart I of 
this part only, means the corrosion control treatment that minimizes the 
lead and copper concentrations at users' taps while insuring that the 
treatment does not cause the water system to violate any national 
primary drinking water regulations.
    Performance evaluation sample means a reference sample provided to a 
laboratory for the purpose of demonstrating that the laboratory can 
successfully analyze the sample within limits of performance specified 
by the Agency. The true value of the concentration of the reference 
material is unknown to the laboratory at the time of the analysis.
    Person means an individual; corporation; company; association; 
partnership; municipality; or State, Federal, or tribal agency.
    Picocurie (pCi) means the quantity of radioactive material producing 
2.22 nuclear transformations per minute.
    Point of disinfectant application is the point where the 
disinfectant is applied and water downstream of that point is not 
subject to recontamination by surface water runoff.
    Point-of-entry treatment device is a treatment device applied to the 
drinking water entering a house or building
 
[[Page 340]]
 
for the purpose of reducing contaminants in the drinking water 
distributed throughout the house or building.
    Point-of-use treatment device is a treatment device applied to a 
single tap used for the purpose of reducing contaminants in drinking 
water at that one tap.
    Public water system means a system for the provision to the public 
of water for human consumption through pipes or, after August 5, 1998, 
other constructed conveyances, if such system has at least fifteen 
service connections or regularly serves an average of at least twenty-
five individuals daily at least 60 days out of the year. Such term 
includes: any collection, treatment, storage, and distribution 
facilities under control of the operator of such system and used 
primarily in connection with such system; and any collection or 
pretreatment storage facilities not under such control which are used 
primarily in connection with such system. Such term does not include any 
"special irrigation district." A public water system is either a 
"community water system" or a "noncommunity water system."
    Rem means the unit of dose equivalent from ionizing radiation to the 
total body or any internal organ or organ system. A "millirem (mrem)" 
is 1/1000 of a rem.
    Repeat compliance period means any subsequent compliance period 
after the initial compliance period.
    Residual disinfectant concentration ("C" in CT calculations) means 
the concentration of disinfectant measured in mg/l in a representative 
sample of water.
    Sanitary survey means an onsite review of the water source, 
facilities, equipment, operation and maintenance of a public water 
system for the purpose of evaluating the adequacy of such source, 
facilities, equipment, operation and maintenance for producing and 
distributing safe drinking water.
    Sedimentation means a process for removal of solids before 
filtration by gravity or separation.
    Service connection, as used in the definition of public water 
system, does not include a connection to a system that delivers water by 
a constructed conveyance other than a pipe if:
    (1) The water is used exclusively for purposes other than 
residential uses (consisting of drinking, bathing, and cooking, or other 
similar uses);
    (2) The State determines that alternative water to achieve the 
equivalent level of public health protection provided by the applicable 
national primary drinking water regulation is provided for residential 
or similar uses for drinking and cooking; or
    (3) The State determines that the water provided for residential or 
similar uses for drinking, cooking, and bathing is centrally treated or 
treated at the point of entry by the provider, a pass-through entity, or 
the user to achieve the equivalent level of protection provided by the 
applicable national primary drinking water regulations.
    Service line sample means a one-liter sample of water collected in 
accordance with Sec. 141.86(b)(3), that has been standing for at least 6 
hours in a service line.
    Single family structure, for the purpose of subpart I of this part 
only, means a building constructed as a single-family residence that is 
currently used as either a residence or a place of business.
    Slow sand filtration means a process involving passage of raw water 
through a bed of sand at low velocity (generally less than 0.4 m/h) 
resulting in substantial particulate removal by physical and biological 
mechanisms.
    Small water system, for the purpose of subpart I of this part only, 
means a water system that serves 3,300 persons or fewer.
    Special irrigation district means an irrigation district in 
existence prior to May 18, 1994 that provides primarily agricultural 
service through a piped water system with only incidental residential or 
similar use where the system or the residential or similar users of the 
system comply with the exclusion provisions in section 1401(4)(B)(i)(II) 
or (III).
    Standard sample means the aliquot of finished drinking water that is 
examined for the presence of coliform bacteria.
    State means the agency of the State or Tribal government which has 
jurisdiction over public water systems. During any period when a State 
or Tribal
 
[[Page 341]]
 
government does not have primary enforcement responsibility pursuant to 
section 1413 of the Act, the term "State" means the Regional 
Administrator, U.S. Environmental Protection Agency.
    Subpart H systems means public water systems using surface water or 
ground water under the direct influence of surface water as a source 
that are subject to the requirements of subpart H of this part.
    Supplier of water means any person who owns or operates a public 
water system.
    Surface water means all water which is open to the atmosphere and 
subject to surface runoff.
    SUVA means Specific Ultraviolet Absorption at 254 nanometers (nm), 
an indicator of the humic content of water. It is a calculated parameter 
obtained by dividing a sample's ultraviolet absorption at a wavelength 
of 254 nm (UV <INF>254</INF>) (in m <SUP1</SUP>) by its concentration 
of dissolved organic carbon (DOC) (in mg/L).
    System with a single service connection means a system which 
supplies drinking water to consumers via a single service line.
    Too numerous to count means that the total number of bacterial 
colonies exceeds 200 on a 47-mm diameter membrane filter used for 
coliform detection.
    Total Organic Carbon (TOC) means total organic carbon in mg/L 
measured using heat, oxygen, ultraviolet irradiation, chemical oxidants, 
or combinations of these oxidants that convert organic carbon to carbon 
dioxide, rounded to two significant figures.
    Total trihalomethanes (TTHM) means the sum of the concentration in 
milligrams per liter of the trihalomethane compounds (trichloromethane 
[chloroform], dibromochloromethane, bromodichloromethane and 
tribromomethane [bromoform]), rounded to two significant figures.
    Transient non-community water system or TWS means a non-community 
water system that does not regularly serve at least 25 of the same 
persons over six months per year.
    Trihalomethane (THM) means one of the family of organic compounds, 
named as derivatives of methane, wherein three of the four hydrogen 
atoms in methane are each substituted by a halogen atom in the molecular 
structure.
    Uncovered finished water storage facility is a tank, reservoir, or 
other facility used to store water that will undergo no further 
treatment except residual disinfection and is open to the atmosphere.
    Virus means a virus of fecal origin which is infectious to humans by 
waterborne transmission.
    Waterborne disease outbreak means the significant occurrence of 
acute infectious illness, epidemiologically associated with the 
ingestion of water from a public water system which is deficient in 
treatment, as determined by the appropriate local or State agency.
 
[40 FR 59570, Dec. 24, 1975, as amended at 41 FR 28403, July 9, 1976; 44 
FR 68641, Nov. 29, 1979; 51 FR 11410, Apr. 2, 1986; 52 FR 20674, June 2, 
1987; 52 FR 25712, July 8, 1987; 53 FR 37410, Sept. 26, 1988; 54 FR 
27526, 27562, June 29, 1989; 56 FR 3578, Jan. 30, 1991; 56 FR 26547, 
June 7, 1991; 57 FR 31838, July 17, 1992; 59 FR 34322, July 1, 1994; 61 
FR 24368, May 14, 1996; 63 FR 23366, Apr. 28, 1998; 63 FR 69463, 69515, 
Dec. 16, 1998]
 
    Effective Date Note: At 66 FR 7061, Jan. 22, 2001, Sec. 141.2 was 
amended by revising the definition heading for "Point-of-entry 
treatment device" to read "Point-of-entry treatment device (POE)" and 
by revising the definition heading for "Point-of-use treatment device" 
to read "Point-of-use treatment device (POU)", effective Mar. 23, 
2001. At 66 FR 16134, Mar. 23, 2001, the effective date was delayed 
until May 22, 2001. At 66 FR 28350, May 22, 2001, the effective date was 
further delayed until Feb. 22, 2002.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.3]
 
[Page 341]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                           Subpart A--General
 
Sec. 141.3  Coverage.
 
    This part shall apply to each public water system, unless the public 
water system meets all of the following conditions:
    (a) Consists only of distribution and storage facilities (and does 
not have any collection and treatment facilities);
    (b) Obtains all of its water from, but is not owned or operated by, 
a public water system to which such regulations apply:
    (c) Does not sell water to any person; and
    (d) Is not a carrier which conveys passengers in interstate 
commerce.
 
[[Page 342]]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.4]
 
[Page 342]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                           Subpart A--General
 
Sec. 141.4  Variances and exemptions.
 
    (a) Variances or exemptions from certain provisions of these 
regulations may be granted pursuant to sections 1415 and 1416 of the Act 
and subpart K of part 142 of this chapter (for small system variances) 
by the entity with primary enforcement responsibility, except that 
variances or exemptions from the MCL for total coliforms and variances 
from any of the treatment technique requirements of subpart H of this 
part may not be granted.
    (b) EPA has stayed the effective date of this section relating to 
the total coliform MCL of Sec. 141.63(a) for systems that demonstrate to 
the State that the violation of the total coliform MCL is due to a 
persistent growth of total coliforms in the distribution system rather 
than fecal or pathogenic contamination, a treatment lapse or deficiency, 
or a problem in the operation or maintenance of the distribution system.
 
[54 FR 27562, June 29, 1989, as amended at 56 FR 1557, Jan. 15, 1991; 63 
FR 43846, Aug. 14, 1998]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.5]
 
[Page 342]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                           Subpart A--General
 
Sec. 141.5  Siting requirements.
 
    Before a person may enter into a financial commitment for or 
initiate construction of a new public water system or increase the 
capacity of an existing public water system, he shall notify the State 
and, to the extent practicable, avoid locating part or all of the new or 
expanded facility at a site which:
    (a) Is subject to a significant risk from earthquakes, floods, fires 
or other disasters which could cause a breakdown of the public water 
system or a portion thereof; or
    (b) Except for intake structures, is within the floodplain of a 100-
year flood or is lower than any recorded high tide where appropriate 
records exist. The U.S. Environmental Protection Agency will not seek to 
override land use decisions affecting public water systems siting which 
are made at the State or local government levels.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.6]
 
[Page 342-343]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                           Subpart A--General
 
Sec. 141.6  Effective dates.
 
    (a) Except as provided in paragraphs (a) through (h) of this 
section, and in Sec. 141.80(a)(2), the regulations set forth in this 
part shall take effect on June 24, 1977.
    (b) The regulations for total trihalomethanes set forth in 
Sec. 141.12(c) shall take effect 2 years after the date of promulgation 
of these regulations for community water systems serving 75,000 or more 
individuals, and 4 years after the date of promulgation for communities 
serving 10,000 to 74,999 individuals.
    (c) The regulations set forth in Secs. 141.11 (a), (d) and (e); 
141.14(a)(1); 141.14(b)(1)(i); 141.14(b)(2)(i); 141.14(d); 141.21 (a), 
(c) and (i); 141.22 (a) and (e); 141.23 (a)(3) and (a)(4); 141.23(f); 
141.24(a)(3); 141.24 (e) and (f); 141.25(e); 141.27(a); 141.28 (a) and 
(b); 141.31 (a), (d) and (e); 141.32(b)(3); and 141.32(d) shall take 
effect immediately upon promulgation.
    (d) The regulations set forth in Sec. 141.41 shall take effect 18 
months from the date of promulgation. Suppliers must complete the first 
round of sampling and reporting within 12 months following the effective 
date.
    (e) The regulations set forth in Sec. 141.42 shall take effect 18 
months from the date of promulgation. All requirements in Sec. 141.42 
must be completed within 12 months following the effective date.
    (f) The regulations set forth in Sec. 141.11(c) and Sec. 141.23(g) 
are effective May 2, 1986. Section 141.23(g)(4) is effective October 2, 
1987.
    (g) The regulations contained in Sec. 141.6, paragraph (c) of the 
table in 141.12, and 141.62(b)(1) are effective July 1, 1991. The 
regulations contained in Secs. 141.11(b), 141.23, 141.24, 142.57(b), 
143.4(b)(12) and (b)(13), are effective July 30, 1992. The regulations 
contained in the revisions to Secs. 141.32(e) (16), (25) through (27) 
and (46); 141.61(c)(16); and 141.62(b)(3) are effective January 1, 1993. 
The effective date of regulations contained in Sec. 141.61(c) (2), (3), 
and (4) is postponed.
    (h) Regulations for the analytic methods listed at Sec. 141.23(k)(4) 
for measuring antimony, beryllium, cyanide, nickel, and thallium are 
effective August 17, 1992. Regulations for the analytic methods listed 
at Sec. 141.24(f)(16) for dichloromethane, 1,2,4-trichlorobenzene, and 
1,1,2-trichloroethane are effective August 17, 1992. Regulations
 
[[Page 343]]
 
for the analytic methods listed at Sec. 141.24(h)(12) for measuring 
dalapon, dinoseb, diquat, endothall, endrin, glyphosate, oxamyl, 
picloram, simazine, benzo(a)pyrene, di(2-ethylhexyl)adipate, di(2-
ethylhexyl)phthalate, hexachlorobenzene, hexachlorocyclopentadiene, and 
2,3,7,8-TCDD are effective August 17, 1992. The revision to 
Sec. 141.12(a) promulgated on July 17, 1992 is effective on August 17, 
1992.
 
[44 FR 68641, Nov. 29, 1979, as amended at 45 FR 57342, Aug. 27, 1980; 
47 FR 10998, Mar. 12, 1982; 51 FR 11410, Apr. 2, 1986; 56 FR 30274, July 
1, 1991; 57 FR 22178, May 27, 1992; 57 FR 31838, July 17, 1992; 59 FR 
34322, July 1, 1994; 61 FR 24368, May 14, 1996]
 
    Effective Date Note: At 66 FR 7061, Jan. 22, 2001, Sec. 141.6 was 
amended by revising paragraphs (a) and (c) and adding paragraphs (j) and 
(k), effective Mar. 23, 2001. At 66 FR 16134, Mar. 23, 2001, the 
effective date was delayed until May 22, 2001, and paragraph (j) was 
amended by revising the last sentence. At 66 FR 28350, May 22, 2001, the 
effective date was further delayed until Feb. 22, 2002, and paragraph 
(j) was amended by again revising the last sentence. For the convenience 
of the user, the revised and added text is set forth as follows:
 
Sec. 141.6  Effective dates.
 
    (a) Except as provided in paragraphs (b) through (k) of this 
section, and in Sec. 141.80(a)(2), the regulations set forth in this 
part shall take effect on June 24, 1977.
 
                                * * * * *
 
    (c) The regulations set forth in Secs. 141.11(d); 141.21(a), (c) and 
(i); 141.22(a) and (e); 141.23(a)(3) and (a)(4); 141.23(f); 141.24(e) 
and (f); 141.25(e); 141.27(a); 141.28(a) and (b); 141.31(a), (d) and 
(e); 141.32(b)(3); and 141.32(d) shall take effect immediately upon 
promulgation.
 
                                * * * * *
 
    (j) The arsenic maximum contaminant levels (MCL) listed in 
Sec. 141.62 is effective for the purpose of compliance on January 23, 
2006. Requirements relating to arsenic set forth in Secs. 141.23(i)(4), 
141.23(k)(3) introductory text, 141.23(k)(3)(ii), 141.51(b), 141.62(b), 
141.62(b)(16), 141.62(c), 141.62(d), and 142.62(b) revisions in Appendix 
A of subpart O for the consumer confidence rule, and Appendices A and B 
of subpart Q for the public notification rule are effective for the 
purpose of compliance on January 23, 2006. However, the consumer 
confidence rule reporting requirements relating to arsenic listed in 
Sec. 141.154(b) and (f) are effective for the purpose of compliance on 
February 22, 2002.
    (k) Regulations set forth in Secs. 141.23(i)(1), 141.23(i)(2), 
141.24(f)(15), 141.24(f)(22), 141.24(h)(11), 141.24(h)(20), 142.16(e), 
142.16(j), and 142.16(k) are effective for the purpose of compliance on 
January 22, 2004.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.11]
 
[Page 343-344]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart B--Maximum Contaminant Levels
 
Sec. 141.11  Maximum contaminant levels for inorganic chemicals.
 
 
    (a) The maximum contaminant level for arsenic applies only to 
community water systems. Compliance with the MCL for arsenic is 
calculated pursuant to Sec. 141.23.
    (b) The maximum contaminant level for arsenic is 0.05 milligrams per 
liter.
    (c) [Reserved]
    (d) At the discretion of the State, nitrate levels not to exceed 20 
mg/l may be allowed in a non-community water system if the supplier of 
water demonstrates to the satisfaction of the State that:
    (1) Such water will not be available to children under 6 months of 
age; and
    (2) The non-community water system is meeting the public 
notification requirements under Sec. 141.209, including continuous 
posting of the fact that nitrate levels exceed 10 mg/l and the potential 
health effects of exposure; and
    (3) Local and State public health authorities will be notified 
annually of nitrate levels that exceed 10 mg/l; and
    (4) No adverse health effects shall result.
 
[40 FR 59570, Dec. 24, 1975, as amended at 45 FR 57342, Aug. 27, 1980; 
47 FR 10998, Mar. 12, 1982; 51 FR 11410, Apr. 2, 1986; 56 FR 3578, Jan. 
30, 1991; 56 FR 26548, June 7, 1991; 56 FR 30274, July 1, 1991; 56 FR 
32113, July 15, 1991; 60 FR 33932, June 29, 1995; 65 FR 26022, May 4, 
2000]
 
    Effective Date Note: At 66 FR 7061, Jan. 22, 2001, Sec. 141.11 was 
amended by revising the second sentence of paragraph (a) and revising 
paragraph (b), effective Mar. 23, 2001. At 66 FR 16134, Mar. 23, 2001, 
the effective date was delayed until May 22, 2001. At 66 FR 28350, May 
22, 2001, the effective date was further delayed until Feb. 22, 2002. 
For the convenience of the user, the revised text is set forth as 
follows:
 
Sec. 141.11  Maximum contaminant levels for inorganic chemicals.
 
    (a) * * * The analyses and determination of compliance with the 0.05 
milligrams per liter
 
[[Page 344]]
 
maximum contaminant level for arsenic use the requirements of 
Sec. 141.23.
    (b) The maximum contaminant level for arsenic is 0.05 milligrams per 
liter for community water systems until January 23, 2006.
 
                                * * * * *
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.11]
 
[Page 343-344]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart B--Maximum Contaminant Levels
 
Sec. 141.11  Maximum contaminant levels for inorganic chemicals.
 
 
    (a) The maximum contaminant level for arsenic applies only to 
community water systems. Compliance with the MCL for arsenic is 
calculated pursuant to Sec. 141.23.
    (b) The maximum contaminant level for arsenic is 0.05 milligrams per 
liter.
    (c) [Reserved]
    (d) At the discretion of the State, nitrate levels not to exceed 20 
mg/l may be allowed in a non-community water system if the supplier of 
water demonstrates to the satisfaction of the State that:
    (1) Such water will not be available to children under 6 months of 
age; and
    (2) The non-community water system is meeting the public 
notification requirements under Sec. 141.209, including continuous 
posting of the fact that nitrate levels exceed 10 mg/l and the potential 
health effects of exposure; and
    (3) Local and State public health authorities will be notified 
annually of nitrate levels that exceed 10 mg/l; and
    (4) No adverse health effects shall result.
 
[40 FR 59570, Dec. 24, 1975, as amended at 45 FR 57342, Aug. 27, 1980; 
47 FR 10998, Mar. 12, 1982; 51 FR 11410, Apr. 2, 1986; 56 FR 3578, Jan. 
30, 1991; 56 FR 26548, June 7, 1991; 56 FR 30274, July 1, 1991; 56 FR 
32113, July 15, 1991; 60 FR 33932, June 29, 1995; 65 FR 26022, May 4, 
2000]
 
    Effective Date Note: At 66 FR 7061, Jan. 22, 2001, Sec. 141.11 was 
amended by revising the second sentence of paragraph (a) and revising 
paragraph (b), effective Mar. 23, 2001. At 66 FR 16134, Mar. 23, 2001, 
the effective date was delayed until May 22, 2001. At 66 FR 28350, May 
22, 2001, the effective date was further delayed until Feb. 22, 2002. 
For the convenience of the user, the revised text is set forth as 
follows:
 
Sec. 141.11  Maximum contaminant levels for inorganic chemicals.
 
    (a) * * * The analyses and determination of compliance with the 0.05 
milligrams per liter
 
[[Page 344]]
 
maximum contaminant level for arsenic use the requirements of 
Sec. 141.23.
    (b) The maximum contaminant level for arsenic is 0.05 milligrams per 
liter for community water systems until January 23, 2006.
 
                                * * * * *
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.12]
 
[Page 344]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart B--Maximum Contaminant Levels
 
Sec. 141.12  Maximum contaminant levels for total trihalomethanes.
 
    The maximum contaminant level of 0.10 mg/L for total trihalomethanes 
(the sum of the concentrations of bromodichloromethane, 
dibromochloromethane, tribromomethane (bromoform), and trichloromethane 
(chloroform)) applies to subpart H community water systems which serve a 
population of 10,000 people or more until December 31, 2001. This level 
applies to community water systems that use only ground water not under 
the direct influence of surface water and serve a population of 10,000 
people or more until December 31, 2003. Compliance with the maximum 
contaminant level for total trihalomethanes is calculated pursuant to 
Sec. 141.30. After December 31, 2003, this section is no longer 
applicable.
 
[63 FR 69463, Dec. 16, 1998, as amended at 66 FR 3776, Jan. 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.13]
 
[Page 344]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart B--Maximum Contaminant Levels
 
Sec. 141.13  Maximum contaminant levels for turbidity.
 
    The maximum contaminant levels for turbidity are applicable to both 
community water systems and non-community water systems using surface 
water sources in whole or in part. The maximum contaminant levels for 
turbidity in drinking water, measured at a representative entry point(s) 
to the distribution system, are:
 
    Editorial Note: At 54 FR 27527, June 29, 1989, Sec. 141.13 was 
amended by adding introductory text, effective December 31, 1990. 
However, introductory text already exists. The recently added text 
follows.
    The requirements in this section apply to unfiltered systems until 
December 30, 1991, unless the State has determined prior to that date, 
in writing pursuant to Sec. 1412(b)(7)(C)(iii), that filtration is 
required. The requirements in this section apply to filtered systems 
until June 29, 1993. The requirements in this section apply to 
unfiltered systems that the State has determined, in writing pursuant to 
Sec. 1412(b)(7)(C)(iii), must install filtration, until June 29, 1993, 
or until filtration is installed, whichever is later.
    (a) One turbidity unit (TU), as determined by a monthly average 
pursuant to Sec. 141.22, except that five or fewer turbidity units may 
be allowed if the supplier of water can demonstrate to the State that 
the higher turbidity does not do any of the following:
    (1) Interfere with disinfection;
    (2) Prevent maintenance of an effective disinfectant agent 
throughout the distribution system; or
    (3) Interfere with microbiological determinations.
    (b) Five turbidity units based on an average for two consecutive 
days pursuant to Sec. 141.22.
 
[40 FR 59570, Dec. 24, 1975]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.15]
 
[Page 344]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart B--Maximum Contaminant Levels
 
Sec. 141.15  Maximum contaminant levels for radium-226, radium-228, and gross alpha particle radioactivity in community water systems.
 
    The following are the maximum contaminant levels for radium-226, 
radium-228, and gross alpha particle radioactivity:
    (a) Combined radium-226 and radium-228--5 pCi/1.
    (b) Gross alpha particle activity (including radium-226 but 
excluding radon and uranium)--15 pCi/1.
 
[41 FR 28404, July 9, 1976]
 
    Effective Date Note: At 65 FR 76745, Dec. 7, 2000, Sec. 141.15 was 
removed, effective Dec. 8, 2003.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.16]
 
[Page 344-345]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart B--Maximum Contaminant Levels
 
Sec. 141.16  Maximum contaminant levels for beta particle and photon radioactivity from man-made radionuclides in community water systems.
 
    (a) The average annual concentration of beta particle and photon 
radioactivity from man-made radionuclides in drinking water shall not 
produce an annual dose equivalent to the total body or any internal 
organ greater than 4 millirem/year.
    (b) Except for the radionuclides listed in Table A, the 
concentration of man-made radionuclides causing 4 mrem total body or 
organ dose equivalents shall be calculated on the basis of a 2 liter per 
day drinking water intake
 
[[Page 345]]
 
using the 168 hour data listed in "Maximum Permissible Body Burdens and 
Maximum Permissible Concentration of Radionuclides in Air or Water for 
Occupational Exposure," NBS Handbook 69 as amended August 1963, U.S. 
Department of Commerce. If two or more radionuclides are present, the 
sum of their annual dose equivalent to the total body or to any organ 
shall not exceed 4 millirem/year.
 
 Table A--Average Annual Concentrations Assumed to Produce a Total Body
                       or Organ Dose of 4 mrem/yr
------------------------------------------------------------------------
                                                                 pCi per
             Radionuclide                   Critical organ        liter
------------------------------------------------------------------------
Tritium..............................  Total body..............   20,000
Strontium-90.........................  Bone marrow.............        8
------------------------------------------------------------------------
 
 
[41 FR 28404, July 9, 1976]
 
    Effective Date Note: At 65 FR 76745, Dec. 7, 2000, Sec. 141.16 was 
removed, effective Dec. 8, 2003.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.21]
 
[Page 345-352]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
            Subpart C--Monitoring and Analytical Requirements
 
Sec. 141.21  Coliform sampling.
 
 
    (a) Routine monitoring. (1) Public water systems must collect total 
coliform samples at sites which are representative of water throughout 
the distribution system according to a written sample siting plan. These 
plans are subject to State review and revision.
    (2) The monitoring frequency for total coliforms for community water 
systems is based on the population served by the system, as follows:
 
     Total Coliform Monitoring Frequency for Community Water Systems
------------------------------------------------------------------------
                                                                Minimum
                                                               number of
                      Population served                         samples
                                                               per month
------------------------------------------------------------------------
25 to 1,000 \1\..............................................          1
1,001 to 2,500...............................................          2
2,501 to 3,300...............................................          3
3,301 to 4,100...............................................          4
4,101 to 4,900...............................................          5
4,901 to 5,800...............................................          6
5,801 to 6,700...............................................          7
6,701 to 7,600...............................................          8
7,601 to 8,500...............................................          9
8,501 to 12,900..............................................         10
12,901 to 17,200.............................................         15
17,201 to 21,500.............................................         20
21,501 to 25,000.............................................         25
25,001 to 33,000.............................................         30
33,001 to 41,000.............................................         40
41,001 to 50,000.............................................         50
50,001 to 59,000.............................................         60
59,001 to 70,000.............................................         70
70,001 to 83,000.............................................         80
83,001 to 96,000.............................................         90
96,001 to 130,000............................................        100
130,001 to 220,000...........................................        120
220,001 to 320,000...........................................        150
320,001 to 450,000...........................................        180
450,001 to 600,000...........................................        210
600,001 to 780,000...........................................        240
780,001 to 970,000...........................................        270
970,001 to 1,230,000.........................................        300
1,230,001 to 1,520,000.......................................        330
1,520,001 to 1,850,000.......................................        360
1,850,001 to 2,270,000.......................................        390
2,270,001 to 3,020,000.......................................        420
3,020,001 to 3,960,000.......................................        450
3,960,001 or more............................................        480
------------------------------------------------------------------------
\1\ Includes public water systems which have at least 15 service
  connections, but serve fewer than 25 persons.
 
 
If a community water system serving 25 to 1,000 persons has no history 
of total coliform contamination in its current configuration and a 
sanitary survey conducted in the past five years shows that the system 
is supplied solely by a protected groundwater source and is free of 
sanitary defects, the State may reduce the monitoring frequency 
specified above, except that in no case may the State reduce the 
monitoring frequency to less than one sample per quarter. The State must 
approve the reduced monitoring frequency in writing.
    (3) The monitoring frequency for total coliforms for non-community 
water systems is as follows:
    (i) A non-community water system using only ground water (except 
ground water under the direct influence of surface water, as defined in 
Sec. 141.2) and serving 1,000 persons or fewer must monitor each 
calendar quarter that the system provides water to the public, except 
that the State may reduce this monitoring frequency, in writing, if a 
sanitary survey shows that the system is free of sanitary defects. 
Beginning June 29, 1994, the State cannot reduce the monitoring 
frequency for a non-community water
 
[[Page 346]]
 
system using only ground water (except ground water under the direct 
influence of surface water, as defined in Sec. 141.2) and serving 1,000 
persons or fewer to less than once/year.
    (ii) A non-community water system using only ground water (except 
ground water under the direct influence of surface water, as defined in 
Sec. 141.2) and serving more than 1,000 persons during any month must 
monitor at the same frequency as a like-sized community water system, as 
specified in paragraph (a)(2) of this section, except the State may 
reduce this monitoring frequency, in writing, for any month the system 
serves 1,000 persons or fewer. The State cannot reduce the monitoring 
frequency to less than once/year. For systems using ground water under 
the direct influence of surface water, paragraph (a)(3)(iv) of this 
section applies.
    (iii) A non-community water system using surface water, in total or 
in part, must monitor at the same frequency as a like-sized community 
water system, as specified in paragraph (a)(2) of this section, 
regardless of the number of persons it serves.
    (iv) A non-community water system using ground water under the 
direct influence of surface water, as defined in Sec. 141.2, must 
monitor at the same frequency as a like-sized community water system, as 
specified in paragraph (a)(2) of this section. The system must begin 
monitoring at this frequency beginning six months after the State 
determines that the ground water is under the direct influence of 
surface water.
    (4) The public water system must collect samples at regular time 
intervals throughout the month, except that a system which uses only 
ground water (except ground water under the direct influence of surface 
water, as defined in Sec. 141.2), and serves 4,900 persons or fewer, may 
collect all required samples on a single day if they are taken from 
different sites.
    (5) A public water system that uses surface water or ground water 
under the direct influence of surface water, as defined in Sec. 141.2, 
and does not practice filtration in compliance with Subpart H must 
collect at least one sample near the first service connection each day 
the turbidity level of the source water, measured as specified in 
Sec. 141.74(b)(2), exceeds 1 NTU. This sample must be analyzed for the 
presence of total coliforms. When one or more turbidity measurements in 
any day exceed 1 NTU, the system must collect this coliform sample 
within 24 hours of the first exceedance, unless the State determines 
that the system, for logistical reasons outside the system's control, 
cannot have the sample analyzed within 30 hours of collection. Sample 
results from this coliform monitoring must be included in determining 
compliance with the MCL for total coliforms in Sec. 141.63.
    (6) Special purpose samples, such as those taken to determine 
whether disinfection practices are sufficient following pipe placement, 
replacement, or repair, shall not be used to determine compliance with 
the MCL for total coliforms in Sec. 141.63. Repeat samples taken 
pursuant to paragraph (b) of this section are not considered special 
purpose samples, and must be used to determine compliance with the MCL 
for total coliforms in Sec. 141.63.
    (b) Repeat monitoring. (1) If a routine sample is total coliform-
positive, the public water system must collect a set of repeat samples 
within 24 hours of being notified of the positive result. A system which 
collects more than one routine sample/month must collect no fewer than 
three repeat samples for each total coliform-positive sample found. A 
system which collects one routine sample/month or fewer must collect no 
fewer than four repeat samples for each total coliform-positive sample 
found. The State may extend the 24-hour limit on a case-by-case basis if 
the system has a logistical problem in collecting the repeat samples 
within 24 hours that is beyond its control. In the case of an extension, 
the State must specify how much time the system has to collect the 
repeat samples.
    (2) The system must collect at least one repeat sample from the 
sampling tap where the original total coliform-positive sample was 
taken, and at least one repeat sample at a tap within five service 
connections upstream and at least one repeat sample at a tap within five 
service connections downstream of
 
[[Page 347]]
 
the original sampling site. If a total coliform-positive sample is at 
the end of the distribution system, or one away from the end of the 
distribution system, the State may waive the requirement to collect at 
least one repeat sample upstream or downstream of the original sampling 
site.
    (3) The system must collect all repeat samples on the same day, 
except that the State may allow a system with a single service 
connection to collect the required set of repeat samples over a four-day 
period or to collect a larger volume repeat sample(s) in one or more 
sample containers of any size, as long as the total volume collected is 
at least 400 ml (300 ml for systems which collect more than one routine 
sample/month).
    (4) If one or more repeat samples in the set is total coliform-
positive, the public water system must collect an additional set of 
repeat samples in the manner specified in paragraphs (b) (1)-(3) of this 
section. The additional samples must be collected within 24 hours of 
being notified of the positive result, unless the State extends the 
limit as provided in paragraph (b)(1) of this section. The system must 
repeat this process until either total coliforms are not detected in one 
complete set of repeat samples or the system determines that the MCL for 
total coliforms in Sec. 141.63 has been exceeded and notifies the State.
    (5) If a system collecting fewer than five routine samples/month has 
one or more total coliform-positive samples and the State does not 
invalidate the sample(s) under paragraph (c) of this section, it must 
collect at least five routine samples during the next month the system 
provides water to the public, except that the State may waive this 
requirement if the conditions of paragraph (b)(5) (i) or (ii) of this 
section are met. The State cannot waive the requirement for a system to 
collect repeat samples in paragraphs (b) (1)-(4) of this section.
    (i) The State may waive the requirement to collect five routine 
samples the next month the system provides water to the public if the 
State, or an agent approved by the State, performs a site visit before 
the end of the next month the system provides water to the public. 
Although a sanitary survey need not be performed, the site visit must be 
sufficiently detailed to allow the State to determine whether additional 
monitoring and/or any corrective action is needed. The State cannot 
approve an employee of the system to perform this site visit, even if 
the employee is an agent approved by the State to perform sanitary 
surveys.
    (ii) The State may waive the requirement to collect five routine 
samples the next month the system provides water to the public if the 
State has determined why the sample was total coliform-positive and 
establishes that the system has corrected the problem or will correct 
the problem before the end of the next month the system serves water to 
the public. In this case, the State must document this decision to waive 
the following month's additional monitoring requirement in writing, have 
it approved and signed by the supervisor of the State official who 
recommends such a decision, and make this document available to the EPA 
and public. The written documentation must describe the specific cause 
of the total coliform-positive sample and what action the system has 
taken and/or will take to correct this problem. The State cannot waive 
the requirement to collect five routine samples the next month the 
system provides water to the public solely on the grounds that all 
repeat samples are total coliform-negative. Under this paragraph, a 
system must still take at least one routine sample before the end of the 
next month it serves water to the public and use it to determine 
compliance with the MCL for total coliforms in Sec. 141.63, unless the 
State has determined that the system has corrected the contamination 
problem before the system took the set of repeat samples required in 
paragraphs (b) (1)-(4) of this section, and all repeat samples were 
total coliform-negative.
    (6) After a system collects a routine sample and before it learns 
the results of the analysis of that sample, if it collects another 
routine sample(s) from within five adjacent service connections of the 
initial sample, and the initial sample, after analysis, is found to
 
[[Page 348]]
 
contain total coliforms, then the system may count the subsequent 
sample(s) as a repeat sample instead of as a routine sample.
    (7) Results of all routine and repeat samples not invalidated by the 
State must be included in determining compliance with the MCL for total 
coliforms in Sec. 141.63.
    (c) Invalidation of total coliform samples. A total coliform-
positive sample invalidated under this paragraph (c) does not count 
towards meeting the minimum monitoring requirements of this section.
    (1) The State may invalidate a total coliform-positive sample only 
if the conditions of paragraph (c)(1) (i), (ii), or (iii) of this 
section are met.
    (i) The laboratory establishes that improper sample analysis caused 
the total coliform-positive result.
    (ii) The State, on the basis of the results of repeat samples 
collected as required by paragraphs (b) (1) through (4) of this section, 
determines that the total coliform-positive sample resulted from a 
domestic or other non-distribution system plumbing problem. The State 
cannot invalidate a sample on the basis of repeat sample results unless 
all repeat sample(s) collected at the same tap as the original total 
coliform-positive sample are also total coliform-positive, and all 
repeat samples collected within five service connections of the original 
tap are total coliform-negative (e.g., a State cannot invalidate a total 
coliform-positive sample on the basis of repeat samples if all the 
repeat samples are total coliform-negative, or if the public water 
system has only one service connection).
    (iii) The State has substantial grounds to believe that a total 
coliform-positive result is due to a circumstance or condition which 
does not reflect water quality in the distribution system. In this case, 
the system must still collect all repeat samples required under 
paragraphs (b) (1)-(4) of this section, and use them to determine 
compliance with the MCL for total coliforms in Sec. 141.63. To 
invalidate a total coliform-positive sample under this paragraph, the 
decision with the rationale for the decision must be documented in 
writing, and approved and signed by the supervisor of the State official 
who recommended the decision. The State must make this document 
available to EPA and the public. The written documentation must state 
the specific cause of the total coliform-positive sample, and what 
action the system has taken, or will take, to correct this problem. The 
State may not invalidate a total coliform-positive sample solely on the 
grounds that all repeat samples are total coliform-negative.
    (2) A laboratory must invalidate a total coliform sample (unless 
total coliforms are detected) if the sample produces a turbid culture in 
the absence of gas production using an analytical method where gas 
formation is examined (e.g., the Multiple-Tube Fermentation Technique), 
produces a turbid culture in the absence of an acid reaction in the 
Presence-Absence (P-A) Coliform Test, or exhibits confluent growth or 
produces colonies too numerous to count with an analytical method using 
a membrane filter (e.g., Membrane Filter Technique). If a laboratory 
invalidates a sample because of such interference, the system must 
collect another sample from the same location as the original sample 
within 24 hours of being notified of the interference problem, and have 
it analyzed for the presence of total coliforms. The system must 
continue to re-sample within 24 hours and have the samples analyzed 
until it obtains a valid result. The State may waive the 24-hour time 
limit on a case-by-case basis.
    (d) Sanitary surveys. (1)(i) Public water systems which do not 
collect five or more routine samples/month must undergo an initial 
sanitary survey by June 29, 1994, for community public water systems and 
June 29, 1999, for non-community water systems. Thereafter, systems must 
undergo another sanitary survey every five years, except that non-
community water systems using only protected and disinfected ground 
water, as defined by the State, must undergo subsequent sanitary surveys 
at least every ten years after the initial sanitary survey. The State 
must review the results of each sanitary survey to determine whether the 
existing monitoring frequency is adequate and what additional
 
[[Page 349]]
 
measures, if any, the system needs to undertake to improve drinking 
water quality.
    (ii) In conducting a sanitary survey of a system using ground water 
in a State having an EPA-approved wellhead protection program under 
section 1428 of the Safe Drinking Water Act, information on sources of 
contamination within the delineated wellhead protection area that was 
collected in the course of developing and implementing the program 
should be considered instead of collecting new information, if the 
information was collected since the last time the system was subject to 
a sanitary survey.
    (2) Sanitary surveys must be performed by the State or an agent 
approved by the State. The system is responsible for ensuring the survey 
takes place.
    (e) Fecal coliforms/Escherichia coli (E. coli) testing. (1) If any 
routine or repeat sample is total coliform-positive, the system must 
analyze that total coliform-positive culture medium to determine if 
fecal coliforms are present, except that the system may test for E. coli 
in lieu of fecal coliforms. If fecal coliforms or E. coli are present, 
the system must notify the State by the end of the day when the system 
is notified of the test result, unless the system is notified of the 
result after the State office is closed, in which case the system must 
notify the State before the end of the next business day.
    (2) The State has the discretion to allow a public water system, on 
a case-by-case basis, to forgo fecal coliform or E. coli testing on a 
total coliform-positive sample if that system assumes that the total 
coliform-positive sample is fecal coliform-positive or E. coli-positive. 
Accordingly, the system must notify the State as specified in paragraph 
(e)(1) of this section and the provisions of Sec. 141.63(b) apply.
    (f) Analytical methodology. (1) The standard sample volume required 
for total coliform analysis, regardless of analytical method used, is 
100 ml.
    (2) Public water systems need only determine the presence or absence 
of total coliforms; a determination of total coliform density is not 
required.
    (3) Public water systems must conduct total coliform analyses in 
accordance with one of the analytical methods in the following table.
 
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
                   Organism                              Methodology \12\                                       Citation \1\
--------------------------------------------------------------------------------------------------------------------------------------------------------
Total Coliforms \2\...........................  Total Coliform Fermentation                                                                     9221A, B
                                                 Technique <SUP>3,4,5</SUP>.
                                                Total Coliform....................                                                                  9222
                                                Membrane Filter...................                                                               A, B, C
                                                Technique \6\.....................
                                                Presence-Absence..................                                                                  9221
                                                (P-A) Coliform Test \5,7\.........
                                                ONPG-MUG Test \8\.................                                                                  9223
                                                Colisure Test \9\
                                                E*Colite<Register> Test \10\
                                                m-ColiBlue24<Register> Test \11\
--------------------------------------------------------------------------------------------------------------------------------------------------------
The procedures shall be done in accordance with the documents listed below. The incorporation by reference of the following documents listed in
  footnotes 1, 6, 8, 9, 10 and 11 was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51. Copies of
  the documents may be obtained from the sources listed below. Information regarding obtaining these documents can be obtained from the Safe Drinking
  Water Hotline at 800-426-4791. Documents may be inspected at EPA's Drinking Water Docket, 1200 Pennsylvania Ave., NW., Washington, DC 20460
  (Telephone: 202-260-3027); or at the Office of Federal Register, 800 North Capitol Street, NW, Suite 700, Washington, D.C. 20408.
\1\ Methods 9221 A, B; 9222 A, B, C; 9221 D and 9223 are contained in Standard Methods for the Examination of Water and Wastewater, 18th edition (1992)
  and 19th edition (1995) American Public Health Association, 1015 Fifteenth Street NW, Washington, D.C. 20005; either edition may be used.
\2\ The time from sample collection to initiation of analysis may not exceed 30 hours. Systems are encouraged but not required to hold samples below 10
  deg.C during transit.
\3\ Lactose broth, as commercially available, may be used in lieu of lauryl tryptose broth, if the system conducts at least 25 parallel tests between
  this medium and lauryl tryptose broth using the water normally tested, and this comparison demonstrates that the false-positive rate and false-
  negative rate for total coliform, using lactose broth, is less than 10 percent.
\4\ If inverted tubes are used to detect gas production, the media should cover these tubes at least one-half to two-thirds after the sample is added.
\5\ No requirement exists to run the completed phase on 10 percent of all total coliform-positive confirmed tubes.
\6\ MI agar also may be used. Preparation and use of MI agar is set forth in the article, "New medium for the simultaneous detection of total coliform
  and Escherichia coli in water" by Brenner, K.P., et al., 1993, Appl. Environ. Microbiol. 59:3534-3544. Also available from the Office of Water
  Resource Center (RC-4100), 401 M. Street SW, Washington, DC 20460, EPA/600/J-99/225.
\7\ Six-times formulation strength may be used if the medium is filter-sterilized rather than autoclaved.
\8\ The ONPG-MUG Test is also known as the Autoanalysis Colilert System.
 
[[Page 350]]
 
 
\9\ A description of the Colisure Test, Feb 28, 1994, may be obtained from IDEXX Laboratories, Inc., One IDEXX Drive, Westbrook, Maine 04092. The
  Colisure Test may be read after an incubation time of 24 hours.
\10\ A description of the E*Colite<Register> Test, "Presence/Absence for Coliforms and E. Coli in Water," Dec 21, 1997, is available from Charm
  Sciences, Inc., 36 Franklin Street, Malden, MA 02148-4120.
\11\ A description of the m-ColiBlue24<Register> Test, Aug 17, 1999, is available from the Hach Company, 100 Dayton Avenue, Ames, IA 50010.
\12\ EPA strongly recommends that laboratories evaluate the false-positive and negative rates for the method(s) they use for monitoring total coliforms.
  EPA also encourages laboratories to establish false-positive and false-negative rates within their own laboratory and sample matrix (drinking water or
  source water) with the intent that if the method they choose has an unacceptable false-positive or negative rate, another method can be used. The
  Agency suggests that laboratories perform these studies on a minimum of 5% of all total coliform-positive samples, except for those methods where
  verification/confirmation is already required, e.g., the M-Endo and LES Endo Membrane Filter Tests, Standard Total Coliform Fermentation Technique,
  and Presence-Absence Coliform Test. Methods for establishing false-positive and negative-rates may be based on lactose fermentation, the rapid test
  for <greek-b>-galactosidase and cytochrome oxidase, multi-test identification systems, or equivalent confirmation tests. False-positive and false-
  negative information is often available in published studies and/or from the manufacturer(s).
 
    (4) [Reserved]
    (5) Public water systems must conduct fecal coliform analysis in 
accordance with the following procedure. When the MTF Technique or 
Presence-Absence (PA) Coliform Test is used to test for total coliforms, 
shake the lactose-positive presumptive tube or P-A vigorously and 
transfer the growth with a sterile 3-mm loop or sterile applicator stick 
into brilliant green lactose bile broth and EC medium to determine the 
presence of total and fecal coliforms, respectively. For EPA-approved 
analytical methods which use a membrane filter, transfer the total 
coliform-positive culture by one of the following methods: remove the 
membrane containing the total coliform colonies from the substrate with 
a sterile forceps and carefully curl and insert the membrane into a tube 
of EC medium (the laboratory may first remove a small portion of 
selected colonies for verification), swab the entire membrane filter 
surface with a sterile cotton swab and transfer the inoculum to EC 
medium (do not leave the cotton swab in the EC medium), or inoculate 
individual total coliform-positive colonies into EC Medium. Gently shake 
the inoculated tubes of EC medium to insure adequate mixing and incubate 
in a waterbath at 44.5 <plus-minus> 0.2  deg.C for 24 <plus-minus> 2 
hours. Gas production of any amount in the inner fermentation tube of 
the EC medium indicates a positive fecal coliform test. The preparation 
of EC medium is described in Method 9221E (paragraph 1a) in Standard 
Methods for the Examination of Water and Wastewater, 18th edition, 1992 
and in the 19th edition, 1995; either edition may be used. Public water 
systems need only determine the presence or absence of fecal coliforms; 
a determination of fecal coliform density is not required.
    (6) Public water systems must conduct analysis of Escherichia coli 
in accordance with one of the following analytical methods:
    (i) EC medium supplemented with 50 <greek-m>g/ml of 4-
methylumbelliferyl-beta-D-glucuronide (MUG) (final concentration). EC 
medium is described in Method 9221 E as referenced in paragraph (f)(5) 
of this section. MUG may be added to EC medium before autoclaving. EC 
medium supplemented with 50 <greek-m>g/ml of MUG is commercially 
available. At least 10 ml of EC medium supplemented with MUG must be 
used. The inner inverted fermentation tube may be omitted. The procedure 
for transferring a total coliform-positive culture to EC medium 
supplemented with MUG shall be as specified in paragraph (f)(5) of this 
section for transferring a total coliform-positive culture to EC medium. 
Observe fluorescence with an ultraviolet light (366 nm) in the dark 
after incubating tube at 44.5 <plus-minus> 0.2  deg.C for 24 
<plus-minus> 2 hours; or
    (ii) Nutrient agar supplemented with 100 <greek-m>g/ml 4-
methylumbelliferyl-beta-D-glucuronide (MUG) (final concentration). 
Nutrient Agar is described in Method 9221 B (paragraph 3) in Standard 
Methods for the Examination of Water and Wastewater, 18th edition, 1992 
and in the 19th edition, 1995; either edition may be used. This test is 
used to determine if a total coliform-positive sample, as determined by 
the Membrane Filter Technique or any other method in which a membrane 
filter is used, contains E. coli. Transfer the membrane filter 
containing a total coliform colony(ies) to nutrient agar supplemented 
with 100 <greek-m>g/ml (final concentration) of MUG. After incubating 
the agar plate at 35  deg.C for 4 hours, observe the colony(ies) under 
ultraviolet
 
[[Page 351]]
 
light (366 nm) in the dark for fluorescence. If fluorescence is visible, 
E. coli are present.
    (iii) Minimal Medium ONPG-MUG (MMO-MUG) Test, as set forth in the 
article "National Field Evaluation of a Defined Substrate Method for 
the Simultaneous Detection of Total Coliforms and Escherichia coli from 
Drinking Water: Comparison with Presence-Absence Techniques" (Edberg et 
al.), Applied and Environmental Microbiology, Volume 55, pp. 1003-1008, 
April 1989. (Note: The Autoanalysis Colilert System is an MMO-MUG test). 
If the MMO-MUG test is total coliform-positive after a 24-hour 
incubation, test the medium for fluorescence with a 366-nm ultraviolet 
light (preferably with a 6-watt lamp) in the dark. If fluorescence is 
observed, the sample is E. coli-positive. If fluorescence is 
questionable (cannot be definitively read) after 24 hours incubation, 
incubate the culture for an additional four hours (but not to exceed 28 
hours total), and again test the medium for fluorescence. The MMO-MUG 
Test with hepes buffer in lieu of phosphate buffer is the only approved 
formulation for the detection of E. coli.
    (iv) The Colisure Test. A description of the Colisure Test may be 
obtained from the Millipore Corporation, Technical Services Department, 
80 Ashby Road, Bedford, MA 01730.
    (v) The membrane filter method with MI agar, a description of which 
is cited in footnote 6 to the table in paragraph (f)(3) of this section.
    (vi) E*Colite<SUP></SUP> Test, a description of which is cited in 
footnote 10 to the table at paragraph (f)(3) of this section.
    (vii) m-ColiBlue24<SUP></SUP> Test, a description of which is cited 
in footnote 11 to the table in paragraph (f)(3) of this section.
    (7) As an option to paragraph (f)(6)(iii) of this section, a system 
with a total coliform-positive, MUG-negative, MMO-MUG test may further 
analyze the culture for the presence of E. coli by transferring a 0.1 
ml, 28-hour MMO-MUG culture to EC Medium + MUG with a pipet. The 
formulation and incubation conditions of EC Medium + MUG, and 
observation of the results are described in paragraph (f)(6)(i) of this 
section.
    (8) The following materials are incorporated by reference in this 
section with the approval of the Director of the Federal Register in 
accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the 
analytical methods cited in Standard Methods for the Examination of 
Water and Wastewater (18th and 19th editions) may be obtained from the 
American Public Health Association et al.; 1015 Fifteenth Street NW., 
Washington, DC 20005. Copies of the methods set forth in Microbiological 
Methods for Monitoring the Environment, Water and Wastes may be obtained 
from ORD Publications, U.S. EPA, 26 W. Martin Luther King Drive, 
Cincinnati, Ohio 45268. Copies of the MMO-MUG Test as set forth in the 
article "National Field Evaluation of a Defined Substrate Method for 
the Simultaneous Enumeration of Total Coliforms and Escherichia coli 
from Drinking Water: Comparison with the Standard Multiple Tube 
Fermentation Method" (Edberg et al.) may be obtained from the American 
Water Works Association Research Foundation, 6666 West Quincy Avenue, 
Denver, CO 80235. A description of the Colisure Test may be obtained 
from the Millipore Corp., Technical Services Department, 80 Ashby Road, 
Bedford, MA 01730. Copies may be inspected at EPA's Drinking Water 
Docket; 401 M St., SW.; Washington, DC 20460, or at the Office of the 
Federal Register; 800 North Capitol Street, NW., suite 700, Washington, 
DC.
    (g) Response to violation. (1) A public water system which has 
exceeded the MCL for total coliforms in Sec. 141.63 must report the 
violation to the State no later than the end of the next business day 
after it learns of the violation, and notify the public in accordance 
with subpart Q.
    (2) A public water system which has failed to comply with a coliform 
monitoring requirement, including the sanitary survey requirement, must 
report the monitoring violation to the State
 
[[Page 352]]
 
within ten days after the system discovers the violation, and notify the 
public in accordance with subpart Q.
 
[54 FR 27562, June 29, 1989, as amended at 54 FR 30001, July 17, 1989; 
55 FR 25064, June 19, 1990; 56 FR 642, Jan. 8, 1991; 57 FR 1852, Jan. 
15, 1992; 57 FR 24747, June 10, 1992; 59 FR 62466, Dec. 5, 1994; 60 FR 
34085, June 29, 1995; 64 FR 67461, Dec. 1, 1999; 65 FR 26022, May 4, 
2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.22]
 
[Page 352]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
            Subpart C--Monitoring and Analytical Requirements
 
Sec. 141.22  Turbidity sampling and analytical requirements.
 
    The requirements in this section apply to unfiltered systems until 
December 30, 1991, unless the State has determined prior to that date, 
in writing pursuant to section 1412(b)(7)(iii), that filtration is 
required. The requirements in this section apply to filtered systems 
until June 29, 1993. The requirements in this section apply to 
unfiltered systems that the State has determined, in writing pursuant to 
section 1412(b)(7)(C)(iii), must install filtration, until June 29, 
1993, or until filtration is installed, whichever is later.
    (a) Samples shall be taken by suppliers of water for both community 
and non-community water systems at a representative entry point(s) to 
the water distribution system at least once per day, for the purposes of 
making turbidity measurements to determine compliance with Sec. 141.13. 
If the State determines that a reduced sampling frequency in a non-
community will not pose a risk to public health, it can reduce the 
required sampling frequency. The option of reducing the turbidity 
frequency shall be permitted only in those public water systems that 
practice disinfection and which maintain an active residual disinfectant 
in the distribution system, and in those cases where the State has 
indicated in writing that no unreasonable risk to health existed under 
the circumstances of this option. Turbidity measurements shall be made 
as directed in Sec. 141.74(a)(1).
    (b) If the result of a turbidity analysis indicates that the maximum 
allowable limit has been exceeded, the sampling and measurement shall be 
confirmed by resampling as soon as practicable and preferably within one 
hour. If the repeat sample confirms that the maximum allowable limit has 
been exceeded, the supplier of water shall report to the State within 48 
hours. The repeat sample shall be the sample used for the purpose of 
calculating the monthly average. If the monthly average of the daily 
samples exceeds the maximum allowable limit, or if the average of two 
samples taken on consecutive days exceeds 5 TU, the supplier of water 
shall report to the State and notify the public as directed in 
Secs. 141.31 and subpart Q.
    (c) Sampling for non-community water systems shall begin within two 
years after the effective date of this part.
    (d) The requirements of this Sec. 141.22 shall apply only to public 
water systems which use water obtained in whole or in part from surface 
sources.
    (e) The State has the authority to determine compliance or initiate 
enforcement action based upon analytical results or other information 
compiled by their sanctioned representatives and agencies.
 
[40 FR 59570, Dec. 24, 1975, as amended at 45 FR 57344, Aug. 27, 1980; 
47 FR 8998, Mar. 3, 1982; 47 FR 10998, Mar. 12, 1982; 54 FR 27527, June 
29, 1989; 59 FR 62466, Dec. 5, 1994; 65 FR 26022, May 4, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.23]
 
[Page 352-366]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
            Subpart C--Monitoring and Analytical Requirements
 
Sec. 141.23  Inorganic chemical sampling and analytical requirements.
 
    Community water systems shall conduct monitoring to determine 
compliance with the maximum contaminant levels specified in Sec. 141.62 
in accordance with this section. Non-transient, non-community water 
systems shall conduct monitoring to determine compliance with the 
maximum contaminant levels specified in Sec. 141.62 in accordance with 
this section. Transient, non-community water systems shall conduct 
monitoring to determine compliance with the nitrate and nitrite maximum 
contaminant levels in Secs. 141.11 and 141.62 (as appropriate) in 
accordance with this section.
    (a) Monitoring shall be conducted as follows:
    (1) Groundwater systems shall take a minimum of one sample at every 
entry point to the distribution system which is representative of each 
well after treatment (hereafter called a sampling point) beginning in 
the initial compliance period. The system shall take each sample at the 
same sampling
 
[[Page 353]]
 
point unless conditions make another sampling point more representative 
of each source or treatment plant.
    (2) Surface water systems shall take a minimum of one sample at 
every entry point to the distribution system after any application of 
treatment or in the distribution system at a point which is 
representative of each source after treatment (hereafter called a 
sampling point) beginning in the initial compliance period. The system 
shall take each sample at the same sampling point unless conditions make 
another sampling point more representative of each source or treatment 
plant.
    Note: For purposes of this paragraph, surface water systems include 
systems with a combination of surface and ground sources.
    (3) If a system draws water from more than one source and the 
sources are combined before distribution, the system must sample at an 
entry point to the distribution system during periods of normal 
operating conditions (i.e., when water is representative of all sources 
being used).
    (4) The State may reduce the total number of samples which must be 
analyzed by allowing the use of compositing. Composite samples from a 
maximum of five samples are allowed, provided that the detection limit 
of the method used for analysis is less than one-fifth of the MCL. 
Compositing of samples must be done in the laboratory.
    (i) If the concentration in the composite sample is greater than or 
equal to one-fifth of the MCL of any inorganic chemical, then a follow-
up sample must be taken within 14 days at each sampling point included 
in the composite. These samples must be analyzed for the contaminants 
which exceeded one-fifth of the MCL in the composite sample. Detection 
limits for each analytical method and MCLs for each inorganic 
contaminant are the following:
 
               Detection Limits for Inorganic Contaminants
------------------------------------------------------------------------
                                                             Detection
        Contaminant          MCL (mg/l)     Methodology     limit (mg/l)
------------------------------------------------------------------------
Antimony..................  0.006......  Atomic            0.003
                                          Absorption;
                                          Furnace.
                                         Atomic            0.0008 \5\
                                          Absorption;
                                          Platform.
                                         ICP-Mass          0.0004
                                          Spectrometry.
                                         Hydride-Atomic    0.001
                                          Absorption.
Asbestos..................  7 MFL \1\..  Transmission      0.01 MFL
                                          Electron
                                          Microscopy.
Barium....................  2..........  Atomic            0.002
                                          Absorption;
                                          furnace
                                          technique.
                                         Atomic            0.1
                                          Absorption;
                                          direct
                                          aspiration.
                                         Inductively       0.002 (0.001)
                                          Coupled Plasma.
Beryllium.................  0.004......  Atomic            0.0002
                                          Absorption;
                                          Furnace.
                                         Atomic            0.00002 \5\
                                          Absorption;
                                          Platform.
                                         Inductively       0.0003
                                          Coupled Plasma
                                          \2\.
                                         ICP-Mass          0.0003
                                          Spectrometry.
Cadmium...................  0.005......  Atomic            0.0001
                                          Absorption;
                                          furnace
                                          technique.
                                         Inductively       0.001
                                          Coupled Plasma.
Chromium..................  0.1........  Atomic            0.001
                                          Absorption;
                                          furnace
                                          technique.
                                         Inductively       0.007 (0.001)
                                          Coupled Plasma.
Cyanide...................  0.2........  Distillation,     0.02
                                          Spectrophotomet
                                          ric \3\.
                                         Distillation,     0.005
                                          Automated,
                                          Spectrophotomet
                                          ric \3\.
                                         Distillation,     0.05
                                          Selective
                                          Electrode \3\.
                                         Distillation,     0.02
                                          Amenable,
                                          Spectrophotomet
                                          ric \4\.
Mercury...................  0.002......  Manual Cold       0.0002
                                          Vapor Technique.
                                         Automated Cold    0.0002
                                          Vapor Technique.
Nickel....................  xl.........  Atomic            0.001
                                          Absorption;
                                          Furnace.
                                         Atomic            0.0006 \5\
                                          Absorption;
                                          Platform.
                                         Inductively       0.005
                                          Coupled Plasma
                                          \2\.
                                         ICP-Mass          0.0005
                                          Spectrometry.
Nitrate...................  10 (as N)..  Manual Cadmium    0.01
                                          Reduction.
                                         Automated         0.01
                                          Hydrazine
                                          Reduction.
                                         Automated         0.05
                                          Cadmium
                                          Reduction.
                                         Ion Selective     1
                                          Electrode.
                                         Ion               0.01
                                          Chromatography.
Nitrite...................  1 (as N)...  Spectrophotometr  0.01
                                          ic.
                                         Automated         0.05
                                          Cadmium
                                          Reduction.
                                         Manual Cadmium    0.01
                                          Reduction.
                                         Ion               0.004
                                          Chromatography.
Selenium..................  0.05.......  Atomic            0.002
                                          Absorption;
                                          furnace.
                                         Atomic            0.002
                                          Absorption;
                                          gaseous hydride.
Thallium..................  0.002......  Atomic            0.001
                                          Absorption;
                                          Furnace.
 
[[Page 354]]
 
 
                                         Atomic            0.0007 \5\
                                          Absorption;
                                          Platform.
                                         ICP-Mass          0.0003
                                          Spectrometry.
------------------------------------------------------------------------
\1\ MFL = million fibers per liter >10 <greek-m>m.
\2\ Using a 2X preconcentration step as noted in Method 200.7. Lower
  MDLs may be achieved when using a 4X preconcentration.
\3\ Screening method for total cyanides.
\4\ Measures "free" cyanides.
\5\ Lower MDLs are reported using stabilized temperature graphite
  furnace atomic absorption.
 
    (ii) If the population served by the system is >3,300 persons, then 
compositing may only be permitted by the State at sampling points within 
a single system. In systems serving <ls-thn-eq>3,300 persons, the State 
may permit compositing among different systems provided the 5-sample 
limit is maintained.
    (iii) If duplicates of the original sample taken from each sampling 
point used in the composite sample are available, the system may use 
these instead of resampling. The duplicates must be analyzed and the 
results reported to the State within 14 days after completing analysis 
of the composite sample, provided the holding time of the sample is not 
exceeded.
    (5) The frequency of monitoring for asbestos shall be in accordance 
with paragraph (b) of this section: the frequency of monitoring for 
antimony, barium, beryllium, cadmium, chromium, cyanide, fluoride, 
mercury, nickel, selenium and thallium shall be in accordance with 
paragraph (c) of this section; the frequency of monitoring for nitrate 
shall be in accordance with paragraph (d) of this section; and the 
frequency of monitoring for nitrite shall be in accordance with 
paragraph (e) of this section.
    (b) The frequency of monitoring conducted to determine compliance 
with the maximum contaminant level for asbestos specified in 
Sec. 141.62(b) shall be conducted as follows:
    (1) Each community and non-transient, non-community water system is 
required to monitor for asbestos during the first three-year compliance 
period of each nine-year compliance cycle beginning in the compliance 
period starting January 1, 1993.
    (2) If the system believes it is not vulnerable to either asbestos 
contamination in its source water or due to corrosion of asbestos-cement 
pipe, or both, it may apply to the State for a waiver of the monitoring 
requirement in paragraph (b)(1) of this section. If the State grants the 
waiver, the system is not required to monitor.
    (3) The State may grant a waiver based on a consideration of the 
following factors:
    (i) Potential asbestos contamination of the water source, and
    (ii) The use of asbestos-cement pipe for finished water distribution 
and the corrosive nature of the water.
    (4) A waiver remains in effect until the completion of the three-
year compliance period. Systems not receiving a waiver must monitor in 
accordance with the provisions of paragraph (b)(1) of this section.
 
    (5) A system vulnerable to asbestos contamination due solely to 
corrosion of asbestos-cement pipe shall take one sample at a tap served 
by asbestos-cement pipe and under conditions where asbestos 
contamination is most likely to occur.
 
    (6) A system vulnerable to asbestos contamination due solely to 
source water shall monitor in accordance with the provision of paragraph 
(a) of this section.
 
    (7) A system vulnerable to asbestos contamination due both to its 
source water supply and corrosion of asbestos-cement pipe shall take one 
sample at a tap served by asbestos-cement pipe and under conditions 
where asbestos contamination is most likely to occur.
 
    (8) A system which exceeds the maximum contaminant levels as 
determined in Sec. 141.23(i) of this section shall monitor quarterly 
beginning in the
 
[[Page 355]]
 
next quarter after the violation occurred.
 
    (9) The State may decrease the quarterly monitoring requirement to 
the frequency specified in paragraph (b)(1) of this section provided the 
State has determined that the system is reliably and consistently below 
the maximum contaminant level. In no case can a State make this 
determination unless a groundwater system takes a minimum of two 
quarterly samples and a surface (or combined surface/ground) water 
system takes a minimum of four quarterly samples.
 
    (10) If monitoring data collected after January 1, 1990 are 
generally consistent with the requirements of Sec. 141.23(b), then the 
State may allow systems to use that data to satisfy the monitoring 
requirement for the initial compliance period beginning January 1, 1993.
 
    (c) The frequency of monitoring conducted to determine compliance 
with the maximum contaminant levels in Sec. 141.62 for antimony, barium, 
beryllium, cadmium, chromium, cyanide, fluoride, mercury, nickel, 
selenium and thallium shall be as follows:
    (1) Groundwater systems shall take one sample at each sampling point 
during each compliance period. Surface water systems (or combined 
surface/ground) shall take one sample annually at each sampling point.
    (2) The system may apply to the State for a waiver from the 
monitoring frequencies specified in paragraph (c)(1) of this section. 
States may grant a public water system a waiver for monitoring of 
cyanide, provided that the State determines that the system is not 
vulnerable due to lack of any industrial source of cyanide.
    (3) A condition of the waiver shall require that a system shall take 
a minimum of one sample while the waiver is effective. The term during 
which the waiver is effective shall not exceed one compliance cycle 
(i.e., nine years).
    (4) The State may grant a waiver provided surface water systems have 
monitored annually for at least three years and groundwater systems have 
conducted a minimum of three rounds of monitoring. (At least one sample 
shall have been taken since January 1, 1990). Both surface and 
groundwater systems shall demonstrate that all previous analytical 
results were less than the maximum contaminant level. Systems that use a 
new water source are not eligible for a waiver until three rounds of 
monitoring from the new source have been completed.
    (5) In determining the appropriate reduced monitoring frequency, the 
State shall consider:
    (i) Reported concentrations from all previous monitoring;
    (ii) The degree of variation in reported concentrations; and
    (iii) Other factors which may affect contaminant concentrations such 
as changes in groundwater pumping rates, changes in the system's 
configuration, changes in the system's operating procedures, or changes 
in stream flows or characteristics.
    (6) A decision by the State to grant a waiver shall be made in 
writing and shall set forth the basis for the determination. The 
determination may be initiated by the State or upon an application by 
the public water system. The public water system shall specify the basis 
for its request. The State shall review and, where appropriate, revise 
its determination of the appropriate monitoring frequency when the 
system submits new monitoring data or when other data relevant to the 
system's appropriate monitoring frequency become available.
    (7) Systems which exceed the maximum contaminant levels as 
calculated in Sec. 141.23(i) of this section shall monitor quarterly 
beginning in the next quarter after the violation occurred.
    (8) The State may decrease the quarterly monitoring requirement to 
the frequencies specified in paragraphs (c)(1) and (c)(2) of this 
section provided it has determined that the system is reliably and 
consistently below the maximum contaminant level. In no case can a State 
make this determination unless a groundwater system takes a minimum of 
two quarterly samples and a surface water system takes a minimum of four 
quarterly samples.
    (d) All public water systems (community; non-transient, non-
community;
 
[[Page 356]]
 
and transient, non-community systems) shall monitor to determine 
compliance with the maximum contaminant level for nitrate in 
Sec. 141.62.
    (1) Community and non-transient, non-community water systems served 
by groundwater systems shall monitor annually beginning January 1, 1993; 
systems served by surface water shall monitor quarterly beginning 
January 1, 1993.
    (2) For community and non-transient, non-community water systems, 
the repeat monitoring frequency for groundwater systems shall be 
quarterly for at least one year following any one sample in which the 
concentration is 50 percent of the MCL. The State may allow a 
groundwater system to reduce the sampling frequency to annually after 
four consecutive quarterly samples are reliably and consistently less 
than the MCL.
    (3) For community and non-transient, non-community water systems, 
the State may allow a surface water system to reduce the sampling 
frequency to annually if all analytical results from four consecutive 
quarters are 50 percent of the MCL. A surface water system shall return 
to quarterly monitoring if any one sample is ;50 percent of the MCL.
    (4) Each transient non-community water system shall monitor annually 
beginning January 1, 1993.
    (5) After the initial round of quarterly sampling is completed, each 
community and non-transient non-community system which is monitoring 
annually shall take subsequent samples during the quarter(s) which 
previously resulted in the highest analytical result.
    (e) All public water systems (community; non-transient, non-
community; and transient, non-community systems) shall monitor to 
determine compliance with the maximum contaminant level for nitrite in 
Sec. 141.62(b).
    (1) All public water systems shall take one sample at each sampling 
point in the compliance period beginning January 1, 1993 and ending 
December 31, 1995.
    (2) After the initial sample, systems where an analytical result for 
nitrite is 50 percent of the MCL shall monitor at the frequency 
specified by the State.
    (3) For community, non-transient, non-community, and transient non-
community water systems, the repeat monitoring frequency for any water 
system shall be quarterly for at least one year following any one sample 
in which the concentration is 50 percent of the MCL. The State may allow 
a system to reduce the sampling frequency to annually after determining 
the system is reliably and consistently less than the MCL.
    (4) Systems which are monitoring annually shall take each subsequent 
sample during the quarter(s) which previously resulted in the highest 
analytical result.
    (f) Confirmation samples:
    (1) Where the results of sampling for asbestos, antimony, barium, 
beryllium, cadmium, chromium, cyanide, fluoride, mercury, nickel, 
selenium or thallium indicate an exceedance of the maximum contaminant 
level, the State may require that one additional sample be collected as 
soon as possible after the initial sample was taken (but not to exceed 
two weeks) at the same sampling point.
    (2) Where nitrate or nitrite sampling results indicate an exceedance 
of the maximum contaminant level, the system shall take a confirmation 
sample within 24 hours of the system's receipt of notification of the 
analytical results of the first sample. Systems unable to comply with 
the 24-hour sampling requirement must immediately notify persons served 
by the public water system in accordance with Sec. 141.202 and meet 
other Tier 1 public notification requirements under Subpart Q of this 
part. Systems exercising this option must take and analyze a 
confirmation sample within two weeks of notification of the analytical 
results of the first sample.
    (3) If a State-required confirmation sample is taken for any 
contaminant, then the results of the initial and confirmation sample 
shall be averaged. The resulting average shall be used to determine the 
system's compliance in accordance with paragraph (i) of this section. 
States have the discretion to delete results of obvious sampling errors.
    (g) The State may require more frequent monitoring than specified in
 
[[Page 357]]
 
paragraphs (b), (c), (d) and (e) of this section or may require 
confirmation samples for positive and negative results at its 
discretion.
    (h) Systems may apply to the State to conduct more frequent 
monitoring than the minimum monitoring frequencies specified in this 
section.
    (i) Compliance with Secs. 141.11 or 141.62(b) (as appropriate) shall 
be determined based on the analytical result(s) obtained at each 
sampling point.
    (1) For systems which are conducting monitoring at a frequency 
greater than annual, compliance with the maximum contaminant levels for 
antimony, asbestos, barium, beryllium, cadmium, chromium, cyanide, 
fluoride, mercury, nickel, selenium or thallium is determined by a 
running annual average at any sampling point. If the average at any 
sampling point is greater than the MCL, then the system is out of 
compliance. If any one sample would cause the annual average to be 
exceeded, then the system is out of compliance immediately. Any sample 
below the method detection limit shall be calculated at zero for the 
purpose of determining the annual average.
    (2) For systems which are monitoring annually, or less frequently, 
the system is out of compliance with the maximum contaminant levels for 
asbestos, antimony, barium, beryllium, cadmium, chromium, cyanide, 
fluoride, mercury, nickel, selenium or thallium if the level of a 
contaminant at any sampling point is greater than the MCL. If a 
confirmation sample is required by the State, the determination of 
compliance will be based on the average of the two samples.
    (3) Compliance with the maximum contaminant levels for nitrate and 
nitrate is determined based on one sample if the levels of these 
contaminants are below the MCLs. If the levels of nitrate and/or nitrite 
exceed the MCLs in the initial sample, a confirmation sample is required 
in accordance with paragraph (f)(2) of this section, and compliance 
shall be determined based on the average of the initial and confirmation 
samples.
    (j) Each public water system shall monitor at the time designated by 
the State during each compliance period.
    (k) Inorganic analysis:
    (1) Analysis for the following contaminants shall be conducted in 
accordance with the methods in the following table, or their equivalent 
as determined by EPA. Criteria for analyzing arsenic, barium, beryllium, 
cadmium, calcium, chromium, copper, lead, nickel, selenium, sodium, and 
thallium with digestion or directly without digestion, and other 
analytical test procedures are contained in Technical Notes on Drinking 
Water Methods, EPA-600/R-94-173, October 1994. This document also 
contains approved analytical test methods which remain available for 
compliance monitoring until July 1, 1996. These methods will not be 
available for use after July 1, 1996. This document is available from 
the National Technical Information Service, NTIS PB95-104766, U.S. 
Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 
22161. The toll-free number is 800-553-6847.
 
 
----------------------------------------------------------------------------------------------------------------
   Contaminant and methodology \13\        EPA            ASTM \3\              SM \4\               Other
----------------------------------------------------------------------------------------------------------------
Alkalinity:
    Titrimetric......................  ...........  D1067-92B            2320 B               I-1030-85 \5\
    Electrometric titration..........  ...........  ...................  ...................  ..................
Antimony:
    ICP-Mass Spectrometry............    \2\ 200.8
    Hydride-Atomic Absorption........  ...........  D-3697-92            ...................  ..................
    Atomic Absorption; Platform......    \2\ 200.9  ...................  ...................  ..................
    Atomic Absorption; Furnace.......  ...........  ...................  3113 B               ..................
Arsenic\14\:
    Inductively Coupled Plasma.......    \2\ 200.7  ...................  3120 B               ..................
    ICP-Mass Spectrometry............    \2\ 200.8  ...................  ...................  ..................
    Atomic Absorption; Platform......    \2\ 200.9  ...................  ...................  ..................
    Atomic Absorption; Furnace.......  ...........  D-2972-93C           3113 B               ..................
 
[[Page 358]]
 
 
    Hydride Atomic Absorption........  ...........  D-2972-93B           3114 B               ..................
Asbestos:
    Transmission Electron Microscopy.    \9\ 100.1  ...................  ...................  ..................
    Transmission Electron Microscopy.   \10\ 100.2  ...................  ...................  ..................
Barium:
    Inductively Coupled Plasma.......    \2\ 200.7  ...................  3120 B               ..................
    ICP-Mass Spectrometry............    \2\ 200.8  ...................  ...................  ..................
    Atomic Absorption; Direct........  ...........  ...................  3111 D               ..................
    Atomic Absorption; Furnace.......  ...........  ...................  3113 B               ..................
Beryllium:
    Inductively Coupled Plasma.......    \2\ 200.7  ...................  3120 B               ..................
    ICP-Mass Spectrometry............    \2\ 200.8  ...................  ...................  ..................
    Atomic Absorption; Platform......    \2\ 200.9  ...................  ...................  ..................
    Atomic Absorption; Furnace.......  ...........  D3645-93B            3113 B               ..................
Cadmium:
    Inductively Coupled Plasma.......    \2\ 200.7  ...................  ...................  ..................
    ICP-Mass Spectrometry............    \2\ 200.8  ...................  ...................  ..................
    Atomic Absorption; Platform......    \2\ 200.9  ...................  ...................  ..................
    Atomic Absorption; Furnace.......  ...........  ...................  3113 B               ..................
Calcium:
    EDTA titrimetric.................  ...........  D511-93A             3500-Ca D
    Atomic absorption; direct          ...........  D511-93B             3111 B               ..................
     aspiration.
    Inductively-coupled plasma.......    \2\ 200.7  ...................  3120 B               ..................
Chromium:
    Inductively Coupled Plasma.......    \2\ 200.7  ...................  3120 B               ..................
    ICP-Mass Spectrometry............    \2\ 200.8  ...................  ...................  ..................
    Atomic Absorption; Platform......    \2\ 200.9  ...................  ...................  ..................
    Atomic Absorption; Furnace.......  ...........  ...................  3113 B               ..................
Copper:
    Atomic absorption; furnace.......  ...........  D1688-95C            3113 B               ..................
    Atomic absorption; direct          ...........  D1688-95A            3111 B               ..................
     aspiration.
    ICP..............................    \2\ 200.7  ...................  3120 B               ..................
    ICP--Mass spectrometry...........    \2\ 200.8  ...................  ...................  ..................
    Atomic absorption; platform......    \2\ 200.9  ...................  ...................  ..................
Conductivity Conductance.............  ...........  D1125-95A            2510 B               ..................
Cyanide:
    Manual Distillation followed by..  ...........  D2036-91A            4500-CN<SUP>-</SUP> C
        Spectrophotometric, Amenable.  ...........  D2036-91B            4500-CN<SUP>-</SUP> G
        Spectrophotometric...........
            Manual...................  ...........  D2036-91A            4500-CN<SUP>-</SUP> E           I-3300-85 \5\
            Semi-automated...........    \6\ 335.4
    Selective Electrode..............  ...........  ...................  4500-CN<SUP>-</SUP> F
Fluoride:
    Ion Chromatography...............    \6\ 300.0  D4327-91             4110 B
    Manual Distill.; Color. SPADNS...  ...........  ...................  4500-F<SUP>-</SUP> B, D
    Manual Electrode.................  ...........  D1179-93B            4500-F<SUP>-</SUP> C
    Automated Electrode..............  ...........  ...................  ...................  380-75WE \11\
    Automated Alizarin...............  ...........  ...................  4500-F<SUP>-</SUP> E            129-71W \11\
Lead:
    Atomic absorption; furnace.......  ...........  D3559-95D            3113 B
    ICP-Mass spectrometry............    \2\ 200.8
    Atomic absorption; platform......    \2\ 200.9
    Differential Pulse Anodic          ...........  ...................  ...................  Method 1001 \15\
     Stripping Voltammetry.
Magnesium:
    Atomic Absorption................  ...........  D 511-93 B           3111 B
 
[[Page 359]]
 
 
    ICP..............................    \2\ 200.7  ...................  3120 B
    Complexation Titrimetric Methods.  ...........  D 511-93 A           3500-Mg E
Mercury:
    Manual, Cold Vapor...............    \2\ 245.1  D3223-91             3112 B
    Automated, Cold Vapor............    \1\ 245.2
    ICP-Mass Spectrometry............    \2\ 200.8
Nickel:
    Inductively Coupled Plasma.......    \2\ 200.7  ...................  3120 B
    ICP-Mass Spectrometry............    \2\ 200.8
    Atomic Absorption; Platform......    \2\ 200.9
    Atomic Absorption; Direct........  ...........  ...................  3111 B
    Atomic Absorption; Furnace.......  ...........  ...................  3113 B
Nitrate:
    Ion Chromatography...............    \6\ 300.0  D4327-91             4110 B               B-1011 \8\
    Automated Cadmium Reduction......    \6\ 353.2  D3867-90A            4500-NO<INF>3-</INF> F
    Ion Selective Electrode..........  ...........  ...................  4500-NO<INF>3-</INF> D          601 \7\
    Manual Cadmium Reduction.........  ...........  D3867-90B            4500-NO<INF>3-</INF> E
Nitrite:
    Ion Chromatography...............    \6\ 300.0  D4327-91             4110 B               B-1011 \8\
    Automated Cadmium Reduction......    \6\ 353.2  D3867-90A            4500-NO<INF>3-</INF> F
    Manual Cadmium Reduction.........  ...........  D3867-90B            4500-NO<INF>3-</INF> E
    Spectrophotometric...............  ...........  ...................  4500-NO<INF>2-</INF> B
Orthophosphate: \12\
    Colorimetric, automated, ascorbic    \6\ 365.1  ...................  4500-P F
     acid.
    Colorimetric, ascorbic acid,       ...........  D515-88A             4500-P E
     single reagent.
    Colorimetric, phosphomolybdate;..  ...........  ...................  ...................  I-1602-85 \5\
        automated-segmented flow;....  ...........  ...................  ...................  I-2601-90 \5\
        automated discrete...........  ...........  ...................  ...................  I-2598-85 \5\
    Ion Chromatography...............    \6\ 300.0  D4327-91             4110 B
pH: Electrometric....................    \1\ 150.1  D1293-95             4500-H<SUP>+</SUP> B
                                         \1\ 150.2  ...................  ...................  ..................
Selenium:
    Hydride-Atomic Absorption........  ...........  D3859-93A            3114 B               ..................
    ICP-Mass Spectrometry............    \2\ 200.8  ...................  ...................  ..................
    Atomic Absorption; Platform......    \2\ 200.9  ...................  ...................  ..................
    Atomic Absorption; Furance.......  ...........  D3859-93B            3113 B               ..................
Silica:
    Colorimetric, molybdate blue;....  ...........  ...................  ...................  I-1700-85 \5\
        automated-segmented flow.....  ...........  ...................  ...................  I-2700-85 \5\
    Colorimetric.....................  ...........  D859-95              ...................  ..................
    Molybdosilicate..................  ...........  ...................  4500-Si D            ..................
Heteropoly blue......................  ...........  ...................  4500-Si E            ..................
    Automated method for molybdate-    ...........  ...................  4500-Si F            ..................
     reactive silica.
    Inductively-coupled plasma.......    \3\ 200.7  ...................  3120 B               ..................
Sodium:
    Inductively-coupled plasma.......    \2\ 200.7  ...................  ...................  ..................
    Atomic Absorption; direct          ...........  ...................  3111 B               ..................
     aspiration.
Temperature: Thermometric              ...........  ...................  2550                 ..................
Thallium:
    ICP-Mass Spectrometry............    \2\ 200.8  ...................  ...................  ..................
    Atomic Absorption; Platform......    \2\ 200.9  ...................  ...................  ..................
----------------------------------------------------------------------------------------------------------------
The procedures shall be done in accordance with the documents listed below. The incorporation by reference of
  the following documents listed in footnotes 1-11 and 15 was approved by the Director of the Federal Register
  in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the documents may be obtained from the sources
  listed below. Information regarding obtaining these documents can be obtained from the Safe Drinking Water
  Hotline at 800-426-4791. Documents may be inspected at EPA's Drinking Water Docket, 1200 Pennsylvania Ave.,
  NW., Washington, DC 20460 (Telephone: 202-260-3027); or at the Office of Federal Register, 800 North Capitol
  Street, NW., Suite 700, Washington, DC.
 
[[Page 360]]
 
 
\1\ "Methods for Chemical Analysis of Water and Wastes", EPA/600/4-79/020, March 1983. Available at NTIS, PB84-
  128677.
\2\ "Methods for the Determination of Metals in Environmental Samples--Supplement I", EPA/600/R-94/111, May
  1994. Available at NTIS, PB95-125472.
\3\ Annual Book of ASTM Standards, 1994 and 1996, Vols. 11.01 and 11.02, American Society for Testing and
  Materials. The previous versions of D1688-95A, D1688-95C (copper), D3559-95D (lead), D1293-95 (pH), D1125-91A
  (conductivity) and D859-94 (silica) are also approved. These previous versions D1688-90A, C; D3559-90D, D1293-
  84, D1125-91A and D859-88, respectively are located in the Annual Book of ASTM Standards, 1994, Vols. 11.01.
  Copies may be obtained from the American Society for Testing and Materials, 100 Barr Harbor Drive, West
  Conshohocken, PA 19428.
\4\ 18th and 19th editions of Standard Methods for the Examination of Water and Wastewater, 1992 and 1995,
  respectively, American Public Health Association; either edition may be used. Copies may be obtained from the
  American Public Health Association, 1015 Fifteenth Street NW, Washington, DC 20005.
\5\ Method I-2601-90, Methods for Analysis by the U.S. Geological Survey National Water Quality Laboratory--
  Determination of Inorganic and Organic Constituents in Water and Fluvial Sediments, Open File Report 93-125,
  1993; For Methods I-1030-85; I-1601-85; I-1700-85; I-2598-85; I-2700-85; and I-3300-85 See Techniques of Water
  Resources Investigation of the U.S. Geological Survey, Book 5, Chapter A-1, 3rd ed., 1989; Available from
  Information Services, U.S. Geological Survey, Federal Center, Box 25286, Denver, CO 80225-0425.
\6\ "Methods for the Determination of Inorganic Substances in Environmental Samples", EPA/600/R-93/100, August
  1993. Available at NTIS, PB94-120821.
\7\ The procedure shall be done in accordance with the Technical Bulletin 601 "Standard Method of Test for
  Nitrate in Drinking Water", July 1994, PN 221890-001, Analytical Technology, Inc. Copies may be obtained from
  ATI Orion, 529 Main Street, Boston, MA 02129.
\8\ Method B-1011, "Waters Test Method for Determination of Nitrite/Nitrate in Water Using Single Column Ion
  Chromatography," August 1987. Copies may be obtained from Waters Corporation, Technical Services Division, 34
  Maple Street, Milford, MA 01757.
\9\ Method 100.1, "Analytical Method For Determination of Asbestos Fibers in Water", EPA/600/4-83/043, EPA,
  September 1983. Available at NTIS, PB83-260471.
\10\ 10 Method 100.2, "Determination of Asbestos Structure Over 10-<greek-m>m In Length In Drinking Water",
  EPA/600/R-94/134, June 1994. Available at NTIS, PB94-201902.
\11\ Industrial Method No. 129-71W, "Fluoride in Water and Wastewater", December 1972, and Method No. 380-
  75WE, "Fluoride in Water and Wastewater", February 1976, Technicon Industrial Systems. Copies may be
  obtained from Bran & Luebbe, 1025 Busch Parkway, Buffalo Grove, IL 60089.
\12\ Unfiltered, no digestion or hydrolysis.
\13\ Because MDLs reported in EPA Methods 200.7 and 200.9 were determined using a 2X preconcentration step
  during sample digestion, MDLs determined when samples are analyzed by direct analysis (i.e., no sample
  digestion) will be higher. For direct analysis of cadmium and arsenic by Method 200.7, and arsenic by Method
  3120 B sample preconcentration using pneumatic nebulization may be required to achieve lower detection limits.
  Preconcentration may also be required for direct analysis of antimony, lead, and thallium by Method 200.9;
  antimony and lead by Method 3113 B; and lead by Method D3559-90D unless multiple in-furnace depositions are
  made.
\14\ If ultrasonic nebulization is used in the determination of arsenic by Methods 200.7, 200.8, or SM 3120 B,
  the arsenic must be in the pentavalent state to provide uniform signal response. For methods 200.7 and 3120 B,
  both samples and standards must be diluted in the same mixed acid matrix concentration of nitric and
  hydrochloric acid with the addition of 100 <greek-m>L of 30% hydrogen peroxide per 100ml of solution. For
  direct analysis of arsenic with method 200.8 using ultrasonic nebulization, samples and standards must contain
  one mg/L of sodium hypochlorite.
\15\ The description for Method Number 1001 for lead is available from Palintest, LTD, 21 Kenton Lands Road,
  P.O. Box 18395, Erlanger, KY 41018. Or from the Hach Company, P.O. Box 389, Loveland, CO 8053.
 
    (2) Sample collection for antimony, asbestos, barium, beryllium, 
cadmium, chromium, cyanide, fluoride, mercury, nickel, nitrate, nitrite, 
selenium, and thallium under this section shall be conducted using the 
sample preservation, container, and maximum holding time procedures 
specified in the following table:
 
 
----------------------------------------------------------------------------------------------------------------
              Contaminant                    Preservative \1\            Container \2\            Time \3\
----------------------------------------------------------------------------------------------------------------
Antimony..............................  HNO\3\....................  P or G................  6 months
Asbestos..............................  4  deg.C..................  P or G................  48 hours \4\
Barium................................  HNO\3\....................  P or G................  6 months
Beryllium.............................  HNO\3\....................  P or G................  6 months
Cadmium...............................  HNO\3\....................  P or G................  6 months
Chromium..............................  HNO\3\....................  P or G................  6 months
Cyanide...............................  4  deg.C, NaOH............  P or G................  14 days
Fluoride..............................  None......................  P or G................  1 month
Mercury...............................  HNO\3\....................  P or G................  28 days
Nickel................................  HNO\3\....................  P or G................  6 months
Nitrate...............................  4  deg.C..................  P or G................  48 hours \5\
Nitrate-Nitrite \6\...................  H\2\SO\4\.................  P or G................  28 days
Nitrite...............................  4 deg.C...................  P or G................  48 hours
Selenium..............................  HNO\3\....................  P or G................  6 months
Thallium..............................  HNO\3\....................  P or G................  6 months
----------------------------------------------------------------------------------------------------------------
\1\ When indicated, samples must be acidified at the time of collection to pH  2 with concentrated acid or
  adjusted with sodium hydroxide to pH > 12. When chilling is indicated the sample must be shipped and stored at
  4  deg.C or less.
\2\ P=plastic, hard or soft; G=glass, hard or soft.
\3\ In all cases samples should be analyzed as soon after collection as possible. Follow additional (if any)
  information on preservation, containers or holding times that is specified in method.
\4\ Instructions for containers, preservation procedures and holding times as specified in Method 100.2 must be
  adhered to for all compliance analyses including those conducted with Method 100.1.
\5\ If the sample is chlorinated, the holding time for an unacidified sample kept at 4  deg.C is extended to 14
  days.
\6\ Nitrate-Nitrite refers to a measurement of total nitrate.
 
    (3) Analysis under this section shall only be conducted by 
laboratories that have been certified by EPA or the State. Laboratories 
may conduct sample analysis under provisional certification until 
January 1, 1996. To receive certification to conduct analyses for 
antimony, asbestos, barium, beryllium, cadmium, chromium, cyanide, 
fluoride, mercury, nickel, nitrate, nitrite and
 
[[Page 361]]
 
selenium and thallium, the laboratory must:
    (i) Analyze Performance Evaluation (PE) samples provided by EPA, the 
State or by a third party (with the approval of the State or EPA) at 
least once a year.
    (ii) For each contaminant that has been included in the PE sample 
and for each method for which the laboratory desires certification 
achieve quantitative results on the analyses that are within the 
following acceptance limits:
 
 
------------------------------------------------------------------------
             Contaminant                       Acceptance limit
------------------------------------------------------------------------
Antimony............................  <plus-minus>30 at ;0.006 mg/1
Asbestos............................  2 standard deviations based on
                                       study statistics.
Barium..............................  <plus-minus>15% at ;0.15 mg/1
Beryllium...........................  <plus-minus>15% at ;0.001 mg/1
Cadmium.............................  <plus-minus>20% at ;0.002 mg/1
Chromium............................  <plus-minus>15% at ;0.01 mg/1
Cyanide.............................  <plus-minus>25% at ;0.1 mg/1
Fluoride............................  <plus-minus>10% at ;1 to 10 mg/1
Mercury.............................  <plus-minus>30% at ;0.0005 mg/1
Nickel..............................  <plus-minus>15% at ;0.01 mg/1
Nitrate.............................  <plus-minus>10% at ;0.4 mg/1
Nitrite.............................  <plus-minus>15% at ;0.4 mg/1
Selenium............................  <plus-minus>20% at ;0.01 mg/1
Thallium............................  <plus-minus>30% at ;0.002 mg/1
------------------------------------------------------------------------
 
 
    (l) Analyses for the purpose of determining compliance with 
Sec. 141.11 shall be conducted using the requirements specified in 
paragraphs (l) through (q) of this section.
    (1) Analyses for all community water systems utilizing surface water 
sources shall be completed by June 24, 1978. These analyses shall be 
repeated at yearly intervals.
    (2) Analyses for all community water systems utilizing only ground 
water sources shall be completed by June 24, 1979. These analyses shall 
be repeated at three-year intervals.
    (3) For non-community water systems, whether supplied by surface or 
ground sources, analyses for nitrate shall be completed by December 24, 
1980. These analyses shall be repeated at intervals determined by the 
State.
    (4) The State has the authority to determine compliance or initiate 
enforcement action based upon analytical results and other information 
compiled by their sanctioned representatives and agencies.
    (m) If the result of an analysis made under paragraph (l) of this 
section indicates that the level of any contaminant listed in 
Sec. 141.11 exceeds the maximum contaminant level, the supplier of the 
water shall report to the State within 7 days and initiate three 
additional analyses at the same sampling point within one month.
    (n) When the average of four analyses made pursuant to paragraph (m) 
of this section, rounded to the same number of significant figures as 
the maximum contaminant level for the substance in question, exceeds the 
maximum contaminant level, the supplier of water shall notify the State 
pursuant to Sec. 141.31 and give notice to the public pursuant to 
subpart Q. Monitoring after public notification shall be at a frequency 
designated by the State and shall continue until the maximum contaminant 
level has not been exceeded in two successive samples or until a 
monitoring schedule as a condition to a variance, exemption or 
enforcement action shall become effective.
    (o) The provisions of paragraphs (m) and (n) of this section 
notwithstanding, compliance with the maximum contaminant level for 
nitrate shall be determined on the basis of the mean of two analyses. 
When a level exceeding the maximum contaminant level for nitrate is 
found, a second analysis shall be initiated within 24 hours, and if the 
mean of the two analyses exceeds the maximum contaminant level, the 
supplier of water shall report his findings to the State pursuant to 
Sec. 141.31 and shall notify the public pursuant to subpart Q.
    (p) For the initial analyses required by paragraph (l) (1), (2) or 
(3) of this section, data for surface waters acquired within one year 
prior to the effective date and data for ground waters acquired within 3 
years prior to the effective date of this part may be substituted at the 
discretion of the State.
    (q) [Reserved]
 
[56 FR 3579, Jan. 30, 1991, as amended at 56 FR 30274, July 1, 1991; 57 
FR 31838, July 17, 1992; 59 FR 34322, July 1, 1994; 59 FR 62466, Dec. 5, 
1994; 60 FR 33932, 34085, June 29, 1995; 64 FR 67461, Dec. 1, 1999; 65 
FR 26022, May 4, 2000]
 
    Effective Date Note: At 66 FR 7061, Jan. 22, 2001, Sec. 141.23 was 
amended by adding a new entry for "Arsenic" in alphabetical order to 
the table in paragraph (a)(4)(i) and adding
 
[[Page 362]]
 
endnotes 6, 7 and 8; revising paragraphs (a)(5) and (c) introductory 
text; adding paragraph (c)(9); revising paragraphs (f)(1), (i)(1), and 
(i)(2); adding paragraph (i)(4); revising the entries for arsenic in the 
table in paragraph (k)(1); revising paragraph (k)(2) introductory text; 
adding a new entry for "Arsenic" in alphabetical order to the table in 
paragraph (k)(2) and revising footnote 1; revising the last sentence in 
paragraph (k)(3) introductory text; and adding a new entry for 
"Arsenic" in alphabetical order to the table in paragraph (k)(3)(ii), 
effective Mar. 23, 2001, except for the amendments to paragraphs (i)(1) 
and (i)(2) which are effective Jan. 22, 2004. At 66 FR 16134, Mar. 23, 
2001, the effective date was delayed until May 22, 2001. At 66 FR 28350, 
May 22, 2001, the effective date was further delayed until Feb. 22, 
2002. For the convenience of the user, the revised and added text is set 
forth as follows:
 
Sec. 141.23  Inorganic chemical sampling and analytical requirements.
 
    (a) * * *
    (4) * * *
    (i) * * *
 
[[Page 363]]
 
 
 
                                                      Detection Limits for Inforganic Contaminants
--------------------------------------------------------------------------------------------------------------------------------------------------------
              Contaminant                            MCL (mg/l)                       Methodology                      Detection Limit (mg/l)
--------------------------------------------------------------------------------------------------------------------------------------------------------
                   *                  *                  *                  *                  *                  *                  *
Arsenic................................                            \6\ 0.01  Atomic Absorption; Furnace..                                          0.001
                                                                             Atomic Absorption; Platform--                                    \7\ 0.0005
                                                                              Stabilized Temperature.
                                                                             Atomic Absorption; Gaseous                                            0.001
                                                                              Hydride.
                                                                             ICP-Mass Spectrometry.......                                     \8\ 0.0014
                  *                  *                  *                  *                  *                  *                  *
--------------------------------------------------------------------------------------------------------------------------------------------------------
*  *  *  *  *
\6\ The value for arsenic is effective January 23, 2006. Unit then, the MCL is 0.05 mg/L.
\7\ The MDL reported for EPA method 200.9 (Atomic Absorption; Platform--Stablized Temperature) was determined using a 2x concentration step during
  sample digestion. The MDL determined for samples analyzed using direct analyses (i.e., no sample digestion) will be higher. Using multiple
  depositions, EPA 200.9 is capable of obtaining MDL of 0.0001 mg/L.
\8\ Using selective ion monitoring, EPA Method 200.8 (ICP-MS) is capable of obtaining a MDL of 0.0001 mg/L.
 
 
[[Page 364]]
 
                                * * * * *
 
    (5) The frequency of monitoring for asbestos shall be in accordance 
with paragraph (b) of this section: the frequency of monitoring for 
antimony, arsenic, barium, beryllium, cadmium, chromium, cyanide, 
fluoride, mercury, nickel, selenium and thallium shall be in accordance 
with paragraph (c) of this section; the frequency of monitoring for 
nitrate shall be in accordance with paragraph (d) of this section; and 
the frequency of monitoring for nitrite shall be in accordance with 
paragraph (e) of this section.
 
                                * * * * *
 
    (c) The frequency of monitoring conducted to determine compliance 
with the maximum contaminant levels in Sec. 141.62 for antimony, 
arsenic, barium, beryllium, cadmium, chromium, cyanide, fluoride, 
mercury, nickel, selenium and thallium shall be as follows:
 
                                * * * * *
 
    (9) All new systems or systems that use a new source of water that 
begin operation after January 22, 2004 must demonstrate compliance with 
the MCL within a period of time specified by the State. The system must 
also comply with the initial sampling frequencies specified by the State 
to ensure a system can demonstrate compliance with the MCL. Routine and 
increased monitoring frequencies shall be conducted in accordance with 
the requirements in this section.
 
                                * * * * *
 
    (f) * * *
    (1) Where the results of sampling for antimony, arsenic, asbestos, 
barium, beryllium, cadmium, chromium, cyanide, fluoride, mercury, 
nickel, selenium or thallium indicate an exceedance of the maximum 
contaminant level, the State may require that one additional sample be 
collected as soon as possible after the initial sample was taken (but 
not to exceed two weeks) at the same sampling point.
 
                                * * * * *
 
    (i) * * *
    (1) For systems which are conducting monitoring at a frequency 
greater than annual, compliance with the maximum contaminant levels for 
antimony, arsenic, asbestos, barium, beryllium, cadmium, chromium, 
cyanide, fluoride, mercury, nickel, selenium or thallium is determined 
by a running annual average at any sampling point. If the average at any 
sampling point is greater than the MCL, then the system is out of 
compliance. If any one sample would cause the annual average to be 
exceeded, then the system is out of compliance immediately. Any sample 
below the method detection limit shall be calculated at zero for the 
purpose of determining the annual average. If a system fails to collect 
the required number of samples, compliance (average concentration) will 
be based on the total number of samples collected.
    (2) For systems which are monitoring annually, or less frequently, 
the system is out of compliance with the maximum contaminant levels for 
antimony, arsenic, asbestos, barium, beryllium, cadmium, chromium, 
cyanide, fluoride, mercury, nickel, selenium or thallium if the level of 
a contaminant is greater than the MCL. If confirmation samples are 
required by the State, the determination of compliance will be based on 
the annual average of the initial MCL exceedance and any State-required 
confirmation samples. If a system fails to collect the required number 
of samples, compliance (average concentration) will be based on the 
total number of samples collected.
 
                                * * * * *
 
    (4) Arsenic sampling results will be reported to the nearest 0.001 
mg/L.
 
                                * * * * *
 
    (k) * * *
    (1) * * *
 
[[Page 365]]
 
 
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
    Contaminant and methodology \13\         EPA                   ASTM \3\                             SM \4\                           Other
--------------------------------------------------------------------------------------------------------------------------------------------------------
                   *                  *                  *                  *                  *                  *                  *
Arsenic \14\:
    Inductively Coupled Plasma \15\....    \2\ 200.7  ..................................                          \15\ 3120B  ..........................
    ICP-Mass Spectrometry..............    \2\ 200.8  ..................................  ..................................  ..........................
    Atomic Absorption; Platform........    \2\ 200.9  ..................................  ..................................  ..........................
    Atomic Absorption; Furnace.........  ...........                          D-2972-93C                               3113B  ..........................
    Hydride Atomic Absorption..........  ...........                          D-2972-93B                               3114B  ..........................
                  *                  *                  *                  *                  *                  *                  *
--------------------------------------------------------------------------------------------------------------------------------------------------------
*        *        *        *      *
\2\ "Methods for the Determination of Metals in Environmental Samples-Supplement I", EPA-600/R-94-111, May 1994. Available at NTIS, PB 95-125472.
\3\ Annual Book of ASTM Standards, 1994 and 1996, Vols. 11.01 and 11.02, American Society for Testing and Materials. The previous versions of D1688-95A,
  D1688-95C (copper), D3559-95D (lead), D1293-95 (pH), D1125-91A (conductivity) and D859-94 (silica) are also approved. These previous versions D1688-
  90A, C; D3559-90D, D1293-84, D1125-91A and D859-88, respectively are located in the Annual Book of ASTM Standards, 1994, Vols. 11.01. Copies may be
  obtained from the American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428.
\4\ 18th and 19th editions of Standard Methods for the Examination of Water and Wastewater, 1992 and 1995, respectively, American Public Health
  Association; either edition may be used. Copies may be obtained from the American Public Health Association, 1015 Fifteenth Street NW., Washington, DC
  20005.
*        *        *        *      *
\13\ Because MDLs reported in EPA Methods 200.7 and 200.9 were determined using a 2X preconcentration step during sample digestion, MDLs determined when
  samples are analyzed by direct analysis (i.e., no sample digestion) will be higher. For direct analysis of cadmium and arsenic by Method 200.7, and
  arsenic by Method 3120 B sample preconcentration using pneumatic nebulization may be required to achieve lower detection limits. Preconcentration may
  also be required for direct analysis of antimony, lead, and thallium by Method 200.9; antimony and lead by Method 3113 B; and lead by Method D3559-90D
  unless multiple in-furnace depositions are made.
\14\ If ultrasonic nebulization is used in the determination of arsenic by Methods 200.7, 200.8, or SM 3120 B, the arsenic must be in the pentavalent
  state to provide uniform signal response. For methods 200.7 and 3120 B, both samples and standards must be diluted in the same mixed acid matrix
  concentration of nitric and hydrochloric acid with the addition of 100 <greek-m>L of 30% hydrogen peroxide per 100ml of solution. For direct analysis
  of arsenic with method 200.8 using ultrasonic nebulization, samples and standards must contain one mg/L of sodium hypochlorite.
\15\ After January 23, 2006 analytical methods using the ICP-AES technology, may not be used because the detection limits for these methods are 0.008 mg/
  L or higher. This restriction means that the two ICP-AES methods (EPA Method 200.7 and SM 3120 B) approved for use for the MCL of 0.05 mg/L may not be
  used for compliance determinations for the revised MCL of 0.01 mg/L. However, prior to 2005 systems may have compliance samples analyzed with these
  less sensitive methods.
 
 
[[Page 366]]
 
                                * * * * *
 
    (2) Sample collection for antimony, arsenic, asbestos, barium, 
beryllium, cadmium, chromium, cyanide, fluoride, mercury, nickel, 
nitrate, nitrite, selenium, and thallium under this section shall be 
conducted using the sample preservation, container, and maximum holding 
time procedures specified in the table below:
 
----------------------------------------------------------------------------------------------------------------
             Contaminant                  Preservative \1\           Container \2\               Time \3\
----------------------------------------------------------------------------------------------------------------
                                      *        *        *        *        *
Arsenic.............................  Conc HNO<INF>3</INF> to pH 2.......  P or G                   6 months
                                     *        *        *        *        *
----------------------------------------------------------------------------------------------------------------
\1\ For cyanide determinations samples must be adjusted with sodium hydroxide to pH 12 at the time off
  collection. When chilling is indicated the sample must be shipped and stored at 4  deg.C or less.
  Acidification of nitrate or metals samples may be with a concentrated acid or a dilute (50% by volume)
  solution of the applicable concentrated acid. Acidification of samples for metals analysis is encouraged and
  allowed at the laboratory rather than at the time of sampling provided the shipping time and other
  instructions in Section 8.3 of EPA Methods 200.7 or 200.8 or 200.9 are followed.
\2\ P = plastic, hard or soft; G = glass, hard or soft.
\3\ In all cases samples should be analyzed as soon after collection as possible. Follow additional (if any)
  information on preservation, containers or holding times that is specified in method.
 
                                * * * * *
 
    (3) * * * To receive certification to conduct analyses for antimony, 
arsenic, asbestos, barium, beryllium, cadmium, chromium, cyanide, 
fluoride, mercury, nickel, nitrate, nitrite and selenium and thallium, 
the laboratory must:
 
                                * * * * *
 
    (ii) * * *
 
------------------------------------------------------------------------
               Contaminant                       Acceptance limit
------------------------------------------------------------------------
                  *        *        *        *        *
Arsenic.................................  <plus-minus>30 at <gr-thn-
                                           eq>0.003 mg/L
                  *        *        *        *        *
------------------------------------------------------------------------
 
                                * * * * *
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.24]
 
[Page 366-375]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
            Subpart C--Monitoring and Analytical Requirements
 
Sec. 141.24  Organic chemicals, sampling and analytical requirements.
 
    (a)-(d) [Reserved]
    (e) Analyses for the contaminants in this section shall be conducted 
using the following EPA methods or their equivalent as approved by EPA.
    (1) The following documents are incorporated by reference. This 
incorporation by reference was approved by the Director of the Federal 
Register in accordance with 5 U.S.C. 552(a) and 1 CFR Part 51. Copies 
may be inspected at EPA's Drinking Water Docket, 401 M St., SW., 
Washington, DC 20460; or at the Office of the Federal Register, 800 
North Capitol Street, NW., Suite 700, Washington, DC. Method 508A and 
515.1 are in Methods for the Determination of Organic Compounds in 
Drinking Water, EPA/600/4-88-039, December 1988, Revised, July 1991. 
Methods 547, 550 and 550.1 are in Methods for the Determination of 
Organic Compounds in Drinking Water--Supplement I, EPA/600-4-90-020, 
July 1990. Methods 548.1, 549.1, 552.1 and 555 are in Methods for the 
Determination of Organic Compounds in Drinking Water--Supplement II, 
EPA/600/R-92-129, August 1992. Methods 502.2, 504.1, 505, 506, 507, 508, 
508.1, 515.2, 524.2 525.2, 531.1, 551.1 and 552.2 are in Methods for the 
Determination of Organic Compounds in Drinking Water--Supplement III, 
EPA/600/R-95-131, August 1995. Method 1613 is titled "Tetra-through 
Octa-Chlorinated Dioxins and Furans by Isotope-Dilution HRGC/HRMS", 
EPA/821-B-94-005, October 1994. These documents are available from the 
National Technical Information Service, NTIS PB91-231480, PB91-146027, 
PB92-207703, PB95-261616 and PB95-104774, U.S. Department of Commerce, 
5285 Port Royal Road, Springfield, Virginia 22161. The toll-free number 
is 800-553-6847. Method 6651 shall be followed in accordance with 
Standard Methods for the Examination of Water and Wastewater, 18th 
edition, 1992 and 19th edition, 1995, American Public Health Association 
(APHA); either edition may be used. Method 6610 shall be followed in 
accordance with the Supplement to the 18th edition of Standard Methods 
for the Examination of Water and Wastewater, 1994 or with the 19th 
edition of Standard Methods for the Examination of Water and Wastewater, 
1995, APHA; either publication may be used. The APHA documents are 
available from APHA, 1015 Fifteenth Street NW., Washington, D.C. 20005. 
Other required analytical test procedures germane to the conduct of 
these analyses are contained in Technical Notes on Drinking Water 
Methods, EPA/600/R-94-173, October 1994, NTIS PB95-104766. EPA Methods 
515.3 and 549.2 are available from U.S. Environmental Protection Agency, 
National Exposure Research Laboratory (NERL)-Cincinnati, 26 West Martin 
Luther King Drive, Cincinnati, OH 45268. ASTM Method D 5317-93 is
 
[[Page 367]]
 
available in the Annual Book of ASTM Standards, 1996, Vol. 11.02, 
American Society for Testing and Materials, 100 Barr Harbor Drive, West 
Conshohocken, PA 19428, or in any edition published after 1993.
 
 
------------------------------------------------------------------------
                Contaminant                          Method \1\
------------------------------------------------------------------------
Benzene...................................  502.2, 524.2
 
Carbon tetrachloride                        502.2, 524.2, 551.1
 
Chlorobenzene                               502.2, 524.2
1,2-Dichlorobenzene.......................  502.2, 524.2
1,4-Dichlorobenzene.......................  502.2, 524.2
1,2-Dichloroethane........................  502.2, 524.2
cis-Dichloroethylene......................  502.2, 524.2
trans-Dichloroethylene....................  502.2, 524.2
Dichloromethane...........................  502.2, 524.2
1,2-Dichloropropane.......................  502.2, 524.2
Ethylbenzene..............................  502.2, 524.2
Styrene...................................  502.2, 524.2
Tetrachloroethylene.......................  502.2, 524.2, 551.1
1,1,1-Trichloroethane.....................  502.2, 524.2, 551.1
Trichloroethylene.........................  502.2, 524.2, 551.1
Toluene...................................  502.2, 524.2
1,2,4-Trichlorobenzene....................  502.2, 524.2
1,1-Dichloroethylene......................  502.2, 524.2
1,1,2-Trichloroethane.....................  502.2, 524.2, 551.1
Vinyl chloride............................  502.2, 524.2
Xylenes (total)...........................  502.2, 524.2
2,3,7,8-TCDD (dioxin).....................  1613
2,4-D\4\ (as acid, salts and esters)......  515.2, 555, 515.1, 515.3,
                                             D5317-93
2,4,5-TP \4\ (Silvex).....................  515.2, 555, 515.1, 515.3,
                                             D5317-93
Alachlor \2\..............................  507, 525.2, 508.1, 505,
                                             551.1
Atrazine \2\..............................  507, 525.2, 508.1, 505,
                                             551.1
Benzo(a)pyrene............................  525.2, 550, 550.1
Carbofuran................................  531.1, 6610
Chlordane.................................  508, 525.2, 508.1, 505
Dalapon...................................  552.1, 515.1, 552.2, 515.3
Di(2-ethylhexyl)adipate...................  506, 525.2
Di(2-ethylhexyl)phthalate.................  506, 525.2
Dibromochloropropane (DBCP)...............  504.1, 551.1
Dinoseb \4\...............................  515.2, 555, 515.1, 515.3
Diquat....................................  549.2
Endothall.................................  548.1
Endrin....................................  508, 525.2, 508.1, 505,
                                             551.1
Ethylene dibromide (EDB)..................  504.1, 551.1
Glyphosate................................  547, 6651
Heptachlor................................  508, 525.2, 508.1, 505,
                                             551.1
Heptachlor Epoxide........................  508, 525.2, 508.1, 505,
                                             551.1
Hexachlorobenzene.........................  508, 525.2, 508.1, 505,
                                             551.1
Hexachlorocyclopentadiene.................  508, 525.2, 508.1, 505,
                                             551.1
Lindane...................................  508, 525.2, 508.1, 505,
                                             551.1
Methoxychlor..............................  508, 525.2, 508.1, 505,
                                             551.1
Oxamyl....................................  531.1, 6610
PCBs \3\ (as decachlorobiphenyl)..........  508A
    (as Aroclors).........................  508.1, 508, 525.2, 505
Pentachlorophenol.........................  515.2, 525.2, 555, 515.1,
                                             515.3, D5317-93
Picloram \4\..............................  515.2, 555, 515.1, 515.3,
                                             D5317-93
Simazine \2\..............................  507, 525.2, 508.1, 505,
                                             551.1
Toxaphene.................................  508, 508.1, 525.2, 505
Total Trihalomethanes.....................  502.2, 524.2, 551.1
------------------------------------------------------------------------
\1\ For previously approved EPA methods which remain available for
  compliance monitoring until June 1, 2001, see paragraph (e)(2) of this
  section.
\2\ Substitution of the detector specified in Method 505, 507, 508 or
  508.1 for the purpose of achieving lower detection limits is allowed
  as follows. Either an electron capture or nitrogen phosphorous
  detector may be used provided all regulatory requirements and quality
  control criteria are met.
\3\ PCBs are qualitatively identified as Aroclors and measured for
  compliance purposes as decachlorobiphenyl. Users of Method 505 may
  have more difficulty in achieving the required detection limits than
  users of Methods 508.1, 525.2 or 508.
\4\ Accurate determination of the chlorinated esters requires hydrolysis
  of the sample as described in EPA Methods 515.1, 515.2, 515.3 and 555,
  and ASTM Method D 5317-93.
 
    (2) The following EPA methods will remain available for compliance 
monitoring until June 1, 2001. The following documents are incorporated 
by reference. This incorporation by reference was approved by the 
Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 
1 CFR Part 51. Copies may be inspected at EPA's Drinking Water Docket, 
401 M St., SW., Washington, DC 20460; or at the Office of the Federal 
Register, 800 North Capitol Street, NW., Suite 700, Washington, DC. EPA 
methods 502.2 Rev. 2.0, 505 Rev. 2.0, 507 Rev. 2.0, 508 Rev. 3.0, 531.1 
Rev. 3.0 are in "Methods for the Determination of Organic Compounds in 
Drinking Water", December 1988, revised July 1991; methods 506 and 551 
are in "Methods for the Determination of Organic Compounds in Drinking 
Water--Supplement I", July 1990; methods 515.2 Rev. 1.0 and 524.2 Rev. 
4.0 are in "Methods for the Determination of Organic Compounds in 
Drinking Water--Supplement II," August 1992; and methods 504.1 Rev. 
1.0, 508.1 Rev. 1.0, 525.2 Rev.1.0 are available from US EPA NERL, 
Cincinnati, OH 45268
    (f) Beginning with the initial compliance period, analysis of the 
contaminants listed in Sec. 141.61(a) (1) through (21) for the purpose 
of determining compliance with the maximum contaminant level shall be 
conducted as follows:
    (1) Groundwater systems shall take a minimum of one sample at every 
entry point to the distribution system which is representative of each 
well after treatment (hereafter called a sampling point). Each sample 
must be taken at the same sampling point unless conditions make another 
sampling point more representative of each source, treatment plant, or 
within the distribution system.
    (2) Surface water systems (or combined surface/ground) shall take a 
minimum of one sample at points in the
 
[[Page 368]]
 
distribution system that are representative of each source or at each 
entry point to the distribution system after treatment (hereafter called 
a sampling point). Each sample must be taken at the same sampling point 
unless conditions make another sampling point more representative of 
each source, treatment plant, or within the distribution system.
    (3) If the system draws water from more than one source and the 
sources are combined before distribution, the system must sample at an 
entry point to the distribution system during periods of normal 
operating conditions (i.e., when water representative of all sources is 
being used).
    (4) Each community and non-transient non-community water system 
shall take four consecutive quarterly samples for each contaminant 
listed in Sec. 141.61(a) (2) through (21) during each compliance period, 
beginning in the initial compliance period.
    (5) If the initial monitoring for contaminants listed in 
Sec. 141.61(a) (1) through (8) and the monitoring for the contaminants 
listed in Sec. 141.61(a) (9) through (21) as allowed in paragraph 
(f)(18) has been completed by December 31, 1992, and the system did not 
detect any contaminant listed in Sec. 141.61(a) (1) through (21), then 
each ground and surface water system shall take one sample annually 
beginning with the initial compliance period.
    (6) After a minimum of three years of annual sampling, the State may 
allow groundwater systems with no previous detection of any contaiminant 
listed in Sec. 141.61(a) to take one sample during each compliance 
period.
    (7) Each community and non-transient non-community ground water 
system which does not detect a contaminant listed in Sec. 141.61(a) (1) 
through (21) may apply to the State for a waiver from the requirements 
of paragraphs (f)(5) and (f)(6) of this section after completing the 
initial monitoring. (For purposes of this section, detection is defined 
as 0.0005 mg/l.) A waiver shall be effective for no more than six years 
(two compliance periods). States may also issue waivers to small systems 
for the initial round of monitoring for 1,2,4-trichlorobenzene.
    (8) A State may grant a waiver after evaluating the following 
factor(s):
    (i) Knowledge of previous use (including transport, storage, or 
disposal) of the contaminant within the watershed or zone of influence 
of the system. If a determination by the State reveals no previous use 
of the contaminant within the watershed or zone of influence, a waiver 
may be granted.
    (ii) If previous use of the contaminant is unknown or it has been 
used previously, then the following factors shall be used to determine 
whether a waiver is granted.
    (A) Previous analytical results.
    (B) The proximity of the system to a potential point or non-point 
source of contamination. Point sources include spills and leaks of 
chemicals at or near a water treatment facility or at manufacturing, 
distribution, or storage facilities, or from hazardous and municipal 
waste landfills and other waste handling or treatment facilities.
    (C) The environmental persistence and transport of the contaminants.
    (D) The number of persons served by the public water system and the 
proximity of a smaller system to a larger system.
    (E) How well the water source is protected against contamination, 
such as whether it is a surface or groundwater system. Groundwater 
systems must consider factors such as depth of the well, the type of 
soil, and wellhead protection. Surface water systems must consider 
watershed protection.
    (9) As a condition of the waiver a groundwater system must take one 
sample at each sampling point during the time the waiver is effective 
(i.e., one sample during two compliance periods or six years) and update 
its vulnerability assessment considering the factors listed in paragraph 
(f)(8) of this section. Based on this vulnerability assessment the State 
must reconfirm that the system is non-vulnerable. If the State does not 
make this reconfirmation within three years of the initial 
determination, then the waiver is invalidated and the system is required 
to sample annually as specified in paragraph (5) of this section.
    (10) Each community and non-transient non-community surface water
 
[[Page 369]]
 
system which does not detect a contaminant listed in Sec. 141.61(a) (1) 
through (21) may apply to the State for a waiver from the requirements 
of (f)(5) of this section after completing the initial monitoring. 
Composite samples from a maximum of five sampling points are allowed, 
provided that the detection limit of the method used for analysis is 
less than one-fifth of the MCL. Systems meeting this criterion must be 
determined by the State to be non-vulnerable based on a vulnerability 
assessment during each compliance period. Each system receiving a waiver 
shall sample at the frequency specified by the State (if any).
    (11) If a contaminant listed in Sec. 141.61(a) (2) through (21) is 
detected at a level exceeding 0.0005 mg/l in any sample, then:
    (i) The system must monitor quarterly at each sampling point which 
resulted in a detection.
    (ii) The State may decrease the quarterly monitoring requirement 
speci fied in paragraph (f)(11)(i) of this section provided it has 
determined that the system is reliably and consistently below the 
maximum contaminant level. In no case shall the State make this 
determination unless a groundwater system takes a minimum of two 
quarterly samples and a surface water system takes a minimum of four 
quarterly samples.
    (iii) If the State determines that the system is reliably and 
consistently below the MCL, the State may allow the system to monitor 
annually. Systems which monitor annually must monitor during the 
quarter(s) which previously yielded the highest analytical result.
    (iv) Systems which have three consecutive annual samples with no 
detection of a contaminant may apply to the State for a waiver as 
specified in paragraph (f)(7) of this section.
    (v) Groundwater systems which have detected one or more of the 
following two-carbon organic compounds: trichloroethylene, 
tetrachloroethylene, 1,2-dichloroethane, 1,1,1-trichloroethane, cis-1,2-
dichloroethylene, trans-1,2-dichloroethylene, or 1,1-dichloroethylene 
shall monitor quarterly for vinyl chloride. A vinyl chloride sample 
shall be taken at each sampling point at which one or more of the two-
carbon organic compounds was detected. If the results of the first 
analysis do not detect vinyl chloride, the State may reduce the 
quarterly monitoring frequency of vinyl chloride monitoring to one 
sample during each compliance period. Surface water systems are required 
to monitor for vinyl chloride as specified by the State.
    (12) Systems which violate the requirements of Sec. 141.61(a) (1) 
through (21), as determined by paragraph (f)(15) of this section, must 
monitor quarterly. After a minimum of four consecutive quarterly samples 
which show the system is in compliance as specified in paragraph (f)(15) 
of this section the system and the State determines that the system is 
reliably and consistently below the maximum contaminant level, the 
system may monitor at the frequency and times specified in paragraph 
(f)(11)(iii) of this section.
    (13) The State may require a confirmation sample for positive or 
negative results. If a confirmation sample is required by the State, the 
result must be averaged with the first sampling result and the average 
is used for the compliance determination as specified by paragraph 
(f)(15). States have discretion to delete results of obvious sampling 
errors from this calculation.
    (14) The State may reduce the total number of samples a system must 
analyze by allowing the use of compositing. Composite samples from a 
maximum of five sampling points are allowed, provided that the detection 
limit of the method used for analysis is less than one-fifth of the MCL. 
Compositing of samples must be done in the laboratory and analyzed 
within 14 days of sample collection.
    (i) If the concentration in the composite sample is greater than or 
equal to 0.0005 mg/l for any contaminant listed in Sec. 141.61(a), then 
a follow-up sample must be taken within 14 days at each sampling point 
included in the composite, and be analyzed for that contaminant.
    (ii) If duplicates of the original sample taken from each sampling 
point used in the composite sample are available, the system may use 
these instead of resampling. The duplicates must be analyzed and the 
results reported to
 
[[Page 370]]
 
the State within 14 days after completing analysis of the composite 
sample, provided the holding time of the sample is not exceeded.
    (iii) If the population served by the system is > 3,300 persons, 
then compositing may only be permitted by the State at sampling points 
within a single system. In systems serving <ls-thn-eq> 3,300 persons, 
the State may permit compositing among different systems provided the 5-
sample limit is maintained.
    (iv) Compositing samples prior to GC analysis.
    (A) Add 5 ml or equal larger amounts of each sample (up to 5 samples 
are allowed) to a 25 ml glass syringe. Special precautions must be made 
to maintain zero headspace in the syringe.
    (B) The samples must be cooled at 4  deg.C during this step to 
minimize volatilization losses.
    (C) Mix well and draw out a 5-ml aliquot for analysis.
    (D) Follow sample introduction, purging, and desorption steps 
described in the method.
    (E) If less than five samples are used for compositing, a 
proportionately small syringe may be used.
    (v) Compositing samples prior to GC/MS analysis.
    (A) Inject 5-ml or equal larger amounts of each aqueous sample (up 
to 5 samples are allowed) into a 25-ml purging device using the sample 
introduction technique described in the method.
    (B) The total volume of the sample in the purging device must be 25 
ml.
    (C) Purge and desorb as described in the method.
    (15) Compliance with Sec. 141.61(a) (1) through (21) shall be 
determined based on the analytical results obtained at each sampling 
point.
    (i) For systems which are conducting monitoring at a frequency 
greater than annual, compliance is determined by a running annual 
average of all samples taken at each sampling point. If the annual 
average of any sampling point is greater than the MCL, then the system 
is out of compliance. If the initial sample or a subsequent sample would 
cause the annual average to be exceeded, then the system is out of 
compliance immediately.
    (ii) If monitoring is conducted annually, or less frequently, the 
system is out of compliance if the level of a contaminant at any 
sampling point is greater than the MCL. If a confirmation sample is 
required by the State, the determination of compliance will be based on 
the average of two samples.
    (16) [Reserved]
    (17) Analysis under this section shall only be conducted by 
laboratories that are certified by EPA or the State according to the 
following conditions (laboratories may conduct sample analysis under 
provisional certification until January 1, 1996):
    (i) To receive certification to conduct analyses for the 
contaminants in Sec. 141.61(a) (2) through (21) the laboratory must:
    (A) Analyze Performance Evaluation (PE) samples provided by EPA, the 
State, or by a third party (with the approval of the State or EPA) at 
least once a year by each method for which the laboratory desires 
certification.
    (B) Achieve the quantitative acceptance limits under paragraphs 
(f)(17)(i)(C) and (D) of this section for at least 80 percent of the 
regulated organic contaminants included in the PE sample.
    (C) Achieve quantitative results on the analyses performed under 
paragraph (f)(17)(i)(A) of this section that are within <plus-minus>20% 
of the actual amount of the substances in the Performance Evaluation 
sample when the actual amount is greater than or equal to 0.010 mg/l.
    (D) Achieve quantitative results on the analyses performed under 
paragraph (f)(17)(i)(A) of this section that are within <plus-minus>40 
percent of the actual amount of the substances in the Performance 
Evaluation sample when the actual amount is less than 0.010 mg/l.
    (E) Achieve a method detection limit of 0.0005 mg/l, according to 
the procedures in appendix B of part 136.
    (ii) To receive certification to conduct analyses for vinyl 
chloride, the laboratory must:
    (A) Analyze Performance Evaluation (PE) samples provided by EPA, the 
State, or by a third party (with the approval of the State or EPA) at 
least once a year by each method for which the laboratory desires 
certification.
 
[[Page 371]]
 
    (B) Achieve quantitative results on the analyses performed under 
paragraph (f)(17)(ii)(A) of this section that are within <plus-minus>40 
percent of the actual amount of vinyl chloride in the Performance 
Evaluation sample.
    (C) Achieve a method detection limit of 0.0005 mg/l, according to 
the procedures in appendix B of part 136.
    (D) Obtain certification for the contaminants listed in 
Sec. 141.61(a)(2) through (21).
    (18) States may allow the use of monitoring data collected after 
January 1, 1988, required under section 1445 of the Act for purposes of 
initial monitoring compliance. If the data are generally consistent with 
the other requirements of this section, the State may use these data 
(i.e., a single sample rather than four quarterly samples) to satisfy 
the initial monitoring requirement of paragraph (f)(4) of this section. 
Systems which use grandfathered samples and did not detect any 
contaminant listed Sec. 141.61(a)(2) through (21) shall begin monitoring 
annually in accordance with paragraph (f)(5) of this section beginning 
with the initial compliance period.
    (19) States may increase required monitoring where necessary to 
detect variations within the system.
    (20) Each certified laboratory must determine the method detection 
limit (MDL), as defined in appendix B to part 136, at which it is 
capable of detecting VOCs. The acceptable MDL is 0.0005 mg/l. This 
concentration is the detection concentration for purposes of this 
section.
    (21) Each public water system shall monitor at the time designated 
by the State within each compliance period.
    (g) [Reserved]
    (h) Analysis of the contaminants listed in Sec. 141.61(c) for the 
purposes of determining compliance with the maximum contaminant level 
shall be conducted as follows: \7\
---------------------------------------------------------------------------
 
    \7\ Monitoring for the contaminants aldicarb, aldicarb sulfoxide, 
and aldicarb sulfone shall be conducted in accordance with Sec. 141.40.
---------------------------------------------------------------------------
 
    (1) Groundwater systems shall take a minimum of one sample at every 
entry point to the distribution system which is representative of each 
well after treatment (hereafter called a sampling point). Each sample 
must be taken at the same sampling point unless conditions make another 
sampling point more representative of each source or treatment plant.
    (2) Surface water systems shall take a minimum of one sample at 
points in the distribution system that are representative of each source 
or at each entry point to the distribution system after treatment 
(hereafter called a sampling point). Each sample must be taken at the 
same sampling point unless conditions make another sampling point more 
representative of each source or treatment plant.
    Note: For purposes of this paragraph, surface water systems include 
systems with a combination of surface and ground sources.
    (3) If the system draws water from more than one source and the 
sources are combined before distribution, the system must sample at an 
entry point to the distribution system during periods of normal 
operating conditions (i.e., when water representative of all sources is 
being used).
    (4) Monitoring frequency:
    (i) Each community and non-transient non-community water system 
shall take four consecutive quarterly samples for each contaminant 
listed in Sec. 141.61(c) during each compliance period beginning with 
the initial compliance period.
    (ii) Systems serving more than 3,300 persons which do not detect a 
contaminant in the initial compliance period may reduce the sampling 
frequency to a minimum of two quarterly samples in one year during each 
repeat compliance period.
    (iii) Systems serving less than or equal to 3,300 persons which do 
not detect a contaminant in the initial compliance period may reduce the 
sampling frequency to a minimum of one sample during each repeat 
compliance period.
    (5) Each community and non-transient water system may apply to the 
State for a waiver from the requirement of paragraph (h)(4) of this 
section. A system must reapply for a waiver for each compliance period.
    (6) A State may grant a waiver after evaluating the following 
factor(s): Knowledge of previous use (including transport, storage, or 
disposal) of the
 
[[Page 372]]
 
contaminant within the watershed or zone of influence of the system. If 
a determination by the State reveals no previous use of the contaminant 
within the watershed or zone of influence, a waiver may be granted. If 
previous use of the contaminant is unknown or it has been used 
previously, then the following factors shall be used to determine 
whether a waiver is granted.
    (i) Previous analytical results.
    (ii) The proximity of the system to a potential point or non-point 
source of contamination. Point sources include spills and leaks of 
chemicals at or near a water treatment facility or at manufacturing, 
distribution, or storage facilities, or from hazardous and municipal 
waste landfills and other waste handling or treatment facilities. Non-
point sources include the use of pesticides to control insect and weed 
pests on agricultural areas, forest lands, home and gardens, and other 
land application uses.
    (iii) The environmental persistence and transport of the pesticide 
or PCBs.
    (iv) How well the water source is protected against contamination 
due to such factors as depth of the well and the type of soil and the 
integrity of the well casing.
    (v) Elevated nitrate levels at the water supply source.
    (vi) Use of PCBs in equipment used in the production, storage, or 
distribution of water (i.e., PCBs used in pumps, transformers, etc.).
    (7) If an organic contaminant listed in Sec. 141.61(c) is detected 
(as defined by paragraph (h)(18) of this section) in any sample, then:
    (i) Each system must monitor quarterly at each sampling point which 
resulted in a detection.
    (ii) The State may decrease the quarterly monitoring requirement 
specified in paragraph (h)(7)(i) of this section provided it has 
determined that the system is reliably and consistently below the 
maximum contaminant level. In no case shall the State make this 
determination unless a groundwater system takes a minimum of two 
quarterly samples and a surface water system takes a minimum of four 
quarterly samples.
    (iii) After the State determines the system is reliably and 
consistently below the maximum contaminant level the State may allow the 
system to monitor annually. Systems which monitor annually must monitor 
during the quarter that previously yielded the highest analytical 
result.
    (iv) Systems which have 3 consecutive annual samples with no 
detection of a contaminant may apply to the State for a waiver as 
specified in paragraph (h)(6) of this section.
    (v) If monitoring results in detection of one or more of certain 
related contaminants (aldicarb, aldicarb sulfone, aldicarb sulfoxide and 
heptachlor, heptachlor epoxide), then subsequent monitoring shall 
analyze for all related contaminants.
    (8) Systems which violate the requirements of Sec. 141.61(c) as 
determined by paragraph (h)(11) of this section must monitor quarterly. 
After a minimum of four quarterly samples show the system is in 
compliance and the State determines the system is reliably and 
consistently below the MCL, as specified in paragraph (h)(11) of this 
section, the system shall monitor at the frequency specified in 
paragraph (h)(7)(iii) of this section.
    (9) The State may require a confirmation sample for positive or 
negative results. If a confirmation sample is required by the State, the 
result must be averaged with the first sampling result and the average 
used for the compliance determination as specified by paragraph (h)(11) 
of this section. States have discretion to delete results of obvious 
sampling errors from this calculation.
    (10) The State may reduce the total number of samples a system must 
analyze by allowing the use of compositing. Composite samples from a 
maximum of five sampling points are allowed, provided that the detection 
limit of the method used for analysis is less than one-fifth of the MCL. 
Compositing of samples must be done in the laboratory and analyzed 
within 14 days of sample collection.
    (i) If the concentration in the composite sample detects one or more 
contaminants listed in Sec. 141.61(c), then a follow-up sample must be 
taken within 14 days at each sampling point included in the composite, 
and be analyzed for that contaminant.
 
[[Page 373]]
 
    (ii) If duplicates of the original sample taken from each sampling 
point used in the composite sample are available, the system may use 
these instead of resampling. The duplicates must be analyzed and the 
results reported to the State within 14 days after completion of the 
composite analysis or before the holding time for the initial sample is 
exceeded whichever is sooner.
    (iii) If the population served by the system is >3,300 persons, then 
compositing may only be permitted by the State at sampling points within 
a single system. In systems serving <ls-thn-eq> 3,300 persons, the State 
may permit compositing among different systems provided the 5-sample 
limit is maintained.
    (11) Compliance with Sec. 141.61(c) shall be determined based on the 
analytical results obtained at each sampling point.
    (i) For systems which are conducting monitoring at a frequency 
greater than annual, compliance is determined by a running annual 
average of all samples taken at each sampling point. If the annual 
average of any sampling point is greater than the MCL, then the system 
is out of compliance. If the initial sample or a subsequent sample would 
cause the annual average to be exceeded, then the system is out of 
compliance immediately. Any samples below the detection limit shall be 
calculated as zero for purposes of determining the annual average.
    (ii) If monitoring is conducted annually, or less frequently, the 
system is out of compliance if the level of a contaminant at any 
sampling point is greater than the MCL. If a confirmation sample is 
required by the State, the determination of compliance will be based on 
the average of two samples.
    (12) [Reserved]
    (13) Analysis for PCBs shall be conducted as follows using the 
methods in paragraph (e) of this section:
    (i) Each system which monitors for PCBs shall analyze each sample 
using either Method 508.1, 525.2, 508 or 505. Users of Method 505 may 
have more difficulty in achieving the required Aroclor detection limits 
than users of Methods 508.1, 525.2 or 508.
    (ii) If PCBs (as one of seven Aroclors) are detected (as designated 
in this paragraph) in any sample analyzed using Method 505 or 508, the 
system shall reanalyze the sample using Method 508A to quantitate PCBs 
(as decachlorobiphenyl).
 
------------------------------------------------------------------------
                                                        Detection limit
                       Aroclor                               (mg/l)
------------------------------------------------------------------------
1016.................................................        0.00008
1221.................................................        0.02
1232.................................................        0.0005
1242.................................................        0.0003
1248.................................................        0.0001
1254.................................................        0.0001
1260.................................................        0.0002
------------------------------------------------------------------------
 
    (iii) Compliance with the PCB MCL shall be determined based upon the 
quantitative results of analyses using Method 508A.
    (14) If monitoring data collected after January 1, 1990, are 
generally consistent with the requirements of Sec. 141.24(h), then the 
State may allow systems to use that data to satisfy the monitoring 
requirement for the initial compliance period beginning January 1, 1993.
    (15) The State may increase the required monitoring frequency, where 
necessary, to detect variations within the system (e.g., fluctuations in 
concentration due to seasonal use, changes in water source).
    (16) The State has the authority to determine compliance or initiate 
enforcement action based upon analytical results and other information 
compiled by their sanctioned representatives and agencies.
    (17) Each public water system shall monitor at the time designated 
by the State within each compliance period.
    (18) Detection as used in this paragraph shall be defined as greater 
than or equal to the following concentrations for each contaminant.
 
------------------------------------------------------------------------
                                                              Detection
                        Contaminant                           limit (mg/
                                                                  l)
------------------------------------------------------------------------
Alachlor...................................................   .0002
Aldicarb...................................................   .0005
Aldicarb sulfoxide.........................................   .0005
Aldicarb sulfone...........................................   .0008
Atrazine...................................................   .0001
Benzo[a]pyrene.............................................   .00002
Carbofuran.................................................   .0009
Chlordane..................................................   .0002
Dalapon....................................................   .001
1,2-Dibromo-3-chloropropane (DBCP).........................   .00002
Di (2-ethylhexyl) adipate..................................   .0006
Di (2-ethylhexyl) phthalate................................   .0006
Dinoseb....................................................   .0002
Diquat.....................................................   .0004
 
[[Page 374]]
 
 
2,4-D......................................................   .0001
Endothall..................................................   .009
Endrin.....................................................   .00001
Ethylene dibromide (EDB)...................................   .00001
Glyphosate.................................................   .006
Heptachlor.................................................   .00004
Heptachlor epoxide.........................................   .00002
Hexachlorobenzene..........................................   .0001
Hexachlorocyclopentadiene..................................   .0001
Lindane....................................................   .00002
Methoxychlor...............................................   .0001
Oxamyl.....................................................   .002
Picloram...................................................   .0001
Polychlorinated biphenyls (PCBs) (as decachlorobiphenyl)...   .0001
Pentachlorophenol..........................................   .00004
Simazine...................................................   .00007
Toxaphene..................................................   .001
2,3,7,8-TCDD (Dioxin)......................................   .000000005
2,4,5-TP (Silvex)..........................................   .0002
------------------------------------------------------------------------
 
 
    (19) Anaylsis under this section shall only be conducted by 
laboratories that have received certification by EPA or the State and 
have met the following conditions:
    (i) To receive certification to conduct analyses for the 
contaminants in Sec. 141.61(c) the laboratory must:
    (A) Analyze Performance Evaluation (PE) samples provided by EPA, the 
State, or by a third party (with the approval of the State or EPA) at 
least once a year by each method for which the laboratory desires 
certification.
    (B) For each contaminant that has been included in the PE sample 
achieve quantitative results on the analyses that are within the 
following acceptance limits:
 
------------------------------------------------------------------------
                Contaminant                  Acceptance limits (percent)
------------------------------------------------------------------------
DBCP......................................  <plus-minus>40
EDB.......................................  <plus-minus>40.
Alachlor..................................  <plus-minus>45.
Atrazine..................................  <plus-minus>45.
Benzo[a]pyrene............................  2 standard deviations.
Carbofuran................................  <plus-minus>45.
Chlordane.................................  <plus-minus>45.
Dalapon...................................  2 standard deviations.
Di(2-ethylhexyl)adipate...................  2 standard deviations.
Di(2-ethylhexyl)phthalate.................  2 standard deviations.
Dinoseb...................................  2 standard deviations.
Diquat....................................  2 standard deviations.
Endothall.................................  2 standard deviations.
Endrin....................................  <plus-minus>30.
Glyphosate................................  2 standard deviations.
Heptachlor................................  <plus-minus>45.
Heptachlor epoxide........................  <plus-minus>45.
Hexachlorobenzene.........................  2 standard deviations.
Hexachloro- cyclopentadiene                 2 standard deviations.
Lindane...................................  <plus-minus>45.
Methoxychlor..............................  <plus-minus>45.
Oxamyl....................................  2 standard deviations.
PCBs (as Decachlorobiphenyl)                0-200.
Picloram..................................  2 standard deviations.
Simazine..................................  2 standard deviations.
Toxaphene.................................  <plus-minus>45.
Aldicarb..................................  2 standard deviations.
Aldicarb sulfoxide........................  2 standard deviations.
Aldicarb sulfone..........................  2 standard deviations.
Pentachlorophenol.........................  <plus-minus>50.
2,3,7,8-TCDD (Dioxin).....................  2 standard deviations.
2,4-D.....................................  <plus-minus>50.
2,4,5-TP (Silvex).........................  <plus-minus>50.
------------------------------------------------------------------------
 
    (ii) [Reserved]
 
(Approved by the Office of Management and Budget under control number 
2040-0090)
 
[40 FR 59570, Dec. 24, 1975, as amended at 44 FR 68641, Nov. 29, 1979; 
45 FR 57345, Aug. 27, 1980; 47 FR 10998, Mar. 12, 1982; 52 FR 25712, 
July 8, 1987; 53 FR 5147, Feb. 19, 1988; 53 FR 25110, July 1, 1988; 56 
FR 3583, Jan. 30, 1991; 56 FR 30277, July 1, 1991; 57 FR 22178, May 27, 
1992; 57 FR 31841, July 17, 1992; 59 FR 34323, July 1, 1994; 59 FR 
62468, Dec. 5, 1994; 60 FR 34085, June 29, 1995; 64 FR 67464, Dec. 1, 
1999; 65 FR 26022, May 4, 2000]
 
    Effective Date Note: At 66 FR 7063, Jan. 22, 2001, Sec. 141.24 was 
amended by adding a new sentence to the end of paragraph (f)(15) 
introductory text; revising paragraphs (f)(15)(i) and (f)(15)(ii) and 
adding new paragraphs (f)(15)(iii) through (f)(15)(v); adding paragraph 
(f)(22); adding a new sentence to the end of paragraph (h)(11) 
introductory text; revising paragraphs (h)(11)(i) and (h)(11)(ii) and 
adding new paragraphs (h)(11)(iii) through (h)(11)(v); and adding 
paragraph (h)(20), effective Mar. 23, 2001, except for the amendments to 
(f)(15), (h)(11), and (h)(20), which are effective Jan. 22, 2004. At 66 
FR 16134, Mar. 23, 2001, the effective date was delayed until May 22, 
2001. At 66 FR 28350, May 22, 2001, the effective date was further 
delayed until Feb. 22, 2002. For the convenience of the user, the 
revised and added text is set forth as follows:
 
Sec. 141.24  Organic chemicals other than total trihalomethanes, 
          sampling and analytical methods.
 
                                * * * * *
 
    (f) * * *
    (15) * * * If one sampling point is in violation of an MCL, the 
system is in violation of the MCL.
    (i) For systems monitoring more than once per year, compliance with 
the MCL is determined by a running annual average at each sampling 
point.
    (ii) Systems monitoring annually or less frequently whose sample 
result exceeds the MCL must begin quarterly sampling. The system will 
not be considered in violation of the MCL until it has completed one 
year of quarterly sampling.
    (iii) If any sample result will cause the running annual average to 
exceed the MCL
 
[[Page 375]]
 
at any sampling point, the system is out of compliance with the MCL 
immediately.
    (iv) If a system fails to collect the required number of samples, 
compliance will be based on the total number of samples collected.
    (v) If a sample result is less than the detection limit, zero will 
be used to calculate the annual average.
 
                                * * * * *
 
    (22) All new systems or systems that use a new source of water that 
begin operation after January 22, 2004 must demonstrate compliance with 
the MCL within a period of time specified by the State. The system must 
also comply with the initial sampling frequencies specified by the State 
to ensure a system can demonstrate compliance with the MCL. Routine and 
increased monitoring frequencies shall be conducted in accordance with 
the requirements in this section.
 
                                * * * * *
 
    (h) * * *
    (11)* * * If one sampling point is in violation of an MCL, the 
system is in violation of the MCL.
    (i) For systems monitoring more than once per year, compliance with 
the MCL is determined by a running annual average at each sampling 
point.
    (ii) Systems monitoring annually or less frequently whose sample 
result exceeds the regulatory detection level as defined by paragraph 
(h)(18) of this section must begin quarterly sampling. The system will 
not be considered in violation of the MCL until it has completed one 
year of quarterly sampling.
    (iii) If any sample result will cause the running annual average to 
exceed the MCL at any sampling point, the system is out of compliance 
with the MCL immediately.
    (iv) If a system fails to collect the required number of samples, 
compliance will be based on the total number of samples collected.
    (v) If a sample result is less than the detection limit, zero will 
be used to calculate the annual average.
 
                                * * * * *
 
    (20) All new systems or systems that use a new source of water that 
begin operation after January 22, 2004 must demonstrate compliance with 
the MCL within a period of time specified by the State. The system must 
also comply with the initial sampling frequencies specified by the State 
to ensure a system can demonstrate compliance with the MCL. Routine and 
increased monitoring frequencies shall be conducted in accordance with 
the requirements in this section.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.25]
 
[Page 375-378]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
            Subpart C--Monitoring and Analytical Requirements
 
Sec. 141.25  Analytical methods for radioactivity.
 
    (a) Analysis for the following contaminants shall be conducted to 
determine compliance with Secs. 141.15 and 141.16 (radioactivity) in 
accordance with the methods in the following table, or their equivalent 
determined by EPA in accordance with Sec. 141.27.
 
[[Page 376]]
 
 
 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                           Reference (method or page number)
           Contaminant                Methodology     ------------------------------------------------------------------------------------------------------------------------------------------
                                                       EPA\1\      EPA\2\         EPA\3\         EPA\4\            SM\5\             ASTM\6\           USGS\7\          DOE\8\         Other
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Naturally occurring:
  Gross alpha \11\ and beta.....  Evaporation........   900.0  p 1            00-01          p 1            302, 7110 B.......  ................  R-1120-76         .............  .............
  Gross alpha \11\..............  Co-precipitation...  ......  .............  00-02          .............  7110 C............  ................  ................  .............
    Radium 226..................  Radon emanation,...   903.1  p 16           Ra-04          p 19           7500-Ra C.........  D 3454-91         R-1141-76         Ra-05          N.Y.\9\
                                  Radio chemical.....   903.0  p 13           Ra-03          .............  304, 305,.........  D 2460-90         R-1140-76         .............  .............
                                                                                                            7500-Ra B.........
    Radium 228..................  Radio chemical.....   904.0  p 24           Ra-05          p 19           304, 7500-Ra D....  ................  R-1142-76         .............  N.Y.\9\
                                                                                                                                                                                   N.J.\10\
    Uranium\12\.................  Radio chemical.....   908.0  .............  .............  .............  7500-U B..........  ................  ................  .............  .............
                                  Fluorometric.......   908.1  .............  .............  .............  7500-U C (17th       D2907-91         R-1180-76         U-04           .............
                                                                                                             Ed.).                                R-1181-76
                                  Alpha spectro metry  ......  .............  00-07          p33            7500-U C (18th or   D 3972-90         R-1182-76         U-02           .............
                                                                                                             19th Ed.).
                                  Laser Phospho        ......  .............  .............  .............  ..................  D 5174-91         ................  .............  .............
                                   rimetry.
Man-made:
    Radioactive cesium..........  Radio chemical.....   901.0  p 4            .............  .............  7500-Cs B.........  D 2459-72         R-1111-76         .............  .............
                                  Gamma ray             901.1  .............  .............  p 92           7120 (19th Ed.)...  D 3649-91         R-1110-76         4.5.2.3        .............
                                   spectrometry.
    Radioactive iodine..........  Radio chemical.....   902.0  p 6            .............  .............  7500-I B..........   D3649-91         ................  .............  .............
                                                               p 9                                          7500-I C..........
                                                                                                            7500-I D..........
                                  Gamma ray             901.1  .............  .............  p 92           7120 (19th Ed.)...  D 4785-88         ................  4.5.2.3
                                   spectrometry.
    Radioactive Strontium 89, 90  Radio chemical.....   905.0  p 29           Sr-04          p. 65          303, 7500-Sr B....  ................  R-1160-76         Sr-01          .............
                                                                                                                                                                    Sr-02
    Tritium.....................  Liquid                906.0  p 34           H-02           p. 87          306, 7500-3H B....  D 4107-91         R-1171-76         .............  .............
                                   scintillation.
  Gamma emitters................  Gamma ray..........   901.1  .............  .............  p92            7120 (19th Ed.)...  D 3649-91         R-1110-76         4.5.2.3        .............
                                  Spectrometry.......   902.0  .............  .............  .............  7500-Cs B.........  D 4785-88         ................  .............  .............
                                    .................   901.0  .............  .............  .............  7500-I B..........  ................  ................  .............  .............
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
The procedures shall be done in accordance with the documents listed below. The incorporation by reference of documents 1 through 10 was approved by the Director of the Federal Register in
  accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the documents may be obtained from the sources listed below. Information regarding obtaining these documents can be obtained from
  the Safe Drinking Water Hotline at 800-426-4791. Documents may be inspected at EPA's Drinking Water Docket, 401 M St., SW., Washington, DC 20460 (Telephone: 202-260-3027); or at the Office
  of Federal Register, 800 North Capitol Street, NW., Suite 700, Washington, DC.
\1\ "Prescribed Procedures for Measurement of Radioactivity in Drinking Water", EPA 600/4-80-032 , August 1980. Available at U.S. Department of Commerce, National Technical Information
  Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161 (Telephone 800-553-6847), PB 80-224744.
\2\ "Interim Radiochemical Methodology for Drinking Water", EPA 600/4-75-008(revised), March 1976. Available at NTIS, ibid. PB 253258.
\3\ "Radiochemistry Procedures Manual", EPA 520/5-84-006, December 1987. Available at NTIS, ibid. PB 84-215581.
\4\ "Radiochemical Analytical Procedures for Analysis of Environmental Samples", March 1979. Available at NTIS, ibid. EMSL LV 053917.
\5\ "Standard Methods for the Examination of Water and Wastewater", 13th, 17th, 18th, 19th Editions, 1971, 1989, 1992, 1995. Available at American Public Health Association, 1015 Fifteenth
  Street N.W., Washington, D.C. 20005. All methods are in the 17th, 18th and 19th editions except 7500-U C Fluorometric Uranium was discontinued after the 17th Edition, 7120 Gamma Emitters is
  only in the 19th Edition, and 302, 303, 304, 305 and 306 are only in the 13th Edition.
\6\ Annual Book of ASTM Standards, Vol. 11.02, 1994. Available at American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428.
\7\ "Methods for Determination of Radioactive Substances in Water and Fluvial Sediments", Chapter A5 in Book 5 of Techniques of Water-Resources Investigations of the United States Geological
  Survey, 1977. Available at U.S. Geological Survey (USGS) Information Services, Box 25286, Federal Center, Denver, CO 80225-0425.
\8\ "EML Procedures Manual", 27th Edition, Volume 1, 1990. Available at the Environmental Measurements Laboratory, U.S. Department of Energy (DOE), 376 Hudson Street, New York, NY 10014-
  3621.
 
[[Page 377]]
 
 
\9\ "Determination of Ra-226 and Ra-228 (Ra-02)", January 1980, Revised June 1982. Available at Radiological Sciences Institute Center for Laboratories and Research, New York State
  Department of Health, Empire State Plaza, Albany, NY 12201.
\10\ "Determination of Radium 228 in Drinking Water", August 1980. Available at State of New Jersey, Department of Environmental Protection, Division of Environmental Quality, Bureau of
  Radiation and Inorganic Analytical Services, 9 Ewing Street, Trenton, NJ 08625.
\11\ Natural uranium and thorium-230 are approved as gross alpha calibration standards for gross alpha with co-precipitation and evaporation methods; americium-241 is approved with co-
  precipitation methods.
\12\ If uranium (U) is determined by mass, a 0.67 pCi/<greek-m>g of uranium conversion factor must be used. This conservative factor is based on the 1:1 activity ratio of U-234 to U-238 that
  is characteristic of naturally occurring uranium.
 
 
[[Page 378]]
 
    (b) When the identification and measurement of radionuclides other 
than those listed in paragraph (a) of this section is required, the 
following references are to be used, except in cases where alternative 
methods have been approved in accordance with Sec. 141.27.
    (1) Procedures for Radiochemical Analysis of Nuclear Reactor Aqueous 
Solutions, H. L. Krieger and S. Gold, EPA-R4-73-014. USEPA, Cincinnati, 
Ohio, May 1973.
    (2) HASL Procedure Manual, Edited by John H. Harley. HASL 300, ERDA 
Health and Safety Laboratory, New York, NY., 1973.
    (c) For the purpose of monitoring radioactivity concentrations in 
drinking water, the required sensitivity of the radioanalysis is defined 
in terms of a detection limit. The detection limit shall be that 
concentration which can be counted with a precision of plus or minus 100 
percent at the 95 percent confidence level (1.96<greek-s> where 
<greek-s> is the standard deviation of the net counting rate of the 
sample).
    (1) To determine compliance with Sec. 141.15(a) the detection limit 
shall not exceed 1 pCi/1. To determine compliance with Sec. 141.15(b) 
the detection limit shall not exceed 3 pCi/1.
    (2) To determine compliance with Sec. 141.16 the detection limits 
shall not exceed the concentrations listed in Table B.
 
Table B--Detection Limits for Man-made Beta Particle and Photon Emitters
------------------------------------------------------------------------
               Radionuclide                        Detection limit
------------------------------------------------------------------------
Tritium...................................  1,000 pCi/1.
Strontium-89..............................  10 pCi/1.
Strontium-90..............................  2 pCi/1.
Iodine-131................................  1 pCi/1.
Cesium-134................................  10 pCi/1.
Gross beta................................  4 pCi/1.
Other radionuclides.......................  \1/10\ of the applicable
                                             limit.
------------------------------------------------------------------------
 
    (d) To judge compliance with the maximum contaminant levels listed 
in Secs. 141.15 and 141.16, averages of data shall be used and shall be 
rounded to the same number of significant figures as the maximum 
contaminant level for the substance in question.
    (e) The State has the authority to determine compliance or initiate 
enforcement action based upon analytical results or other information 
compiled by their sanctioned representatives and agencies.
 
[41 FR 28404, July 9, 1976, as amended at 45 FR 57345, Aug. 27, 1980; 62 
FR 10173, Mar. 5, 1997]
 
    Effective Date Note: At 65 FR 76745, Dec. 7, 2000, Sec. 141.25 was 
amended by revising paragraphs (a) introductory text, (c)(1), (c)(2) 
introductory text, and (d), and by redesignating Table B in paragragh 
(c)(2) as Table C, effective Dec. 8, 2003. For the convenience of the 
user, the revised text is set forth as follows:
 
Sec. 141.25  Analytical methods for radioactivity.
 
    (a) Analysis for the following contaminants shall be conducted to 
determine compliance with Sec. 141.66 (radioactivity) in accordance with 
the methods in the following table, or their equivalent determined by 
EPA in accordance with Sec. 141.27.
 
                                * * * * *
 
    (c) * * *
    (1) To determine compliance with Sec. 141.66(b), (c), and (e) the 
detection limit shall not exceed the concentrations in Table B to this 
paragraph.
 
  Table B.--Detection Limits for Gross Alpha Particle Activity, Radium
                      226, Radium 228, and Uranium
------------------------------------------------------------------------
                Contaminant                        Detection  limit
------------------------------------------------------------------------
Gross alpha particle activity..............  3 pCi/L.
Radium 226.................................  1 pCi/L.
Radium 228.................................  1 pCi/L.
Uranium....................................  Reserve
------------------------------------------------------------------------
 
    (2) To determine compliance with Sec. 141.66(d) the detection limits 
shall not exceed the concentrations listed in Table C to this paragraph.
 
                                * * * * *
 
    (d) To judge compliance with the maximum contaminant levels listed 
in Sec. 141.66, averages of data shall be used and shall be rounded to 
the same number of significant figures as the maximum contaminant level 
for the substance in question.
 
                                * * * * *
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.26]
 
[Page 378-383]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
            Subpart C--Monitoring and Analytical Requirements
 
Sec. 141.26  Monitoring frequency for radioactivity in community water systems.
 
    (a) Monitoring requirements for gross alpha particle activity, 
radium-226 and radium-228.
 
[[Page 379]]
 
    (1) Initial sampling to determine compliance with Sec. 141.15 shall 
begin within two years of the effective date of these regulations and 
the analysis shall be completed within three years of the effective date 
of these regulations. Compliance shall be based on the analysis of an 
annual composite of four consecutive quarterly samples or the average of 
the analyses of four samples obtained at quarterly intervals.
    (i) A gross alpha particle activity measurement may be substituted 
for the required radium-226 and radium-228 analysis Provided, That the 
measured gross alpha particle activity does not exceed 5 pCi/1 at a 
confidence level of 95 percent (1.65<greek-s> where <greek-s> is the 
standard deviation of the net counting rate of the sample). In 
localities where radium-228 may be present in drinking water, it is 
recommended that the State require radium-226 and/or radium-228 analyses 
when the gross alpha particle activity exceeds 2 pCi/1.
    (ii) When the gross alpha particle activity exceeds 5 pCi/1, the 
same or an equivalent sample shall be analyzed for radium-226. If the 
concentration of radium-226 exceeds 3 pCi/1 the same or an equivalent 
sample shall be analyzed for radium-228.
    (2) For the initial analysis required by paragraph (a)(1) of this 
section, data acquired within one year prior to the effective date of 
this part may be substituted at the discretion of the State.
    (3) Suppliers of water shall monitor at least once every four years 
following the procedure required by paragraph (a)(1) of this section. At 
the discretion of the State, when an annual record taken in conformance 
with paragraph (a)(1) of this section has established that the average 
annual concentration is less than half the maximum contaminant levels 
established by Sec. 141.15, analysis of a single sample may be 
substituted for the quarterly sampling procedure required by paragraph 
(a)(1) of this section.
    (i) More frequent monitoring shall be conducted when ordered by the 
State in the vicinity of mining or other operations which may contribute 
alpha particle radioactivity to either surface or ground water sources 
of drinking water.
    (ii) A supplier of water shall monitor in conformance with paragraph 
(a)(1) of this section within one year of the introduction of a new 
water source for a community water system. More frequent monitoring 
shall be conducted when ordered by the State in the event of possible 
contamination or when changes in the distribution system or treatment 
processing occur which may increase the concentration of radioactivity 
in finished water.
    (iii) A community water system using two or more sources having 
different concentrations of radioactivity shall monitor source water, in 
addition to water from a free-flowing tap, when ordered by the State.
    (iv) Monitoring for compliance with Sec. 141.15 after the initial 
period need not include radium-228 except when required by the State, 
Provided, That the average annual concentration of radium-228 has been 
assayed at least once using the quarterly sampling procedure required by 
paragraph (a)(1) of this section.
    (v) Suppliers of water shall conduct annual monitoring of any 
community water system in which the radium-226 concentration exceeds 3 
pCi/1, when ordered by the State.
    (4) If the average annual maximum contaminant level for gross alpha 
particle activity or total radium as set forth in Sec. 141.15 is 
exceeded, the supplier of a community water system shall give notice to 
the State pursuant to Sec. 141.31 and notify the public as required by 
subpart Q. Monitoring at quarterly intervals shall be continued until 
the annual average concentration no longer exceeds the maximum 
contaminant level or until a monitoring schedule as a condition to a 
variance, exemption or enforcement action shall become effective.
    (b) Monitoring requirements for manmade radioactivity in community 
water systems.
    (1) Within two years of the effective date of this part, systems 
using surface water sources and serving more than 100,000 persons and 
such other community water systems as are designated by the State shall 
be monitored for compliance with Sec. 141.16 by analysis of
 
[[Page 380]]
 
a composite of four consecutive quarterly samples or analysis of four 
quarterly samples. Compliance with Sec. 141.16 may be assumed without 
further analysis if the average annual concentration of gross beta 
particle activity is less than 50 pCi/1 and if the average annual 
concentrations of tritium and strontium-90 are less than those listed in 
table A, Provided, That if both radionuclides are present the sum of 
their annual dose equivalents to bone marrow shall not exceed 4 
millirem/year.
    (i) If the gross beta particle activity exceeds 50 pCi/1, an 
analysis of the sample must be performed to identify the major 
radioactive constituents present and the appropriate organ and total 
body doses shall be calculated to determine compliance with Sec. 141.16.
    (ii) Suppliers of water shall conduct additional monitoring, as 
ordered by the State, to determine the concentration of man-made 
radioactivity in principal watersheds designated by the State.
    (iii) At the discretion of the State, suppliers of water utilizing 
only ground waters may be required to monitor for man-made 
radioactivity.
    (2) For the initial analysis required by paragraph (b)(1) of this 
section data acquired within one year prior to the effective date of 
this part may be substituted at the discretion of the State.
    (3) After the initial analysis required by paragraph (b)(1) of this 
section suppliers of water shall monitor at least every four years 
following the procedure given in paragraph (b)(1) of this section.
    (4) Within two years of the effective date of these regulations the 
supplier of any community water system designated by the State as 
utilizing waters contaminated by effluents from nuclear facilities shall 
initiate quarterly monitoring for gross beta particle and iodine-131 
radioactivity and annual monitoring for strontium-90 and tritium.
    (i) Quarterly monitoring for gross beta particle activity shall be 
based on the analysis of monthly samples or the analysis of a composite 
of three monthly samples. The former is recommended. If the gross beta 
particle activity in a sample exceeds 15 pCi/1, the same or an 
equivalent sample shall be analyzed for strontium-89 and cesium-134. If 
the gross beta particle activity exceeds 50 pCi/1, an analysis of the 
sample must be performed to identify the major radioactive constituents 
present and the appropriate organ and total body doses shall be 
calculated to determine compliance with Sec. 141.16.
    (ii) For iodine-131, a composite of five consecutive daily samples 
shall be analyzed once each quarter. As ordered by the State, more 
frequent monitoring shall be conducted when iodine-131 is identified in 
the finished water.
    (iii) Annual monitoring for strontium-90 and tritium shall be 
conducted by means of the analysis of a composite of four consecutive 
quarterly samples or analysis of four quarterly samples. The latter 
procedure is recommended.
    (iv) The State may allow the substitution of environmental 
surveillance data taken in conjunction with a nuclear facility for 
direct monitoring of manmade radioactivity by the supplier of water 
where the State determines such data is applicable to a particular 
community water system.
    (5) If the average annual maximum contaminant level for man-made 
radioactivity set forth in Sec. 141.16 is exceeded, the operator of a 
community water system shall give notice to the State pursuant to 
Sec. 141.31 and to the public as required by subpart Q. Monitoring at 
monthly intervals shall be continued until the concentration no longer 
exceeds the maximum contaminant level or until a monitoring schedule as 
a condition to a variance, exemption or enforcement action shall become 
effective.
 
[41 FR 28404, July 9, 1976, as amended at 65 FR 26022, May 4, 2000]
 
    Effective Date Note: At 65 FR 76745, Dec. 7, 2000, Sec. 141.26 was 
revised, effective Dec. 8, 2003. For the convenience of the user, the 
revised text is set forth as follows:
 
Sec. 141.26  Monitoring frequency and compliance requirements for 
          radionuclides in community water systems
 
    (a) Monitoring and compliance requirements for gross alpha particle 
activity, radium-226, radium-228, and uranium.
    (1) Community water systems (CWSs) must conduct initial monitoring 
to determine
 
[[Page 381]]
 
compliance with Sec. 141.66(b), (c), and (e) by December 31, 2007. For 
the purposes of monitoring for gross alpha particle activity, radium-
226, radium-228, uranium, and beta particle and photon radioactivity in 
drinking water, "detection limit" is defined as in Sec. 141.25(c).
    (i) Applicability and sampling location for existing community water 
systems or sources. All existing CWSs using ground water, surface water 
or systems using both ground and surface water (for the purpose of this 
section hereafter referred to as systems) must sample at every entry 
point to the distribution system that is representative of all sources 
being used (hereafter called a sampling point) under normal operating 
conditions. The system must take each sample at the same sampling point 
unless conditions make another sampling point more representative of 
each source or the State has designated a distribution system location, 
in accordance with paragraph (a)(2)(ii)(C) of this section.
    (ii) Applicability and sampling location for new community water 
systems or sources. All new CWSs or CWSs that use a new source of water 
must begin to conduct initial monitoring for the new source within the 
first quarter after initiating use of the source. CWSs must conduct more 
frequent monitoring when ordered by the State in the event of possible 
contamination or when changes in the distribution system or treatment 
processes occur which may increase the concentration of radioactivity in 
finished water.
    (2) Initial monitoring: Systems must conduct initial monitoring for 
gross alpha particle activity, radium-226, radium-228, and uranium as 
follows:
    (i) Systems without acceptable historical data, as defined below, 
must collect four consecutive quarterly samples at all sampling points 
before December 31, 2007.
    (ii) Grandfathering of data: States may allow historical monitoring 
data collected at a sampling point to satisfy the initial monitoring 
requirements for that sampling point, for the following situations.
    (A) To satisfy initial monitoring requirements, a community water 
system having only one entry point to the distribution system may use 
the monitoring data from the last compliance monitoring period that 
began between June 2000 and December 8, 2003.
    (B) To satisfy initial monitoring requirements, a community water 
system with multiple entry points and having appropriate historical 
monitoring data for each entry point to the distribution system may use 
the monitoring data from the last compliance monitoring period that 
began between June 2000 and December 8, 2003.
    (C) To satisfy initial monitoring requirements, a community water 
system with appropriate historical data for a representative point in 
the distribution system may use the monitoring data from the last 
compliance monitoring period that began between June 2000 and December 
8, 2003, provided that the State finds that the historical data 
satisfactorily demonstrate that each entry point to the distribution 
system is expected to be in compliance based upon the historical data 
and reasonable assumptions about the variability of contaminant levels 
between entry points. The State must make a written finding indicating 
how the data conforms to the these requirements.
    (iii) For gross alpha particle activity, uranium, radium-226, and 
radium-228 monitoring, the State may waive the final two quarters of 
initial monitoring for a sampling point if the results of the samples 
from the previous two quarters are below the detection limit.
    (iv) If the average of the initial monitoring results for a sampling 
point is above the MCL, the system must collect and analyze quarterly 
samples at that sampling point until the system has results from four 
consecutive quarters that are at or below the MCL, unless the system 
enters into another schedule as part of a formal compliance agreement 
with the State.
    (3) Reduced monitoring: States may allow community water systems to 
reduce the future frequency of monitoring from once every three years to 
once every six or nine years at each sampling point, based on the 
following criteria.
    (i) If the average of the initial monitoring results for each 
contaminant (i.e., gross alpha particle activity, uranium, radium-226, 
or radium-228) is below the detection limit specified in Table B, in 
Sec. 141.25(c)(1), the system must collect and analyze for that 
contaminant using at least one sample at that sampling point every nine 
years.
    (ii) For gross alpha particle activity and uranium, if the average 
of the initial monitoring results for each contaminant is at or above 
the detection limit but at or below \1/2\ the MCL, the system must 
collect and analyze for that contaminant using at least one sample at 
that sampling point every six years. For combined radium-226 and radium-
228, the analytical results must be combined. If the average of the 
combined initial monitoring results for radium-226 and radium-228 is at 
or above the detection limit but at or below \1/2\ the MCL, the system 
must collect and analyze for that contaminant using at least one sample 
at that sampling point every six years.
    (iii) For gross alpha particle activity and uranium, if the average 
of the initial monitoring results for each contaminant is above \1/2\ 
the MCL but at or below the MCL, the system must collect and analyze at 
least one sample at that sampling point every three years. For combined 
radium-226 and radium-
 
[[Page 382]]
 
228, the analytical results must be combined. If the average of the 
combined initial monitoring results for radium-226 and radium-228 is 
above \1/2\ the MCL but at or below the MCL, the system must collect and 
analyze at least one sample at that sampling point every three years.
    (iv) Systems must use the samples collected during the reduced 
monitoring period to determine the monitoring frequency for subsequent 
monitoring periods (e.g., if a system's sampling point is on a nine year 
monitoring period, and the sample result is above \1/2\ MCL, then the 
next monitoring period for that sampling point is three years).
    (v) If a system has a monitoring result that exceeds the MCL while 
on reduced monitoring, the system must collect and analyze quarterly 
samples at that sampling point until the system has results from four 
consecutive quarters that are below the MCL, unless the system enters 
into another schedule as part of a formal compliance agreement with the 
State.
    (4) Compositing: To fulfill quarterly monitoring requirements for 
gross alpha particle activity, radium-226, radium-228, or uranium, a 
system may composite up to four consecutive quarterly samples from a 
single entry point if analysis is done within a year of the first 
sample. States will treat analytical results from the composited as the 
average analytical result to determine compliance with the MCLs and the 
future monitoring frequency. If the analytical result from the 
composited sample is greater than \1/2\ MCL, the State may direct the 
system to take additional quarterly samples before allowing the system 
to sample under a reduced monitoring schedule.
    (5) A gross alpha particle activity measurement may be substituted 
for the required radium-226 measurement provided that the measured gross 
alpha particle activity does not exceed 5 pCi/l. A gross alpha particle 
activity measurement may be substituted for the required uranium 
measurement provided that the measured gross alpha particle activity 
does not exceed 15 pCi/l. The gross alpha measurement shall have a 
confidence interval of 95% (1.65<greek-s>, where <greek-s> is the 
standard deviation of the net counting rate of the sample) for radium-
226 and uranium. When a system uses a gross alpha particle activity 
measurement in lieu of a radium-226 and/or uranium measurement, the 
gross alpha particle activity analytical result will be used to 
determine the future monitoring frequency for radium-226 and/or uranium. 
If the gross alpha particle activity result is less than detection, \1/
2\ the detection limit will be used to determine compliance and the 
future monitoring frequency.
    (b) Monitoring and compliance requirements for beta particle and 
photon radioactivity.To determine compliance with the maximum 
contaminant levels in Sec. 141.66(d) for beta particle and photon 
radioactivity, a system must monitor at a frequency as follows:
    (1) Community water systems (both surface and ground water) 
designated by the State as vulnerable must sample for beta particle and 
photon radioactivity. Systems must collect quarterly samples for beta 
emitters and annual samples for tritium and strontium-90 at each entry 
point to the distribution system (hereafter called a sampling point), 
beginning within one quarter after being notified by the State. Systems 
already designated by the State must continue to sample until the State 
reviews and either reaffirms or removes the designation.
    (i) If the gross beta particle activity minus the naturally 
occurring potassium-40 beta particle activity at a sampling point has a 
running annual average (computed quarterly) less than or equal to 50 
pCi/L (screening level), the State may reduce the frequency of 
monitoring at that sampling point to once every 3 years. Systems must 
collect all samples required in paragraph (b)(1) of this section during 
the reduced monitoring period.
    (ii) For systems in the vicinity of a nuclear facility, the State 
may allow the CWS to utilize environmental surveillance data collected 
by the nuclear facility in lieu of monitoring at the system's entry 
point(s), where the State determines if such data is applicable to a 
particular water system. In the event that there is a release from a 
nuclear facility, systems which are using surveillance data must begin 
monitoring at the community water system's entry point(s) in accordance 
with paragraph (b)(1) of this section.
    (2) Community water systems (both surface and ground water) 
designated by the State as utilizing waters contaminated by effluents 
from nuclear facilities must sample for beta particle and photon 
radioactivity. Systems must collect quarterly samples for beta emitters 
and iodine-131 and annual samples for tritium and strontium-90 at each 
entry point to the distribution system (hereafter called a sampling 
point), beginning within one quarter after being notified by the State. 
Systems already designated by the State as systems using waters 
contaminated by effluents from nuclear facilities must continue to 
sample until the State reviews and either reaffirms or removes the 
 
designation.
    (i) Quarterly monitoring for gross beta particle activity shall be 
based on the analysis of monthly samples or the analysis of a composite 
of three monthly samples. The former is recommended.
    (ii) For iodine-131, a composite of five consecutive daily samples 
shall be analyzed once each quarter. As ordered by the State, more 
frequent monitoring shall be conducted when iodine-131 is identified in 
the finished water.
 
[[Page 383]]
 
    (iii) Annual monitoring for strontium-90 and tritium shall be 
conducted by means of the analysis of a composite of four consecutive 
quarterly samples or analysis of four quarterly samples. The latter 
procedure is recommended.
    (iv) If the gross beta particle activity beta minus the naturally 
occurring potassium-40 beta particle activity at a sampling point has a 
running annual average (computed quarterly) less than or equal to 15 
pCi/L, the State may reduce the frequency of monitoring at that sampling 
point to every 3 years. Systems must collect all samples required in 
paragraph (b)(2) of this section during the reduced monitoring period.
    (v) For systems in the vicinity of a nuclear facility, the State may 
allow the CWS to utilize environmental surveillance data collected by 
the nuclear facility in lieu of monitoring at the system's entry 
point(s), where the State determines if such data is applicable to a 
particular water system. In the event that there is a release from a 
nuclear facility, systems which are using surveillance data must begin 
monitoring at the community water system's entry point(s) in accordance 
with paragraph (b)(2) of this section.
    (3) Community water systems designated by the State to monitor for 
beta particle and photon radioactivity can not apply to the State for a 
waiver from the monitoring frequencies specified in paragraph (b)(1) or 
(b)(2) of this section.
    (4) Community water systems may analyze for naturally occurring 
potassium-40 beta particle activity from the same or equivalent sample 
used for the gross beta particle activity analysis. Systems are allowed 
to subtract the potassium-40 beta particle activity value from the total 
gross beta particle activity value to determine if the screening level 
is exceeded. The potassium-40 beta particle activity must be calculated 
by multiplying elemental potassium concentrations (in mg/L) by a factor 
of 0.82.
    (5) If the gross beta particle activity minus the naturally 
occurring potassium-40 beta particle activity exceeds the screening 
level, an analysis of the sample must be performed to identify the major 
radioactive constituents present in the sample and the appropriate doses 
must be calculated and summed to determine compliance with 
Sec. 141.66(d)(1), using the formula in Sec. 141.66(d)(2). Doses must 
also be calculated and combined for measured levels of tritium and 
strontium to determine compliance.
    (6) Systems must monitor monthly at the sampling point(s) which 
exceed the maximum contaminant level in Sec. 141.66(d) beginning the 
month after the exceedance occurs. Systems must continue monthly 
monitoring until the system has established, by a rolling average of 3 
monthly samples, that the MCL is being met. Systems who establish that 
the MCL is being met must return to quarterly monitoring until they meet 
the requirements set forth in paragraph (b)(1)(ii) or (b)(2)(i) of this 
section.
    (c) General monitoring and compliance requirements for 
radionuclides.
    (1) The State may require more frequent monitoring than specified in 
paragraphs (a) and (b) of this section, or may require confirmation 
samples at its discretion. The results of the initial and confirmation 
samples will be averaged for use in compliance determinations.
    (2) Each public water systems shall monitor at the time designated 
by the State during each compliance period.
    (3) Compliance: Compliance with Sec. 141.66 (b) through (e) will be 
determined based on the analytical result(s) obtained at each sampling 
point. If one sampling point is in violation of an MCL, the system is in 
violation of the MCL.
    (i) For systems monitoring more than once per year, compliance with 
the MCL is determined by a running annual average at each sampling 
point. If the average of any sampling point is greater than the MCL, 
then the system is out of compliance with the MCL.
    (ii) For systems monitoring more than once per year, if any sample 
result will cause the running average to exceed the MCL at any sample 
point, the system is out of compliance with the MCL immediately.
    (iii) Systems must include all samples taken and analyzed under the 
provisions of this section in determining compliance, even if that 
number is greater than the minimum required.
    (iv) If a system does not collect all required samples when 
compliance is based on a running annual average of quarterly samples, 
compliance will be based on the running average of the samples 
collected.
    (v) If a sample result is less than the detection limit, zero will 
be used to calculate the annual average, unless a gross alpha particle 
activity is being used in lieu of radium-226 and/or uranium. If the 
gross alpha particle activity result is less than detection, \1/2\ the 
detection limit will be used to calculate the annual average.
    (4) States have the discretion to delete results of obvious sampling 
or analytic errors.
    (5) If the MCL for radioactivity set forth in Sec. 141.66 (b) 
through (e) is exceeded, the operator of a community water system must 
give notice to the State pursuant to Sec. 141.31 and to the public as 
required by subpart Q of this part.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.27]
 
[Page 383-384]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
            Subpart C--Monitoring and Analytical Requirements
 
Sec. 141.27  Alternate analytical techniques.
 
    (a) With the written permission of the State, concurred in by the 
Administrator of the U.S. EPA, an alternate
 
[[Page 384]]
 
analytical technique may be employed. An alternate technique shall be 
accepted only if it is substantially equivalent to the prescribed test 
in both precision and accuracy as it relates to the determination of 
compliance with any MCL. The use of the alternate analytical technique 
shall not decrease the frequency of monitoring required by this part.
 
[45 FR 57345, Aug. 27, 1980]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.28]
 
[Page 384]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
            Subpart C--Monitoring and Analytical Requirements
 
Sec. 141.28  Certified laboratories.
 
    (a) For the purpose of determining compliance with Secs. 141.21 
through 141.27, 141.30, 141.40, 141.74 and 141.89, samples may be 
considered only if they have been analyzed by a laboratory certified by 
the State except that measurements for alkalinity, calcium, 
conductivity, disinfectant residual, orthophosphate, pH, silica, 
temperature and turbidity may be performed by any person acceptable to 
the State.
    (b) Nothing in this part shall be construed to preclude the State or 
any duly designated representative of the State from taking samples or 
from using the results from such samples to determine compliance by a 
supplier of water with the applicable requirements of this part.
 
[45 FR 57345, Aug. 27, 1980; 47 FR 10999, Mar. 12, 1982, as amended at 
59 FR 34323, July 1, 1994; 64 FR 67465, Dec. 1, 1999]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.29]
 
[Page 384]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
            Subpart C--Monitoring and Analytical Requirements
 
Sec. 141.29  Monitoring of consecutive public water systems.
 
    When a public water system supplies water to one or more other 
public water systems, the State may modify the monitoring requirements 
imposed by this part to the extent that the interconnection of the 
systems justifies treating them as a single system for monitoring 
purposes. Any modified monitoring shall be conducted pursuant to a 
schedule specified by the State and concurred in by the Administrator of 
the U.S. Environmental Protection Agency.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.30]
 
[Page 384-387]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
            Subpart C--Monitoring and Analytical Requirements
 
Sec. 141.30  Total trihalomethanes sampling, analytical and other requirements.
 
    (a) Community water system which serve a population of 10,000 or 
more individuals and which add a disinfectant (oxidant) to the water in 
any part of the drinking water treatment process shall analyze for total 
trihalomethanes in accordance with this section. For systems serving 
75,000 or more individuals, sampling and analyses shall begin not later 
than 1 year after the date of promulgation of this regulation. For 
systems serving 10,000 to 74,999 individuals, sampling and analyses 
shall begin not later than 3 years after the date of promulgation of 
this regulation. For the purpose of this section, the minimum number of 
samples required to be taken by the system shall be based on the number 
of treatment plants used by the system, except that multiple wells 
drawing raw water from a single aquifer may, with the State approval, be 
considered one treatment plant for determining the minimum number of 
samples. All samples taken within an established frequency shall be 
collected within a 24-hour period.
    (b)(1) For all community water systems utilizing surface water 
sources in whole or in part, and for all community water systems 
utilizing only ground water sources that have not been determined by the 
State to qualify for the monitoring requirements of paragraph (c) of 
this section, analyses for total trihalomethanes shall be performed at 
quarterly intervals on at least four water samples for each treatment 
plant used by the system. At least 25 percent of the samples shall be 
taken at locations within the distribution system reflecting the maximum 
residence time of the water in the system. The remaining 75 percent 
shall be taken at representative locations in the distribution system, 
taking into account number of persons served, different sources of water 
and different treatment methods employed. The results of all analyses 
per quarter shall be arithmetically averaged and reported to the State 
within 30 days of the system's receipt of such results. Results shall 
also be reported to EPA until such monitoring requirements have been 
adopted by the State. All samples collected shall be used in the 
computation of the average, unless the analytical results are 
invalidated for technical reasons. Sampling and analyses shall be 
conducted in accordance with the methods listed in paragraph (e) of this 
section.
 
[[Page 385]]
 
    (2) Upon the written request of a community water system, the 
monitoring frequency required by paragraph (b)(1) of this section may be 
reduced by the State to a minimum of one sample analyzed for TTHMs per 
quarter taken at a point in the distribution system reflecting the 
maximum residence time of the water in the system, upon a written 
determination by the State that the data from at least 1 year of 
monitoring in accordance with paragraph (b)(1) of this section and local 
conditions demonstrate that total trihalomethane concentrations will be 
consistently below the maximum contaminant level.
    (3) If at any time during which the reduced monitoring frequency 
prescribed under this paragraph applies, the results from any analysis 
exceed 0.10 mg/l of TTHMs and such results are confirmed by at least one 
check sample taken promptly after such results are received, or if the 
system makes any significant change to its source of water or treatment 
program, the system shall immediately begin monitoring in accordance 
with the requirements of paragraph (b)(1) of this section, which 
monitoring shall continue for at least 1 year before the frequency may 
be reduced again. At the option of the State, a system's monitoring 
frequency may and should be increased above the minimum in those cases 
where it is necessary to detect variations of TTHM levels within the 
distribution system.
    (c)(1) Upon written request to the State, a community water system 
utilizing only ground water sources may seek to have the monitoring 
frequency required by paragraph (b)(1) of this section reduced to a 
minimum of one sample for maximum TTHM potential per year for each 
treatment plant used by the system taken at a point in the distribution 
system reflecting maximum residence time of the water in the system. The 
system shall submit the results of at least one sample for maximum TTHM 
potential using the procedure specified in paragraph (g) of this 
section. A sample must be analyzed from each treatment plant used by the 
system and be taken at a point in the distribution system reflecting the 
maximum residence time of the water in the system. The system's 
monitoring frequency may only be reduced upon a written determination by 
the State that, based upon the data submitted by the system, the system 
has a maximum TTHM potential of less than 0.10 mg/l and that, based upon 
an assessment of the local conditions of the system, the system is not 
likely to approach or exceed the maximum contaminant level for total 
TTHMs. The results of all analyses shall be reported to the State within 
30 days of the system's receipt of such results. Results shall also be 
reported to EPA until such monitoring requirements have been adopted by 
the State. All samples collected shall be used for determining whether 
the system must comply with the monitoring requirements of paragraph (b) 
of this section, unless the analytical results are invalidated for 
technical reasons. Sampling and analyses shall be conducted in 
accordance with the methods listed in paragraph (e) of this section.
    (2) If at any time during which the reduced monitoring frequency 
prescribed under paragraph (c)(1) of this section applies, the results 
from any analysis taken by the system for maximum TTHM potential are 
equal to or greater than 0.10 mg/l, and such results are confirmed by at 
least one check sample taken promptly after such results are received, 
the system shall immediately begin monitoring in accordance with the 
requirements of paragraph (b) of this section and such monitoring shall 
continue for at least one year before the frequency may be reduced 
again. In the event of any significant change to the system's raw water 
or treatment program, the system shall immediately analyze an additional 
sample for maximum TTHM potential taken at a point in the distribution 
system reflecting maximum residence time of the water in the system for 
the purpose of determining whether the system must comply with the 
monitoring requirements of paragraph (b) of this section. At the option 
of the State, monitoring frequencies may and should be increased above 
the minimum in those cases where this is necessary to detect variation 
of TTHM levels within the distribution system.
    (d) Compliance with Sec. 141.12 shall be determined based on a 
running annual
 
[[Page 386]]
 
average of quarterly samples collected by the system as prescribed in 
paragraph (b)(1) or (2) of this section. If the average of samples 
covering any 12 month period exceeds the Maximum Contaminant Level, the 
supplier of water shall report to the State pursuant to Sec. 141.31 and 
notify the public pursuant to subpart Q. Monitoring after public 
notification shall be at a frequency designated by the State and shall 
continue until a monitoring schedule as a condition to a variance, 
exemption or enforcement action shall become effective.
    (e) Sampling and analyses made pursuant to this section shall be 
conducted by one of the total trihalomethanes methods as directed in 
Sec. 141.24(e), and the Technical Notes on Drinking Water Methods, EPA-
600/R-94-173, October 1994, which is available from NTIS, PB-104766, or 
in Sec. 141.131(b). Samples for TTHM shall be dechlorinated upon 
collection to prevent further production of trihalomethanes, according 
to the procedures described in the methods, except acidification is not 
required if only THMs or TTHMs are to be determined. Samples for maximum 
TTHM potential should not be dechlorinated or acidified, and should be 
held for seven days at 25  deg.C (or above) prior to analysis.
    (f) Before a community water system makes any significant 
modifications to its existing treatment process for the purposes of 
achieving compliance with Sec. 141.12, such system must submit and 
obtain State approval of a detailed plan setting forth its proposed 
modification and those safeguards that it will implement to ensure that 
the bacteriological quality of the drinking water served by such system 
will not be adversely affected by such modification. Each system shall 
comply with the provisions set forth in the State-approved plan. At a 
minimum, a State approved plan shall require the system modifying its 
disinfection practice to:
    (1) Evaluate the water system for sanitary defects and evaluate the 
source water for biological quality;
    (2) Evaluate its existing treatment practices and consider 
improvements that will minimize disinfectant demand and optimize 
finished water quality throughout the distribution system;
    (3) Provide baseline water quality survey data of the distribution 
system. Such data should include the results from monitoring for 
coliform and fecal coliform bacteria, fecal streptococci, standard plate 
counts at 35  deg.C and 20  deg.C, phosphate, ammonia nitrogen and total 
organic carbon. Virus studies should be required where source waters are 
heavily contaminated with sewage effluent;
    (4) Conduct additional monitoring to assure continued maintenance of 
optimal biological quality in finished water, for example, when 
chloramines are introduced as disinfectants or when pre-chlorination is 
being discontinued. Additional monitoring should also be required by the 
State for chlorate, chlorite and chlorine dioxide when chlorine dioxide 
is used. Standard plate count analyses should also be required by the 
State as appropriate before and after any modifications;
    (5) Consider inclusion in the plan of provisions to maintain an 
active disinfectant residual throughout the distribution system at all 
times during and after the modification.
    (g) The water sample for determination of maximum total 
trihalomethane potential is taken from a point in the distribution 
system that reflects maximum residence time. Procedures for sample 
collection and handling are given in the methods. No reducing agent is 
added to "quench" the chemical reaction producing THMs at the time of 
sample collection. The intent is to permit the level of THM precursors 
to be depleted and the concentration of THMs to be maximized for the 
supply being tested. Four experimental parameters affecting maximum THM 
production are pH, temperature, reaction time and the presence of a 
disinfectant residual. These parameters are dealt with as follows: 
Measure the disinfectant residual at the selected sampling point. 
Proceed only if a measurable disinfectant residual is present. Collect 
triplicate 40 ml water samples at the pH prevailing at the time of 
sampling, and prepare a method blank according to the methods. Seal and 
store these samples together for seven days at 25  deg.C or above. After 
this time period,
 
[[Page 387]]
 
open one of the sample containers and check for disinfectant residual. 
Absence of a disinfectant residual invalidates the sample for further 
analysis. Once a disinfectant residual has been demonstrated, open 
another of the sealed samples and determine total THM concentration 
 
using an approved analytical method.
    (h) The requirements in paragraphs (a) through (g) of this section 
apply to subpart H community water systems which serve a population of 
10,000 or more until December 31, 2001. The requirements in paragraphs 
(a) through (g) of this section apply to community water systems which 
use only ground water not under the direct influence of surface water 
that add a disinfectant (oxidant) in any part of the treatment process 
and serve a population of 10,000 or more until December 31, 2003. After 
December 31, 2003, this section is no longer applicable.
 
[44 FR 68641, Nov. 29, 1979, as amended at 45 FR 15545, 15547, Mar. 11, 
1980; 58 FR 41345, Aug. 3, 1993; 59 FR 62469, Dec. 5, 1994; 60 FR 34085, 
June 29, 1995; 63 FR 69464, Dec. 16, 1998; 65 FR 26022, May 4, 2000; 66 
FR 3776, Jan. 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.31]
 
[Page 387]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart D--Reporting and Recordkeeping
 
Sec. 141.31  Reporting requirements.
 
 
    (a) Except where a shorter period is specified in this part, the 
supplier of water shall report to the State the results of any test 
measurement or analysis required by this part within (1) The first ten 
days following the month in which the result is received, or (2) the 
first ten days following the end of the required monitoring period as 
stipulated by the State, whichever of these is shortest.
    (b) Except where a different reporting period is specified in this 
part, the supplier of water must report to the State within 48 hours the 
failure to comply with any national primary drinking water regulation 
(including failure to comply with monitoring requirements) set forth in 
this part.
    (c) The supplier of water is not required to report analytical 
results to the State in cases where a State laboratory performs the 
analysis and reports the results to the State office which would 
normally receive such notification from the supplier.
    (d) The public water system, within 10 days of completing the public 
notification requirements under Subpart Q of this part for the initial 
public notice and any repeat notices, must submit to the primacy agency 
a certification that it has fully complied with the public notification 
regulations. The public water system must include with this 
certification a representative copy of each type of notice distributed, 
published, posted, and made available to the persons served by the 
system and to the media.
    (e) The water supply system shall submit to the State within the 
time stated in the request copies of any records required to be 
maintained under Sec. 141.33 hereof or copies of any documents then in 
existence which the State or the Administrator is entitled to inspect 
pursuant to the authority of section 1445 of the Safe Drinking Water Act 
or the equivalent provisions of State law.
 
[40 FR 59570, Dec. 24, 1975, as amended at 45 FR 57345, Aug. 27, 1980; 
65 FR 26022, May 4, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.32]
 
[Page 387-409]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart D--Reporting and Recordkeeping
 
Sec. 141.32  Public notification.
 
    The requirements in this section apply until the requirements of 
Subpart Q of this part are applicable. Public water systems where EPA 
directly implements the public water system supervision program must 
comply with the requirements in Subpart Q of this part on October 31, 
2000. All other public water systems must comply with the requirements 
in Subpart Q of this part on May 6, 2002 or on the date the State-
adopted rule becomes effective, whichever comes first.
    (a) Maximum contaminant levels (MCLs), maximum residual disinfectant 
levels (MRDLs). The owner or operator of a public water system which 
fails to comply with an applicable MCL or treatment technique 
established by this part or which fails to comply with the requirements 
of any schedule prescribed pursuant to a variance or exemption, shall 
notify persons served by the system as follows:
 
[[Page 388]]
 
    (1) Except as provided in paragraph (a)(3) of this section, the 
owner or operator of a public water system must give notice:
    (i) By publication in a daily newspaper of general circulation in 
the area served by the system as soon as possible, but in no case later 
than 14 days after the violation or failure. If the area served by a 
public water system is not served by a daily newspaper of general 
circulation, notice shall instead be given by publication in a weekly 
newspaper of general circulation serving the area; and
    (ii) By mail delivery (by direct mail or with the water bill), or by 
hand delivery, not later than 45 days after the violation or failure. 
The State may waive mail or hand delivery if it determines that the 
owner or operator of the public water system in violation has corrected 
the violation or failure within the 45-day period. The State must make 
the waiver in writing and within the 45-day period; and
    (iii) For violations of the MCLs of contaminants or MRDLs of 
disinfectants that may pose an acute risk to human health, by furnishing 
a copy of the notice to the radio and television stations serving the 
area served by the public water system as soon as possible but in no 
case later than 72 hours after the violation. The following violations 
are acute violations:
    (A) Any violations specified by the State as posing an acute risk to 
human health.
    (B) Violation of the MCL for nitrate or nitrite as defined in 
Sec. 141.62 and determined according to Sec. 141.23(i)(3).
    (C) Violation of the MCL for total coliforms, when fecal coliforms 
or E. coli are present in the water distribution system, as specified in 
Sec. 141.63(b).
    (D) Occurrence of a waterborne disease outbreak, as defined in 
Sec. 141.2, in an unfiltered system subject to the requirements of 
subpart H of this part, after December 30, 1991 (see Sec. 141.71(b)(4)).
    (E) Violation of the MRDL for chlorine dioxide as defined in 
Sec. 141.65 and determined according to Sec. 141.133(c)(2).
    (2) Except as provided in paragraph (a)(3) of this section, 
following the initial notice given under paragraph (a)(1) of this 
section, the owner or operator of the public water system must give 
notice at least once every three months by mail delivery (by direct mail 
or with the water bill) or by hand delivery, for as long as the 
violation or failure exists.
    (3)(i) In lieu of the requirements of paragraphs (a) (1) and (2) of 
this section, the owner or operator of a community water system in an 
area that is not served by a daily or weekly newspaper of general 
circulation must give notice by hand delivery or by continuous posting 
in conspicuous places within the area served by the system. Notice by 
hand delivery or posting must begin as soon as possible, but no later 
than 72 hours after the violation or failure for acute violations (as 
defined in paragraph (a)(1)(iii) of this section), or 14 days after the 
violation or failure (for any other violation). Posting must continue 
for as long as the violation or failure exists. Notice by hand delivery 
must be repeated at least every three months for as long as the 
violation or failure exists.
    (ii) In lieu of the requirements of paragraphs (a) (1) and (2) of 
this section, the owner or operator of a non-community water system may 
give notice by hand delivery or by continuous posting in conspicuous 
places within the area served by the system. Notice by hand delivery or 
posting must begin as soon as possible, but no later than 72 hours after 
the violation or failure for acute violations (as defined in paragraph 
(a)(1)(iii) of this section), or 14 days after the violation or failure 
(for any other violation). Posting must continue for as long as the 
violation or failure exists. Notice by hand delivery must be repeated at 
least every three months for as long as the violation or failure exists.
    (b) Other violations, variances, exemptions. The owner or operator 
of a public water system which fails to perform monitoring required by 
section 1445(a) of the Act (including monitoring required by the 
National Primary Drinking Water Regulations (NPDWRs) of this part), 
fails to comply with a testing procedure established by this part, is 
subject to a variance granted under section 1415(a)(1)(A) or 1415(a)(2) 
of the Act, or is subject to an exemption
 
[[Page 389]]
 
under section 1416 of the Act, shall notify persons served by the system 
as follows:
    (1) Except as provided in paragraph (b)(3) or (b)(4) of this 
section, the owner or operator of a public water system must give notice 
within three months of the violation or granting of a variance or 
exemption by publication in a daily newspaper of general circulation in 
the area served by the system. If the area served by a public water 
system is not served by a daily newspaper of general circulation, notice 
shall instead be given by publication in a weekly newspaper of general 
circulation serving the area.
    (2) Except as provided in paragraph (b)(3) or (b)(4) of this 
section, following the initial notice given under paragraph (b)(1) of 
this section, the owner or operator of the public water system must give 
notice at least once every three months by mail delivery (by direct mail 
or with the water bill) or by hand delivery, for as long as the 
violation exists. Repeat notice of the existence of a variance or 
exemption must be given every three months for as long as the variance 
or exemption remains in effect.
    (3)(i) In lieu of the requirements of paragraphs (b)(1) and (b)(2) 
of this section, the owner or operator of a community water system in an 
area that is not served by a daily or weekly newspaper of general 
circulation must give notice, within three months of the violation or 
granting of the variance or exemption, by hand delivery or by continuous 
posting in conspicuous places with the area served by the system. 
Posting must continue for as long as the violation exists or a variance 
or exemption remains in effect. Notice by hand delivery must be repeated 
at least every three months for as long as the violation exists or a 
variance or exemption remains in effect.
    (ii) In lieu of the requirements of paragraphs (b)(1) and (b)(2) of 
this section, the owner or operator of a non-community water system may 
give notice, within three months of the violation or the granting of the 
variance or exemption, by hand delivery or by continuous posting in 
conspicuous places within the area served by the system. Posting must 
continue for as long as the violation exists, or a variance or exemption 
remains in effect. Notice by hand delivery must be repeated at least 
every three months for as long as the violation exists or a variance or 
exemption remains in effect.
    (4) In lieu of the requirements of paragraphs (b)(1), (b)(2), and 
(b)(3) of this section, the owner or operator of a public water system, 
at the discretion of the State, may provide less frequent notice for 
minor monitoring violations as defined by the State, if EPA has approved 
the State's application for a program revision under Sec. 142.16. Notice 
of such violations must be given no less frequently than annually.
    (c) Notice to new billing units. The owner or operator of a 
community water system must give a copy of the most recent public notice 
for any outstanding violation of any maximum contaminant level, or any 
maximum residual disinfectant level, or any treatment technique 
requirement, or any variance or exemption schedule to all new billing 
units or new hookups prior to or at the time service begins.
    (d) General content of public notice. Each notice required by this 
section must provide a clear and readily understandable explanation of 
the violation, any potential adverse health effects, the population at 
risk, the steps that the public water system is taking to correct such 
violation, the necessity for seeking alternative water supplies, if any, 
and any preventive measures the consumer should take until the violation 
is corrected. Each notice shall be conspicuous and shall not contain 
unduly technical language, unduly small print, or similar problems that 
frustrate the purpose of the notice. Each notice shall include the 
telephone number of the owner, operator, or designee of the public water 
system as a source of additional information concerning the notice. 
Where appropriate, the notice shall be multi-lingual.
    (e) Mandatory health effects language. When providing the 
information on potential adverse health effects required by paragraph 
(d) of this section in notices of violations of maximum contaminant 
levels or treatment technique requirements, or notices of the granting 
or the continued existence of exemptions or variances, or notices of
 
[[Page 390]]
 
failure to comply with a variance or exemption schedule, the owner or 
operator of a public water system shall include the language specified 
below for each contaminant. (If language for a particular contaminant is 
not specified below at the time notice is required, this paragraph does 
not apply.)
    (1) Trichloroethylene. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 
trichloroethylene is a health concern at certain levels of exposure. 
This chemical is a common metal cleaning and dry cleaning fluid. It 
generally gets into drinking water by improper waste disposal. This 
chemical has been shown to cause cancer in laboratory animals such as 
rats and mice when the animals are exposed at high levels over their 
lifetimes. Chemicals that cause cancer in laboratory animals also may 
increase the risk of cancer in humans who are exposed at lower levels 
over long periods of time. EPA has set forth the enforceable drinking 
water standard for trichloroethylene at 0.005 parts per million (ppm) to 
reduce the risk of cancer or other adverse health effects which have 
been observed in laboratory animals. Drinking water which meets this 
standard is associated with little to none of this risk and should be 
considered safe.
    (2) Carbon tetrachloride. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 
carbon tetrachloride is a health concern at certain levels of exposure. 
This chemical was once a popular household cleaning fluid. It generally 
gets into drinking water by improper waste disposal. This chemical has 
been shown to cause cancer in laboratory animals such as rats and mice 
when the animals are exposed at high levels over their lifetimes. 
Chemicals that cause cancer in laboratory animals also may increase the 
risk of cancer in humans who are exposed at lower levels over long 
periods of of time. EPA has set the enforceable drinking water standard 
for carbon tetrachloride at 0.005 parts per million (ppm) to reduce the 
risk of cancer or other adverse health effects which have been observed 
in laboratory animals. Drinking water which meets this standard is 
associated with little to none of this risk and should be considered 
safe.
    (3) 1,2-Dichloroethane. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 1,2-
dichloroethane is a health concern at certain levels of exposure. This 
chemical is used as a cleaning fluid for fats, oils, waxes, and resins. 
It generally gets into drinking water from improper waste disposal. This 
chemical has been shown to cause cancer in laboratory animals such as 
rats and mice when the animals are exposed at high levels over their 
lifetimes. Chemicals that cause cancer in laboratory animals also may 
increase the risk of cancer in humans who are exposed at lower levels 
over long periods of time. EPA has set the enforceable drinking water 
standard for 1,2-dichloroethane at 0.005 parts per million (ppm) to 
reduce the risk of cancer or other adverse health effects which have 
been observed in laboratory animals. Drinking water which meets this 
standard is associated with little to none of this risk and should be 
considered safe.
    (4) Vinyl chloride. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that vinyl 
chloride is a health concern at certain levels of exposure. This 
chemical is used in industry and is found in drinking water as a result 
of the breakdown of related solvents. The solvents are used as cleaners 
and degreasers of metals and generally get into drinking water by 
improper waste disposal. This chemical has been associated with 
significantly increased risks of cancer among certain industrial workers 
who were exposed to relatively large amounts of this chemical during 
their working careers. This chemical has also been shown to cause cancer 
in laboratory animals when the animals are exposed at high levels over 
their lifetimes. Chemicals that cause increased risk of cancer among 
exposed industrial workers and in laboratory animals also may increase 
the risk of cancer in humans who are exposed at lower levels over long 
periods of time. EPA has set the enforceable drinking water standard
 
[[Page 391]]
 
for vinyl chloride at 0.002 part per million (ppm) to reduce the risk of 
cancer or other adverse health effects which have been observed in 
humans and laboratory animals. Drinking water which meets this standard 
is associated with little to none of this risk and should be considered 
safe.
    (5) Benzene. The United States Environmental Protection Agency (EPA) 
sets drinking water standards and has determined that benzene is a 
health concern at certain levels of exposure. This chemical is used as a 
solvent and degreaser of metals. It is also a major component of 
gasoline. Drinking water contamination generally results from leaking 
undergound gasoline and petroleum tanks or improper waste disposal. This 
chemical has been associated with significantly increased risks of 
leukemia among certain industrial workers who were exposed to relatively 
large amounts of this chemical during their working careers. This 
chemical has also been shown to cause cancer in laboratory animals when 
the animals are exposed at high levels over their lifetimes. Chemicals 
that cause increased risk of cancer among exposed industrial workers and 
in laboratory animals also may increase the risk of cancer in humans who 
are exposed at lower levels over long periods of time. EPA has set the 
enforceable drinking water standard for benzene at 0.005 parts per 
million (ppm) to reduce the risk of cancer or other adverse health 
effects which have been observed in humans and laboratory animals. 
Drinking water which meets this standard is associated with little to 
none of this risk and should be considered safe.
    (6) 1,1-Dichloroethylene. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 1,1-
dichloroethylene is a health concern at certain levels of exposure. This 
chemical is used in industry and is found in drinking water as a result 
of the breakdown of related solvents. The solvents are used as cleaners 
and degreasers of metals and generally get into drinking water by 
improper waste disposal. This chemical has been shown to cause liver and 
kidney damage in laboratory animals such as rats and mice when the 
animals are exposed at high levels over their lifetimes. Chemicals which 
cause adverse effects in laboratory animals also may cause adverse 
health effects in humans who are exposed at lower levels over long 
periods of time. EPA has set the enforceable drinking water standard for 
1,1-dichloroethylene at 0.007 parts per million (ppm) to reduce the risk 
of these adverse health effects which have been observed in laboratory 
animals. Drinking water which meets this standard is associated with 
little to none of this risk and should be considered safe.
    (7) Para-dichlorobenzene. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that para-
dichlorobenzene is a health concern at certain levels of exposure. This 
chemical is a component of deodorizers, moth balls, and pesticides. It 
generally gets into drinking water by improper waste disposal. This 
chemical has been shown to cause liver and kidney damage in laboratory 
animals such as rats and mice when the animals are exposed to high 
levels over their lifetimes. Chemicals which cause adverse effects in 
laboratory animals also may cause adverse health effects in humans who 
are exposed at lower levels over long periods of time. EPA has set the 
enforceable drinking water standard for para-dichlorobenzene at 0.075 
parts per million (ppm) to reduce the risk of these adverse health 
effects which have been observed in laboratory animals. Drinking water 
which meets this standard is associated with little to none of this risk 
and should be considered safe.
    (8) 1,1,1-Trichloroethane. The United States Environmental 
Protection Agency (EPA) sets drinking water standards and has determined 
that the 1,1,1-trichloroethane is a health concern at certain levels of 
exposure. This chemical is used as a cleaner and degreaser of metals. It 
generally gets into drinking water by improper waste disposal. This 
chemical has been shown to damage the liver, nervous system, and 
circulatory system of laboratory animals such as rats and mice when the 
animals are exposed at high levels over their lifetimes. Some industrial 
workers who were exposed to relatively large amounts of this chemical 
during
 
[[Page 392]]
 
their working careers also suffered damage to the liver, nervous system, 
and circulatory system. Chemicals which cause adverse effects among 
exposed industrial workers and in laboratory animals also may cause 
adverse health effects in humans who are exposed at lower levels over 
long periods of time. EPA has set the enforceable drinking water 
standard for 1,1,1-trichloroethane at 0.2 parts per million (ppm) to 
protect against the risk of these adverse health effects which have been 
observed in humans and laboratory animals. Drinking water which meets 
this standard is associated with little to none of this risk and should 
be considered safe.
    (9) Fluoride.
    [Note: EPA is not specifying language that must be included in a 
public notice for a violation of the fluoride maximum contaminant level 
in this section because Sec. 143.5 of this part includes the necessary 
information. See paragraph (f) of this section.]
    (10) Microbiological contaminants (for use when there is a violation 
of the treatment technique requirements for filtration and disinfection 
in subpart H or subpart P of this part). The United States Environmental 
Protection Agency (EPA) sets drinking water standards and has determined 
that the presence of microbiological contaminants are a health concern 
at certain levels of exposure. If water is inadequately treated, 
microbiological contaminants in that water may cause disease. Disease 
symptoms may include diarrhea, cramps, nausea, and possibly jaundice, 
and any associated headaches and fatigue. These symptoms, however, are 
not just associated with disease-causing organisms in drinking water, 
but also may be caused by a number of factors other than your drinking 
water. EPA has set enforceable requirements for treating drinking water 
to reduce the risk of these adverse health effects. Treatment such as 
filtering and disinfecting the water removes or destroys microbiological 
contaminants. Drinking water which is treated to meet EPA requirements 
is associated with little to none of this risk and should be considered 
safe.
    (11) Total coliforms (To be used when there is a violation of 
Sec. 141.63(a), and not a violation of Sec. 141.63(b)). The United 
States Environmental Protection Agency (EPA) sets drinking water 
standards and has determined that the presence of total coliforms is a 
possible health concern. Total coliforms are common in the environment 
and are generally not harmful themselves. The presence of these bacteria 
in drinking water, however, generally is a result of a problem with 
water treatment or the pipes which distribute the water, and indicates 
that the water may be contaminated with organisms that can cause 
disease. Disease symptoms may include diarrhea, cramps, nausea, and 
possibly jaundice, and any associated headaches and fatigue. These 
symptoms, however, are not just associated with disease-causing 
organisms in drinking water, but also may be caused by a number of 
factors other than your drinking water. EPA has set an enforceable 
drinking water standard for total coliforms to reduce the risk of these 
adverse health effects. Under this standard, no more than 5.0 percent of 
the samples collected during a month can contain these bacteria, except 
that systems collecting fewer than 40 samples/month that have one total 
coliform-positive sample per month are not violating the standard. 
Drinking water which meets this standard is usually not associated with 
a health risk from disease-causing bacteria and should be considered 
safe.
    (12) Fecal Coliforms/E. coli (To be used when there is a violation 
of Sec. 141.63(b) or both Sec. 141.63 (a) and (b)). The United States 
Environmental Protection Agency (EPA) sets drinking water standards and 
has determined that the presence of fecal coliforms or E. coli is a 
serious health concern. Fecal coliforms and E. coli are generally not 
harmful themselves, but their presence in drinking water is serious 
because they usually are associated with sewage or animal wastes. The 
presence of these bacteria in drinking water is generally a result of a 
problem with water treatment or the pipes which distribute the water, 
and indicates that the water may be contaminated with organisms that can 
cause disease. Disease symptoms may include diarrhea, cramps, nausea, 
and possibly jaundice, and associated headaches and fatigue. These 
symptoms, however, are not just associated with disease-causing 
organisms
 
[[Page 393]]
 
in drinking water, but also may be caused by a number of factors other 
than your drinking water. EPA has set an enforceable drinking water 
standard for fecal coliforms and E. coli to reduce the risk of these 
adverse health effects. Under this standard all drinking water samples 
must be free of these bacteria. Drinking water which meets this standard 
is associated with little or none of this risk and should be considered 
safe. State and local health authorities recommend that consumers take 
the following precautions: [To be inserted by the public water system, 
according to instructions from State or local authorities].
    (13) Lead. The United States Environmental Protection Agency (EPA) 
sets drinking water standards and has determined that lead is a health 
concern at certain exposure levels. Materials that contain lead have 
frequently been used in the construction of water supply distribution 
systems, and plumbing systems in private homes and other buildings. The 
most commonly found materials include service lines, pipes, brass and 
bronze fixtures, and solders and fluxes. Lead in these materials can 
contaminate drinking water as a result of the corrosion that takes place 
when water comes into contact with those materials. Lead can cause a 
variety of adverse health effects in humans. At relatively low levels of 
exposure, these effects may include interference with red blood cell 
chemistry, delays in normal physical and mental development in babies 
and young children, slight deficits in the attention span, hearing, and 
learning abilities of children, and slight increases in the blood 
pressure of some adults. EPA's national primary drinking water 
regulation requires all public water systems to optimize corrosion 
control to minimize lead contamination resulting from the corrosion of 
plumbing materials. Public water systems serving 50,000 people or fewer 
that have lead concentrations below 15 parts per billion (ppb) in more 
than 90% of tap water samples (the EPA "action level") have optimized 
their corrosion control treatment. Any water system that exceeds the 
action level must also monitor their source water to determine whether 
treatment to remove lead in source water is needed. Any water system 
that continues to exceed the action level after installation of 
corrosion control and/or source water treatment must eventually replace 
all lead service lines contributing in excess of 15 (ppb) of lead to 
drinking water. Any water system that exceeds the action level must also 
undertake a public education program to inform consumers of ways they 
can reduce their exposure to potentially high levels of lead in drinking 
water.
    (14) Copper. The United States Environmental Protection Agency (EPA) 
sets drinking water standards and has determined that copper is a health 
concern at certain exposure levels. Copper, a reddish-brown metal, is 
often used to plumb residential and commercial structures that are 
connected to water distribution systems. Copper contaminating drinking 
water as a corrosion byproduct occurs as the result of the corrosion of 
copper pipes that remain in contact with water for a prolonged period of 
time. Copper is an essential nutrient, but at high doses it has been 
shown to cause stomach and intestinal distress, liver and kidney damage, 
and anemia. Persons with Wilson's disease may be at a higher risk of 
health effects due to copper than the general public. EPA's national 
primary drinking water regulation requires all public water systems to 
install optimal corrosion control to minimize copper contamination 
resulting from the corrosion of plumbing materials. Public water systems 
serving 50,000 people or fewer that have copper concentrations below 1.3 
parts per million (ppm) in more than 90% of tap water samples (the EPA 
"action level") are not required to install or improve their 
treatment. Any water system that exceeds the action level must also 
monitor their source water to determine whether treatment to remove 
copper in source water is needed.
    (15) Asbestos. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that asbestos 
fibers greater than 10 micrometers in length are a health concern at 
certain levels of exposure. Asbestos is a naturally occurring mineral. 
Most asbestos fibers in
 
[[Page 394]]
 
drinking water are less than 10 micrometers in length and occur in 
drinking water from natural sources and from corroded asbestos-cement 
pipes in the distribution system. The major uses of asbestos were in the 
production of cements, floor tiles, paper products, paint, and caulking; 
in transportation-related applications; and in the production of 
textiles and plastics. Asbestos was once a popular insulating and fire 
retardent material. Inhalation studies have shown that various forms of 
asbestos have produced lung tumors in laboratory animals. The available 
information on the risk of developing gastrointestinal tract cancer 
associated with the ingestion of asbestos from drinking water is 
limited. Ingestion of intermediate-range chrysotile asbestos fibers 
greater than 10 micrometers in length is associated with causing benign 
tumors in male rats. Chemicals that cause cancer in laboratory animals 
also may increase the risk of cancer in humans who are exposed over long 
periods of time. EPA has set the drinking water standard for asbestos at 
7 million long fibers per liter to reduce the potential risk of cancer 
or other adverse health effects which have been observed in laboratory 
animals. Drinking water which meets the EPA standard is associated with 
little to none of this risk and should be considered safe with respect 
to asbestos.
    (16) Barium. The United States Environmental Protection Agency (EPA) 
sets drinking water standards and has determined that barium is a health 
concern at certain levels of exposure. This inorganic chemical occurs 
naturally in some aquifers that serve as sources of ground water. It is 
also used in oil and gas drilling muds, automotive paints, bricks, tiles 
and jet fuels. It generally gets into drinking water after dissolving 
from naturally occurring minerals in the ground. This chemical may 
damage the heart and cardiovascular system, and is associated with high 
blood pressure in laboratory animals such as rats exposed to high levels 
during their lifetimes. In humans, EPA believes that effects from barium 
on blood pressure should not occur below 2 parts per million (ppm) in 
drinking water. EPA has set the drinking water standard for barium at 2 
parts per million (ppm) to protect against the risk of these adverse 
health effects. Drinking water that meets the EPA standard is associated 
with little to none of this risk and is considered safe with respect to 
barium.
    (17) Cadmium. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that cadmium is a 
health concern at certain levels of exposure. Food and the smoking of 
tobacco are common sources of general exposure. This inorganic metal is 
a contaminant in the metals used to galvanize pipe. It generally gets 
into water by corrosion of galvanized pipes or by improper waste 
disposal. This chemical has been shown to damage the kidney in animals 
such as rats and mice when the animals are exposed at high levels over 
their lifetimes. Some industrial workers who were exposed to relatively 
large amounts of this chemical during working careers also suffered 
damage to the kidney. EPA has set the drinking water standard for 
cadmium at 0.005 parts per million (ppm) to protect against the risk of 
these adverse health effects. Drinking water that meets the EPA standard 
is associated with little to none of this risk and is considered safe 
with respect to cadmium.
    (18) Chromium. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that chromium is 
a health concern at certain levels of exposure. This inorganic metal 
occurs naturally in the ground and is often used in the electroplating 
of metals. It generally gets into water from runoff from old mining 
operations and improper waste disposal from plating operations. This 
chemical has been shown to damage the kidney, nervous system, and the 
circulatory system of laboratory animals such as rats and mice when the 
animals are exposed at high levels. Some humans who were exposed to high 
levels of this chemical suffered liver and kidney damage, dermatitis and 
respiratory problems. EPA has set the drinking water standard for 
chromium at 0.1 parts per million (ppm) to protect against the risk of 
these adverse health effects. Drinking water that meets the EPA standard 
is associated with little to none of this risk and
 
[[Page 395]]
 
is considered safe with respect to chromium.
    (19) Mercury. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that mercury is a 
health concern at certain levels of exposure. This inorganic metal is 
used in electrical equipment and some water pumps. It usually gets into 
water as a result of improper waste disposal. This chemical has been 
shown to damage the kidney of laboratory animals such as rats when the 
animals are exposed at high levels over their lifetimes. EPA has set the 
drinking water standard for mercury at 0.002 parts per million (ppm) to 
protect against the risk of these adverse health effects. Drinking water 
that meets the EPA standard is associated with little to none of this 
risk and is considered safe with respect to mercury.
    (20) Nitrate. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that nitrate 
poses an acute health concern at certain levels of exposure. Nitrate is 
used in fertilizer and is found in sewage and wastes from human and/or 
farm animals and generally gets into drinking water from those 
activities. Excessive levels of nitrate in drinking water have caused 
serious illness and sometimes death in infants under six months of age. 
The serious illness in infants is caused because nitrate is converted to 
nitrite in the body. Nitrite interferes with the oxygen carrying 
capacity of the child's blood. This is an acute disease in that symptoms 
can develop rapidly in infants. In most cases, health deteriorates over 
a period of days. Symptoms include shortness of breath and blueness of 
the skin. Clearly, expert medical advice should be sought immediately if 
these symptoms occur. The purpose of this notice is to encourage parents 
and other responsible parties to provide infants with an alternate 
source of drinking water. Local and State health authorities are the 
best source for information concerning alternate sources of drinking 
water for infants. EPA has set the drinking water standard at 10 parts 
per million (ppm) for nitrate to protect against the risk of these 
adverse effects. EPA has also set a drinking water standard for nitrite 
at 1 ppm. To allow for the fact that the toxicity of nitrate and nitrite 
are additive, EPA has also established a standard for the sum of nitrate 
and nitrite at 10 ppm. Drinking water that meets the EPA standard is 
associated with little to none of this risk and is considered safe with 
respect to nitrate.
    (21) Nitrite. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that nitrite 
poses an acute health concern at certain levels of exposure. This 
inorganic chemical is used in fertilizers and is found in sewage and 
wastes from humans and/or farm animals and generally gets into drinking 
water as a result of those activities. While excessive levels of nitrite 
in drinking water have not been observed, other sources of nitrite have 
caused serious illness and sometimes death in infants under six months 
of age. The serious illness in infants is caused because nitrite 
interferes with the oxygen carrying capacity of the child's blood. This 
is an acute disease in that symptoms can develop rapidly. However, in 
most cases, health deteriorates over a period of days. Symptoms include 
shortness of breath and blueness of the skin. Clearly, expert medical 
advice should be sought immediately if these symptoms occur. The purpose 
of this notice is to encourage parents and other responsible parties to 
provide infants with an alternate source of drinking water. Local and 
State health authorities are the best source for information concerning 
alternate sources of drinking water for infants. EPA has set the 
drinking water standard at 1 part per million (ppm) for nitrite to 
protect against the risk of these adverse effects. EPA has also set a 
drinking water standard for nitrate (converted to nitrite in humans) at 
10 ppm and for the sum of nitrate and nitrite at 10 ppm. Drinking water 
that meets the EPA standard is associated with little to none of this 
risk and is considered safe with respect to nitrite.
    (22) Selenium. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that selenium is 
a health
 
[[Page 396]]
 
concern at certain high levels of exposure. Selenium is also an 
essential nutrient at low levels of exposure. This inorganic chemical is 
found naturally in food and soils and is used in electronics, photocopy 
operations, the manufacture of glass, chemicals, drugs, and as a 
fungicide and a feed additive. In humans, exposure to high levels of 
selenium over a long period of time has resulted in a number of adverse 
health effects, including a loss of feeling and control in the arms and 
legs. EPA has set the drinking water standard for selenium at 0.05 parts 
per million (ppm) to protect against the risk of these adverse health 
effects. Drinking water that meets the EPA standard is associated with 
little to none of this risk and is considered safe with respect to 
selenium.
    (23) Acrylamide. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that acrylamide 
is a health concern at certain levels of exposure. Polymers made from 
acrylamide are sometimes used to treat water supplies to remove 
particulate contaminants. Acrylamide has been shown to cause cancer in 
laboratory animals such as rats and mice when the animals are exposed at 
high levels over their lifetimes. Chemicals that cause cancer in 
laboratory animals also may increase the risk of cancer in humans who 
are exposed over long periods of time. Sufficiently large doses of 
acrylamide are known to cause neurological injury. EPA has set the 
drinking water standard for acrylamide using a treatment technique to 
reduce the risk of cancer or other adverse health effects which have 
been observed in laboratory animals. This treatment technique limits the 
amount of acrylamide in the polymer and the amount of the polymer which 
may be added to drinking water to remove particulates. Drinking water 
systems which comply with this treatment technique have little to no 
risk and are considered safe with respect to acrylamide.
    (24) Alachlor. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that alachlor is 
a health concern at certain levels of exposure. This organic chemical is 
a widely used pesticide. When soil and climatic conditions are 
favorable, alachlor may get into drinking water by runoff into surface 
water or by leaching into ground water. This chemical has been shown to 
cause cancer in laboratory animals such as rats and mice when the 
animals are exposed at high levels over their lifetimes. Chemicals that 
cause cancer in laboratory animals also may increase the risk of cancer 
in humans who are exposed over long periods of time. EPA has set the 
drinking water standard for alachlor at 0.002 parts per million (ppm) to 
reduce the risk of cancer or other adverse health effects which have 
been observed in laboratory animals. Drinking water that meets this 
standard is associated with little to none of this risk and is 
considered safe with respect to alachlor.
    (25) Aldicarb. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that aldicarb is 
a health concern at certain levels of exposure. Aldicarb is a widely 
used pesticide. Under certain soil and climatic conditions (e.g., sandy 
soil and high rainfall), aldicarb may leach into ground water after 
normal agricultural applications to crops such as potatoes or peanuts or 
may enter drinking water supplies as a result of surface runoff. This 
chemical has been shown to damage the nervous system in laboratory 
animals such as rats and dogs exposed to high levels. EPA has set the 
drinking water standard for aldicarb at 0.003 parts per million (ppm) to 
protect against the risk of adverse health effects. Drinking water that 
meets the EPA standard is associated with little to none of this risk 
and is considered safe with respect to aldicarb.
    (26) Aldicarb sulfoxide. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 
aldicarb sulfoxide is a health concern at certain levels of exposure. 
Aldicarb is a widely used pesticide. Aldicarb sulfoxide in ground water 
is primarily a breakdown product of aldicarb. Under certain soil and 
climatic conditions (e.g., sandy soil and high rainfall), aldicarb 
sulfoxide may leach into ground water after normal agricultural
 
[[Page 397]]
 
applications to crops such as potatoes or peanuts or may enter drinking 
water supplies as a result of surface runoff. This chemical has been 
shown to damage the nervous system in laboratory animals such as rats 
and dogs exposed to high levels. EPA has set the drinking water standard 
for aldicarb sulfoxide at 0.004 parts per million (ppm) to protect 
against the risk of adverse health effects. Drinking water that meets 
the EPA standard is associated with little to none of this risk and is 
considered safe with respect to aldicarb sulfoxide.
    (27) Aldicarb sulfone. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 
aldicarb sulfone is a health concern at certain levels of exposure. 
Aldicarb is a widely used pesticide. Aldicarb sulfone is formed from the 
breakdown of aldicarb and is considered for registration as a pesticide 
under the name aldoxycarb. Under certain soil and climatic conditions 
(e.g., sandy soil and high rainfall), aldicarb sulfone may leach into 
ground water after normal agricultural applications to crops such as 
potatoes or peanuts or may enter drinking water supplies as a result of 
surface runoff. This chemical has been shown to damage the nervous 
system in laboratory animals such as rats and dogs exposed to high 
levels. EPA has set the drinking water standard for aldicarb sulfone at 
0.002 parts per million (ppm) to protect against the risk of adverse 
health effects. Drinking water that meets the EPA standard is associated 
with little to none of this risk and is considered safe with respect to 
aldicarb sulfone.
    (28) Atrazine. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that atrazine is 
a health concern at certain levels of exposure. This organic chemical is 
a herbicide. When soil and climatic conditions are favorable, atrazine 
may get into drinking water by runoff into surface water or by leaching 
into ground water. This chemical has been shown to affect offspring of 
rats and the heart of dogs. EPA has set the drinking water standard for 
atrazine at 0.003 parts per million (ppm) to protect against the risk of 
these adverse health effects. Drinking water that meets the EPA standard 
is associated with little to none of this risk and is considered safe 
with respect to atrazine.
    (29) Carbofuran. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that carbofuran 
is a health concern at certain levels of exposure. This organic chemical 
is a pesticide. When soil and climatic conditions are favorable, 
carbofuran may get into drinking water by runoff into surface water or 
by leaching into ground water. This chemical has been shown to damage 
the nervous and reproductive systems of laboratory animals such as rats 
and mice exposed at high levels over their lifetimes. Some humans who 
were exposed to relatively large amounts of this chemical during their 
working careers also suffered damage to the nervous system. Effects on 
the nervous system are generally rapidly reversible. EPA has set the 
drinking water standard for carbofuran at 0.04 parts per million (ppm) 
to protect against the risk of these adverse health effects. Drinking 
water that meets the EPA standard is associated with little to none of 
this risk and is considered safe with respect to carbofuran.
    (30) Chlordane. The United States Environmental Protection Agency 
(EPA sets drinking water standards and has determined that chlordane is 
a health concern at certain levels of exposure. This organic chemical is 
a pesticide used to control termites. Chlordane is not very mobile in 
soils. It usually gets into drinking water after application near water 
supply intakes or wells. This chemical has been shown to cause cancer in 
laboratory animals such as rats and mice when the animals are exposed at 
high levels over their lifetimes. Chemicals that cause cancer in 
laboratory animals also may increase the risk of cancer in humans who 
are exposed over long periods of time. EPA has set the drinking water 
standard for chlordane at 0.002 parts per million (ppm) to reduce the 
risk of cancer or other adverse health effects which have been observed 
in laboratory animals. Drinking water that meets the EPA standard is 
associated with little to
 
[[Page 398]]
 
none of this risk and is considered safe with respect to chlordane.
    (31) Dibromochloropropane (DBCP). The United States Environmental 
Protection Agency (EPA) sets drinking water standards and has determined 
that DBCP is a health concern at certain levels of exposure. This 
organic chemical was once a popular pesticide. When soil and climatic 
conditions are favorable, dibromochloropropane may get into drinking 
water by runoff into surface water or by leaching into ground water. 
This chemical has been shown to cause cancer in laboratory animals such 
as rats and mice when the animals are exposed at high levels over their 
lifetimes. Chemicals that cause cancer in laboratory animals also may 
increase the risk of cancer in humans who are exposed over long periods 
of time. EPA has set the drinking water standard for DBCP at 0.0002 
parts per million (ppm) to reduce the risk of cancer or other adverse 
health effects which have been observed in laboratory animals. Drinking 
water that meets the EPA standard is associated with little to none of 
this risk and is considered safe with respect to DBCP.
    (32) o-Dichlorobenzene. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that o-
dichlorobenzene is a health concern at certain levels of exposure. This 
organic chemical is used as a solvent in the production of pesticides 
and dyes. It generally gets into water by improper waste disposal. This 
chemical has been shown to damage the liver, kidney and the blood cells 
of laboratory animals such as rats and mice exposed to high levels 
during their lifetimes. Some industrial workers who were exposed to 
relatively large amounts of this chemical during working careers also 
suffered damage to the liver, nervous system, and circulatory system. 
EPA has set the drinking water standard for o-dichlorobenzene at 0.6 
parts per million (ppm) to protect against the risk of these adverse 
health effects. Drinking water that meets the EPA standard is associated 
with little to none of this risk and is considered safe with respect to 
o-dichlorobenzene.
    (33) cis-1,2-Dichloroethylene. The United States Environmental 
Protection Agency (EPA) establishes drinking water standards and has 
determined that cis-1,2-dichloroethylene is a health concern at certain 
levels of exposure. This organic chemical is used as a solvent and 
intermediate in chemical production. It generally gets into water by 
improper waste disposal. This chemical has been shown to damage the 
liver, nervous system, and circulatory system of laboratory animals such 
as rats and mice when exposed at high levels over their lifetimes. Some 
humans who were exposed to relatively large amounts of this chemical 
also suffered damage to the nervous system. EPA has set the drinking 
water standard for cis-1,2-dichloroethylene at 0.07 parts per million 
(ppm) to protect against the risk of these adverse health effects. 
Drinking water that meets the EPA standard is associated with little to 
none of this risk and is considered safe with respect to cis-1,2-
dichloroethylene.
    (34) trans-1,2-Dichloroethylene. The United States Environmental 
Protection Agency (EPA) establishes drinking water standards and has 
determined that trans-1,2-dichloroethylene is a health concern at 
certain levels of exposure. This organic chemical is used as a solvent 
and intermediate in chemical production. It generally gets into water by 
improper waste disposal. This chemical has been shown to damage the 
liver, nervous system, and the circulatory system of laboratory animals 
such as rats and mice when exposed at high levels over their lifetimes. 
Some humans who were exposed to relatively large amounts of this 
chemical also suffered damage to the nervous system. EPA has set 
drinking water standard for trans-1,2-dichloroethylene at 0.1 parts per 
million (ppm) to protect against the risk of these adverse health 
effects. Drinking water that meets the EPA standard is associated with 
little to none of this risk and is considered safe with respect to 
trans-1,2-dichloroethylene.
    (35) 1,2-Dichloropropane. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 1,2-
dichloropropane is a health concern at certain levels of exposure. This 
organic
 
[[Page 399]]
 
chemical is used as a solvent and pesticide. When soil and climatic 
conditions are favorable, 1,2-dichloropropane may get into drinking 
water by runoff into surface water or by leaching into ground water. It 
may also get into drinking water through improper waste disposal. This 
chemical has been shown to cause cancer in laboratory animals such as 
rats and mice when the animals are exposed at high levels over their 
lifetimes. Chemicals that cause cancer in laboratory animals also may 
increase the risk of cancer in humans who are exposed over long periods 
of time. EPA has set the drinking water standard for 1,2-dichloropropane 
at 0.005 parts per million (ppm) to reduce the risk of cancer or other 
adverse health effects which have been observed in laboratory animals. 
Drinking water that meets the EPA standard is associated with little to 
none of this risk and is considered safe with respect to 1,2-
dichloropropane.
    (36) 2,4-D. The United States Environmental Protection Agency (EPA) 
sets drinking water standards and has determined that 2,4-D is a health 
concern at certain levels of exposure. This organic chemical is used as 
a herbicide and to control algae in reservoirs. When soil and climatic 
conditions are favorable, 2,4-D may get into drinking water by runoff 
into surface water or by leaching into ground water. This chemical has 
been shown to damage the liver and kidney of laboratory animals such as 
rats exposed at high levels during their lifetimes. Some humans who were 
exposed to relatively large amounts of this chemical also suffered 
damage to the nervous system. EPA has set the drinking water standard 
for 2,4-D at 0.07 parts per million (ppm) to protect against the risk of 
these adverse health effects. Drinking water that meets the EPA standard 
is associated with little to none of this risk and is considered safe 
with respect to 2,4-D.
    (37) Epichlorohydrin. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 
epichlorohydrin is a health concern at certain levels of exposure. 
Polymers made from epichlorohydrin are sometimes used in the treatment 
of water supplies as a flocculent to remove particulates. 
Epichlorohydrin generally gets into drinking water by improper use of 
these polymers. This chemical has been shown to cause cancer in 
laboratory animals such as rats and mice when the animals are exposed at 
high levels over their lifetimes. Chemicals that cause cancer in 
laboratory animals also may increase the risk of cancer in humans who 
are exposed over long periods of time. EPA has set the drinking water 
standard for epichlorohydrin using a treatment technique to reduce the 
risk of cancer or other adverse health effects which have been observed 
in laboratory animals. This treatment technique limits the amount of 
epichlorohydrin in the polymer and the amount of the polymer which may 
be added to drinking water as a flocculent to remove particulates. 
Drinking water systems which comply with this treatment technique have 
little to no risk and are considered safe with respect to 
epichlorohydrin.
    (38) Ethylbenzene. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined ethylbenzene is a 
health concern at certain levels of exposure. This organic chemical is a 
major component of gasoline. It generally gets into water by improper 
waste disposal or leaking gasoline tanks. This chemical has been shown 
to damage the kidney, liver, and nervous system of laboratory animals 
such as rats exposed to high levels during their lifetimes. EPA has set 
the drinking water standard for ethylbenzene at 0.7 part per million 
(ppm) to protect against the risk of these adverse health effects. 
Drinking water that meets the EPA standard is associated with little to 
none of this risk and is considered safe with respect to ethylbenzene.
    (39) Ethylene dibromide (EDB). The United States Environmental 
Protection Agency (EPA) sets drinking water standards and has determined 
that EDB is a health concern at certain levels of exposure. This organic 
chemical was once a popular pesticide. When soil and climatic conditions 
are favorable, EDB may get into drinking water by runoff into surface 
water or by leaching into ground water. This chemical
 
[[Page 400]]
 
has been shown to cause cancer in laboratory animals such as rats and 
mice when the animals are exposed at high levels over their lifetimes. 
Chemicals that cause cancer in laboratory animals also may increase the 
risk of cancer in humans who are exposed over long periods of time. EPA 
has set the drinking water standard for EDB at 0.00005 part per million 
(ppm) to reduce the risk of cancer or other adverse health effects which 
have been observed in laboratory animals. Drinking water that meets this 
standard is associated with little to none of this risk and is 
considered safe with respect to EDB.
    (40) Heptachlor. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that heptachlor 
is a health concern at certain levels of exposure. This organic chemical 
was once a popular pesticide. When soil and climatic conditions are 
favorable, heptachlor may get into drinking water by runoff into surface 
water or by leaching into ground water. This chemical has been shown to 
cause cancer in laboratory animals such as rats and mice when the 
animals are exposed at high levels over their lifetimes. Chemicals that 
cause cancer in laboratory animals also may increase the risk of cancer 
in humans who are exposed over long periods of time. EPA has set the 
drinking water standards for heptachlor at 0.0004 part per million (ppm) 
to reduce the risk of cancer or other adverse health effects which have 
been observed in laboratory animals. Drinking water that meets this 
standard is associated with little to none of this risk and is 
considered safe with respect to heptachlor.
    (41) Heptachlor epoxide. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 
heptachlor epoxide is a health concern at certain levels of exposure. 
This organic chemical was once a popular pesticide. When soil and 
climatic conditions are favorable, heptachlor expoxide may get into 
drinking water by runoff into surface water or by leaching into ground 
water. This chemical has been shown to cause cancer in laboratory 
animals such as rats and mice when the animals are exposed at high 
levels over their lifetimes. Chemicals that cause cancer in laboratory 
animals also may increase the risk of cancer in humans who are exposed 
over long periods of time. EPA has set the drinking water standards for 
heptachlor epoxide at 0.0002 part per million (ppm) to reduce the risk 
of cancer or other adverse health effects which have been observed in 
laboratory animals. Drinking water that meets this standard is 
associated with little to none of this risk and is considered safe with 
respect to heptachlor epoxide.
    (42) Lindane. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that lindane is a 
health concern at certain levels of exposure. This organic chemical is 
used as a pesticide. When soil and climatic conditions are favorable, 
lindane may get into drinking water by runoff into surface water or by 
leaching into ground water. This chemical has been shown to damage the 
liver, kidney, nervous system, and immune system of laboratory animals 
such as rats, mice and dogs exposed at high levels during their 
lifetimes. Some humans who were exposed to relatively large amounts of 
this chemical also suffered damage to the nervous system and circulatory 
system. EPA has established the drinking water standard for lindane at 
0.0002 part per million (ppm) to protect against the risk of these 
adverse health effects. Drinking water that meets the EPA standard is 
associated with little to none of this risk and is considered safe with 
respect to lindane.
    (43) Methoxychlor. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that methoxychlor 
is a health concern at certain levels of exposure. This organic chemical 
is used as a pesticide. When soil and climatic conditions are favorable, 
methoxychlor may get into drinking water by runoff into surface water or 
by leaching into ground water. This chemical has been shown to damage 
the liver, kidney, nervous system, and reproductive system of laboratory 
animals such as rats exposed at high levels during their lifetimes. It 
has also been shown to produce growth retardation in rats.
 
[[Page 401]]
 
EPA has set the drinking water standard for methoxychlor at 0.04 part 
per million (ppm) to protect against the risk of these adverse health 
effects. Drinking water that meets the EPA standard is associated with 
little to none of this risk and is considered safe with respect to 
methoxychlor.
    (44) Monochlorobenzene. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 
monochlorobenzene is a health concern at certain levels of exposure. 
This organic chemical is used as a solvent. It generally gets into water 
by improper waste disposal. This chemical has been shown to damage the 
liver, kidney and nervous system of laboratory animals such as rats and 
mice exposed to high levels during their lifetimes. EPA has set the 
drinking water standard for monochlorobenzene at 0.1 part per million 
(ppm) to protect against the risk of these adverse health effects. 
Drinking water that meets the EPA standard is associated with little to 
none of this risk and is considered safe with respect to 
monochlorobenzene.
    (45) Polychlorinated biphenyls (PCBs). The United States 
Environmental Protection Agency (EPA) sets drinking water standards and 
has determined that polychlorinated biphenyls (PCBs) are a health 
concern at certain levels of exposure. These organic chemicals were once 
widely used in electrical transformers and other industrial equipment. 
They generally get into drinking water by improper waste disposal or 
leaking electrical industrial equipment. This chemical has been shown to 
cause cancer in laboratory animals such as rats and mice when the 
animals are exposed at high levels over their lifetimes. Chemicals that 
cause cancer in laboratory animals also may increase the risk of cancer 
in humans who are exposed over long periods of time. EPA has set the 
drinking water standard for PCBs at 0.0005 part per million (ppm) to 
reduce the risk of cancer or other adverse health effects which have 
been observed in laboratory animals. Drinking water that meets this 
standard is associated with little to none of this risk and is 
considered safe with respect to PCBs.
    (46) Pentachlorophenol. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 
pentachlorophenol is a health concern at certain levels of exposure. 
This organic chemical is used as a wood preservative, herbicide, 
disinfectant, and defoliant. It generally gets into drinking water by 
runoff into surface water or leaching into ground water. This chemical 
has been shown to produce adverse reproductive effects and to damage the 
liver and kidneys of laboratory animals such as rats exposed to high 
levels during their lifetimes. Some humans who were exposed to 
relatively large amounts of this chemical also suffered damage to the 
liver and kidneys. This chemical has been shown to cause cancer in 
laboratory animals such as rats and mice when the animals are exposed to 
high levels over their lifetimes. Chemicals that cause cancer in 
laboratory animals also may increase the risk of cancer in humans who 
are exposed over long periods of time. EPA has set the drinking water 
standard for pentachlorophenol at 0.001 parts per million (ppm) to 
protect against the risk of cancer or other adverse health effects. 
Drinking water that meets the EPA standard is associated with little to 
none of this risk and is considered safe with respect to 
pentachlorophenol.
    (47) Styrene. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that styrene is a 
health concern at certain levels of exposure. This organic chemical is 
commonly used to make plastics and is sometimes a component of resins 
used for drinking water treatment. Styrene may get into drinking water 
from improper waste disposal. This chemical has been shown to damage the 
liver and nervous system in laboratory animals when exposed at high 
levels during their lifetimes. EPA has set the drinking water standard 
for styrene at 0.1 part per million (ppm) to protect against the risk of 
these adverse health effects. Drinking water that meets the EPA standard 
is associated with little to none of this risk and is considered safe 
with respect to styrene.
 
[[Page 402]]
 
    (48) Tetrachloroethylene. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 
tetrachloroethylene is a health concern at certain levels of exposure. 
This organic chemical has been a popular solvent, particularly for dry 
cleaning. It generally gets into drinking water by improper waste 
disposal. This chemical has been shown to cause cancer in laboratory 
animals such as rats and mice when the animals are exposed at high 
levels over their lifetimes. Chemicals that cause cancer in laboratory 
animals also may increase the risk of cancer in humans who are exposed 
over long periods of time. EPA has set the drinking water standard for 
tetrachloroethylene at 0.005 part per million (ppm) to reduce the risk 
of cancer or other adverse health effects which have been observed in 
laboratory animals. Drinking water that meets this standard is 
associated with little to none of this risk and is considered safe with 
respect to tetrachloroethylene.
    (49) Toluene. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that toluene is a 
health concern at certain levels of exposure. This organic chemical is 
used as a solvent and in the manufacture of gasoline for airplanes. It 
generally gets into water by improper waste disposal or leaking 
underground storage tanks. This chemical has been shown to damage the 
kidney, nervous system, and circulatory system of laboratory animals 
such as rats and mice exposed to high levels during their lifetimes. 
Some industrial workers who were exposed to relatively large amounts of 
this chemical during working careers also suffered damage to the liver, 
kidney and nervous system. EPA has set the drinking water standard for 
toluene at 1 part per million (ppm) to protect against the risk of 
adverse health effects. Drinking water that meets the EPA standard is 
associated with little to none of this risk and is considered safe with 
respect to toluene.
    (50) Toxaphene. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that toxaphene is 
a health concern at certain levels of exposure. This organic chemical 
was once a pesticide widely used on cotton, corn, soybeans, pineapples 
and other crops. When soil and climatic conditions are favorable, 
toxaphene may get into drinking water by runoff into surface water or by 
leaching into ground water. This chemical has been shown to cause cancer 
in laboratory animals such as rats and mice when the animals are exposed 
at high levels over their lifetimes. Chemicals that cause cancer in 
laboratory animals also may increase the risk of cancer in humans who 
are exposed over long periods of time. EPA has set the drinking water 
standard for toxaphene at 0.003 part per million (ppm) to reduce the 
risk of cancer or other adverse health effects which have been observed 
in laboratory animals. Drinking water that meets this standard is 
associated with little to none of this risk and is considered safe with 
respect to toxaphene.
    (51) 2,4,5-TP. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that 2,4,5-TP is 
a health concern at certain levels of exposure. This organic chemical is 
used as a herbicide. When soil and climatic conditions are favorable, 
2,4,5-TP may get into drinking water by runoff into surface water or by 
leaching into ground water. This chemical has been shown to damage the 
liver and kidney of laboratory animals such as rats and dogs exposed to 
high levels during their lifetimes. Some industrial workers who were 
exposed to relatively large amounts of this chemical during working 
careers also suffered damage to the nervous system. EPA has set the 
drinking water standard for 2,4,5-TP at 0.05 part per million (ppm) to 
protect against the risk of these adverse health effects. Drinking water 
that meets the EPA standard is associated with little to none of this 
risk and is considered safe with respect to 2,4,5-TP.
    (52) Xylenes. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that xylene is a 
health concern at certain levels of exposure. This organic chemical is 
used in the manufacture of gasoline for airplanes and as
 
[[Page 403]]
 
a solvent for pesticides, and as a cleaner and degreaser of metals. It 
usually gets into water by improper waste disposal. This chemical has 
been shown to damage the liver, kidney and nervous system of laboratory 
animals such as rats and dogs exposed to high levels during their 
lifetimes. Some humans who were exposed to relatively large amounts of 
this chemical also suffered damage to the nervous system. EPA has set 
the drinking water standard for xylene at 10 parts per million (ppm) to 
protect against the risk of these adverse health effects. Drinking water 
that meets the EPA standard is associated with little to none of this 
risk and is considered safe with respect to xylene.
    (53) Antimony. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that antimony is 
a health concern at certain levels of exposure. This inorganic chemical 
occurs naturally in soils, ground water and surface waters and is often 
used in the flame retardant industry. It is also used in ceramics, 
glass, batteries, fireworks and explosives. It may get into drinking 
water through natural weathering of rock, industrial production, 
municipal waste disposal or manufacturing processes. This chemical has 
been shown to decrease longevity, and altered blood levels of 
cholesterol and glucose in laboratory animals such as rats exposed to 
high levels during their lifetimes. EPA has set the drinking water 
standard for antimony at 0.006 parts per million (ppm) to protect 
against the risk of these adverse health effects. Drinking water which 
meets the EPA standard is associated with little to none of this risk 
and should be considered safe with respect to antimony.
    (54) Beryllium. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that beryllium is 
a health concern at certain levels of exposure. This inorganic metal 
occurs naturally in soils, ground water and surface waters and is often 
used in electrical equipment and electrical components. It generally 
gets into water from runoff from mining operations, discharge from 
processing plants and improper waste disposal. Beryllium compounds have 
been associated with damage to the bones and lungs and induction of 
cancer in laboratory animals such as rats and mice when the animals are 
exposed at high levels over their lifetimes. There is limited evidence 
to suggest that beryllium may pose a cancer risk via drinking water 
exposure. Therefore, EPA based the health assessment on noncancer 
effects with an extra uncertainty factor to account for possible 
carcinogenicity. Chemicals that cause cancer in laboratory animals also 
may increase the risk of cancer in humans who are exposed over long 
periods of time. EPA has set the drinking water standard for beryllium 
at 0.004 part per million (ppm) to protect against the risk of these 
adverse health effects. Drinking water which meets the EPA standard is 
associated with little to none of this risk and should be considered 
safe with respect to beryllium.
    (55) Cyanide. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that cyanide is a 
health concern at certain levels of exposure. This inorganic chemical is 
used in electroplating, steel processing, plastics, synthetic fabrics 
and fertilizer products. It usually gets into water as a result of 
improper waste disposal. This chemical has been shown to damage the 
spleen, brain and liver of humans fatally poisoned with cyanide. EPA has 
set the drinking water standard for cyanide at 0.2 parts per million 
(ppm) to protect against the risk of these adverse health effects. 
Drinking water which meets the EPA standard is associated with little to 
none of this risk and should be considered safe with respect to cyanide.
    (56) [Reserved]
    (57) Thallium. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that thallium is 
a health concern at certain high levels of exposure. This inorganic 
metal is found naturally in soils and is used in electronics, 
pharmaceuticals, and the manufacture of glass and alloys. This chemical 
has been shown to damage the kidney, liver, brain and intestines
 
[[Page 404]]
 
of laboratory animals when the animals are exposed at high levels over 
their lifetimes. EPA has set the drinking water standard for thallium at 
0.002 parts per million (ppm) to protect against the risk of these 
adverse health effects. Drinking water which meets the EPA standard is 
associated with little to none of this risk and should be considered 
safe with respect to thallium.
    (58) Benzo[a]pyrene. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 
benzo[a]pyrene is a health concern at certain levels of exposure. 
Cigarette smoke and charbroiled meats are common source of general 
exposure. The major source of benzo[a]pyrene in drinking water is the 
leaching from coal tar lining and sealants in water storage tanks. This 
chemical has been shown to cause cancer in animals such as rats and mice 
when the animals are exposed at high levels. EPA has set the drinking 
water standard for benzo[a]pyrene at 0.0002 parts per million (ppm) to 
protect against the risk of cancer. Drinking water which meets the EPA 
standard is associated with little to none of this risk and should be 
considered safe with respect to benzo[a]pyrene.
    (59) Dalapon. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that dalapon is a 
health concern at certain levels of exposure. This organic chemical is a 
widely used herbicide. It may get into drinking water after application 
to control grasses in crops, drainage ditches and along railroads. This 
chemical has been shown to cause damage to the kidney and liver in 
laboratory animals when the animals are exposed to high levels over 
their lifetimes. EPA has set the drinking water standard for dalapon at 
0.2 parts per million (ppm) to protect against the risk of these adverse 
health effects. Drinking water which meets the EPA standard is 
associated with little to none of this risk and should be considered 
safe with respect to dalapon.
    (60) Dichloromethane. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 
dichloromethane (methylene chloride) is a health concern at certain 
levels of exposure. This organic chemical is a widely used solvent. It 
is used in the manufacture of paint remover, as a metal degreaser and as 
an aerosol propellant. It generally gets into drinking water after 
improper discharge of waste disposal. This chemical has been shown to 
cause cancer in laboratory animals such as rats and mice when the 
animals are exposed at high levels over their lifetimes. Chemicals that 
cause cancer in laboratory animals also may increase the risk of cancer 
in humans who are exposed over long periods of time. EPA has set the 
drinking water standard for dichloromethane at 0.005 parts per million 
(ppm) to reduce the risk of cancer or other adverse health effects which 
have been observed in laboratory animals. Drinking water which meets 
this standard is associated with little to none of this risk and should 
be considered safe with respect to dichloromethane.
    (61) Di (2-ethylhexyl)adipate. The United States Environmental 
Protection Agency (EPA) sets drinking water standards and has determined 
that di(2-ethylhexyl)adipate is a health concern at certain levels of 
exposure. Di(2-ethylhexyl)adipate is a widely used plasticizer in a 
variety of products, including synthetic rubber, food packaging 
materials and cosmetics. It may get into drinking water after improper 
waste disposal. This chemical has been shown to damage liver and testes 
in laboratory animals such as rats and mice exposed to high levels. EPA 
has set the drinking water standard for di(2-ethylhexyl)adipate at 0.4 
parts per million (ppm) to protect against the risk of adverse health 
effects. Drinking water which meets the EPA standards is associated with 
little to none of this risk and should be considered safe with respect 
to di(2-ethylhexyl)adipate.
    (62) Di(2-ethylhexyl)phthalate. The United States Environmental 
Protection Agency (EPA) sets drinking water standards and has determined 
that di(2-ethylhexyl)phthalate is a health concern at certain levels of 
exposure. Di(2-ethylhexyl)phthalate is a widely used plasticizer, which 
is primarily used in the production of polyvinyl
 
[[Page 405]]
 
chloride (PVC) resins. It may get into drinking water after improper 
waste disposal. This chemical has been shown to cause cancer in 
laboratory animals such as rats and mice exposed to high levels over 
their lifetimes. EPA has set the drinking water standard for di(2-
ethylhexyl)phthalate at 0.006 parts per million (ppm) to reduce the risk 
of cancer or other adverse health effects which have been observed in 
laboratory animals. Drinking water which meets the EPA standard is 
associated with little to none of this risk and should be considered 
safe with respect to di(2-ethylhexyl)phthalate.
    (63) Dinoseb. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that dinoseb is a 
health concern at certain levels of exposure. Dinoseb is a widely used 
pesticide and generally gets into drinking water after application on 
orchards, vineyards and other crops. This chemical has been shown to 
damage the thyroid and reproductive organs in laboratory animals such as 
rats exposed to high levels. EPA has set the drinking water standard for 
dinoseb at 0.007 parts per million (ppm) to protect against the risk of 
adverse health effects. Drinking water which meets the EPA standard is 
associated with little to none of this risk and should be considered 
safe with respect to dinoseb.
    (64) Diquat. The United States Environmental Protection Agency (EPA) 
sets drinking water standards and has determined that diquat is a health 
concern at certain levels of exposure. This organic chemical is a 
herbicide used to control terrestrial and aquatic weeds. It may get into 
drinking water by runoff into surface water. This chemical has been 
shown to damage the liver, kidney and gastrointestinal tract and causes 
cataract formation in laboratory animals such as dogs and rats exposed 
at high levels over their lifetimes. EPA has set the drinking water 
standard for diquat at 0.02 parts per million (ppm) to protect against 
the risk of these adverse health effects. Drinking water which meets the 
EPA standard is associated with little to none of this risk and should 
be considered safe with respect to diquat.
    (65) Endothall. The United States Environmental Protection Agency 
(EPA) has determined that endothall is a health concern at certain 
levels of exposure. This organic chemical is a herbicide used to control 
terrestrial and aquatic weeds. It may get into water by runoff into 
surface water. This chemical has been shown to damage the liver, kidney, 
gastrointestinal tract and reproductive system of laboratory animals 
such as rats and mice exposed at high levels over their lifetimes. EPA 
has set the drinking water standard for endothall at 0.1 parts per 
million (ppm) to protect against the risk of these adverse health 
effects. Drinking water which meets the EPA standard is associated with 
little to none of this risk and should be considered safe with respect 
to endothall.
    (66) Endrin. The United States Environmental Protection Agency (EPA) 
sets drinking water standards and has determined that endrin is a health 
concern at certain levels of exposure. This organic chemical is a 
pesticide no longer registered for use in the United States. However, 
this chemical is persistent in treated soils and accumulates in 
sediments and aquatic and terrestrial biota. This chemical has been 
shown to cause damage to the liver, kidney and heart in laboratory 
animals such as rats and mice when the animals are exposed at high 
levels over their lifetimes. EPA has set the drinking water standard for 
endrin at 0.002 parts per million (ppm) to protect against the risk of 
these adverse health effects which have been observed in laboratory 
animals. Drinking water that meets the EPA standard is associated with 
little to none of this risk and should be considered safe with respect 
to endrin.
    (67) Glyphosate. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that glyphosate 
is a health concern at certain levels of exposure. This organic chemical 
is a herbicide used to control grasses and weeds. It may get into 
drinking water by runoff into surface water. This chemical has been 
shown to cause damage to the liver and kidneys in laboratory animals 
such as rats and mice when the animals are exposed at high
 
[[Page 406]]
 
levels over their lifetimes. EPA has set the drinking water standard for 
glyphosate at 0.7 parts per million (ppm) to protect against the risk of 
these adverse health effects. Drinking water which meets the EPA 
standard is associated with little to none of this risk and should be 
considered safe with respect to glyphosate.
    (68) Hexachlorobenzene. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 
hexachlorobenzene is a health concern at certain levels of exposure. 
This organic chemical is produced as an impurity in the manufacture of 
certain solvents and pesticides. This chemical has been shown to cause 
cancer in laboratory animals such as rats and mice when the animals are 
exposed to high levels during their lifetimes. Chemicals that cause 
cancer in laboratory animals also may increase the risk of cancer in 
humans who are exposed over long periods of time. EPA has set the 
drinking water standard for hexachlorobenzene at 0.001 parts per million 
(ppm) to protect against the risk of cancer and other adverse health 
effects. Drinking water which meets the EPA standard is associated with 
little to none of this risk and should be considered safe with respect 
to hexachlorobenzene.
    (69) Hexachlorocyclopentadiene. The United States Environmental 
Protection Agency (EPA) establishes drinking water standards and has 
determined that hexachlorocyclopentadiene is a health concern at certain 
levels of exposure. This organic chemical is used as an intermediate in 
the manufacture of pesticides and flame retardants. It may get into 
water by discharge from production facilities. This chemical has been 
shown to damage the kidney and the stomach of laboratory animals when 
exposed at high levels over their lifetimes. EPA has set the drinking 
water standard for hexachlorocyclopentadiene at 0.05 parts per million 
(ppm) to protect against the risk of these adverse health effects. 
Drinking water which meets the EPA standard is associated with little to 
none of this risk and should be considered safe with respect to 
hexachlorocyclopentadiene.
    (70) Oxamyl. The United States Environmental Protection Agency (EPA) 
establishes drinking water standards and has determined that oxamyl is a 
health concern at certain levels of exposure. This organic chemical is 
used as a pesticide for the control of insects and other pests. It may 
get into drinking water by runoff into surface water or leaching into 
ground water. This chemical has been shown to damage the kidneys of 
laboratory animals such as rats when exposed at high levels over their 
lifetimes. EPA has set the drinking water standard for oxamyl at 0.2 
parts per million (ppm) to protect against the risk of these adverse 
health effects. Drinking water which meets the EPA standard is 
associated with little to none of this risk and should be considered 
safe with respect to oxamyl.
    (71) Picloram. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that picloram is 
a health concern at certain levels of exposure. This organic chemical is 
used as a pesticide for broadleaf weed control. It may get into drinking 
water by runoff into surface water or leaching into ground water as a 
result of pesticide application and improper waste disposal. This 
chemical has been shown to cause damage to the kidneys and liver in 
laboratory animals such as rats when the animals are exposed at high 
levels over their lifetimes. EPA has set the drinking water standard for 
picloram at 0.5 parts per million (ppm) to protect against the risk of 
these adverse health effects. Drinking water which meets the EPA 
standard is associated with little to none of this risk and should be 
considered safe with respect to picloram.
    (72) Simazine. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that simazine is 
a health concern at certain levels of exposure. This organic chemical is 
a herbicide used to control annual grasses and broadleaf weeds. It may 
leach into ground water or runs off into surface water after 
application. This chemical may cause cancer in laboratory animals such 
as rats and mice exposed at high levels during their lifetimes.
 
[[Page 407]]
 
Chemicals that cause cancer in laboratory animals also may increase the 
risk of cancer in humans who are exposed over long periods of time. EPA 
has set the drinking water standard for simazine at 0.004 parts per 
million (ppm) to reduce the risk of cancer or other adverse health 
effects. Drinking water which meets the EPA standard is associated with 
little to none of this risk and should be considered safe with respect 
to simazine.
    (73) 1,2,4-Trichlorobenzene. The United States Environmental 
Protection Agency (EPA) sets drinking water standards and has determined 
that 1,2,4-trichlorobenzene is a health concern at certain levels of 
exposure. This organic chemical is used as a dye carrier and as a 
precursor in herbicide manufacture. It generally gets into drinking 
water by discharges from industrial activities. This chemical has been 
shown to cause damage to several organs, including the adrenal glands. 
EPA has set the drinking water standard for 1,2,4-trichlorobenzene at 
0.07 parts per million (ppm) to protect against the risk of these 
adverse health effects. Drinking water which meets the EPA standard is 
associated with little to none of this risk and should be considered 
safe with respect to 1,2,4-trichlorobenzene.
    (74) 1,1,2-Trichloroethane. The United States Environmental 
Protection Agency (EPA) sets drinking water standards and has determined 
1,1,2-trichloroethane is a health concern at certain levels of exposure. 
This organic chemical is an intermediate in the production of 1,1-
dichloroethylene. It generally gets into water by industrial discharge 
of wastes. This chemical has been shown to damage the kidney and liver 
of laboratory animals such as rats exposed to high levels during their 
lifetimes. EPA has set the drinking water standard for 1,1,2-
trichloroethane at 0.005 parts per million (ppm) to protect against the 
risk of these adverse health effects. Drinking water which meets the EPA 
standard is associated with little to none of this risk and should be 
considered safe with respect to 1,1,2-trichloroethane.
    (75) 2,3,7,8-TCDD (Dioxin). The United States Environmental 
Protection Agency (EPA) sets drinking water standards and has determined 
that dioxin is a health concern at certain levels of exposure. This 
organic chemical is an impurity in the production of some pesticides. It 
may get into drinking water by industrial discharge of wastes. This 
chemical has been shown to cause cancer in laboratory animals such as 
rats and mice when the animals are exposed at high levels over their 
lifetimes. Chemicals that cause cancer in laboratory animals also may 
increase the risk of cancer in humans who are exposed over long periods 
of time. EPA has set the drinking water standard for dioxin at 
0.00000003 parts per million (ppm) to reduce the risk of cancer or other 
adverse health effects which have been observed in laboratory animals. 
Drinking water which meets this standard is associated with little to 
none of this risk and should be considered safe with respect to dioxin.
    (76) Chlorine. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that chlorine is 
a health concern at certain levels of exposure. Chlorine is added to 
drinking water as a disinfectant to kill bacteria and other disease-
causing microorganisms and is also added to provide continuous 
disinfection throughout the distribution system. Disinfection is 
required for surface water systems. However, at high doses for extended 
periods of time, chlorine has been shown to affect blood and the liver 
in laboratory animals. EPA has set a drinking water standard for 
chlorine to protect against the risk of these adverse effects. Drinking 
water which meets this EPA standard is associated with little to none of 
this risk and should be considered safe with respect to chlorine.
    (77) Chloramines. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that chloramines 
are a health concern at certain levels of exposure. Chloramines are 
added to drinking water as a disinfectant to kill bacteria and other 
disease-causing microorganisms and are also added to provide continuous 
disinfection throughout the distribution system. Disinfection is 
required for surface water systems. However, at high doses for extended 
periods of time,
 
[[Page 408]]
 
chloramines have been shown to affect blood and the liver in laboratory 
animals. EPA has set a drinking water standard for chloramines to 
protect against the risk of these adverse effects. Drinking water which 
meets this EPA standard is associated with little to none of this risk 
and should be considered safe with respect to chloramines.
    (78) Chlorine dioxide. The United States Environmental Protection 
Agency (EPA) sets drinking water standards and has determined that 
chlorine dioxide is a health concern at certain levels of exposure. 
Chlorine dioxide is used in water treatment to kill bacteria and other 
disease-causing microorganisms and can be used to control tastes and 
odors. Disinfection is required for surface water systems. However, at 
high doses, chlorine dioxide-treated drinking water has been shown to 
affect blood in laboratory animals. Also, high levels of chlorine 
dioxide given to laboratory animals in drinking water have been shown to 
cause neurological effects on the developing nervous system. These 
neurodevelopmental effects may occur as a result of a short-term 
excessive chlorine dioxide exposure. To protect against such potentially 
harmful exposures, EPA requires chlorine dioxide monitoring at the 
treatment plant, where disinfection occurs, and at representative points 
in the distribution system serving water users. EPA has set a drinking 
water standard for chlorine dioxide to protect against the risk of these 
adverse effects.
 
    Note: In addition to the language in this introductory text of 
paragraph (e)(78), systems must include either the language in paragraph 
(e)(78)(i) or (e)(78)(ii) of this section. Systems with a violation at 
the treatment plant, but not in the distribution system, are required to 
use the language in paragraph (e)(78)(i) of this section and treat the 
violation as a nonacute violation. Systems with a violation in the 
distribution system are required to use the language in paragraph 
(e)(78)(ii) of this section and treat the violation as an acute 
violation.
 
    (i) The chlorine dioxide violations reported today are the result of 
exceedances at the treatment facility only, and do not include 
violations within the distribution system serving users of this water 
supply. Continued compliance with chlorine dioxide levels within the 
distribution system minimizes the potential risk of these violations to 
present consumers.
    (ii) The chlorine dioxide violations reported today include 
exceedances of the EPA standard within the distribution system serving 
water users. Violations of the chlorine dioxide standard within the 
distribution system may harm human health based on short-term exposures. 
Certain groups, including pregnant women, infants, and young children, 
may be especially susceptible to adverse effects of excessive exposure 
to chlorine dioxide-treated water. The purpose of this notice is to 
advise that such persons should consider reducing their risk of adverse 
effects from these chlorine dioxide violations by seeking alternate 
sources of water for human consumption until such exceedances are 
rectified. Local and State health authorities are the best sources for 
information concerning alternate drinking water.
    (79) Disinfection byproducts and treatment technique for DBPs. The 
United States Environmental Protection Agency (EPA) sets drinking water 
standards and requires the disinfection of drinking water. However, when 
used in the treatment of drinking water, disinfectants react with 
naturally-occurring organic and inorganic matter present in water to 
form chemicals called disinfection byproducts (DBPs). EPA has determined 
that a number of DBPs are a health concern at certain levels of 
exposure. Certain DBPs, including some trihalomethanes (THMs) and some 
haloacetic acids (HAAs), have been shown to cause cancer in laboratory 
animals. Other DBPs have been shown to affect the liver and the nervous 
system, and cause reproductive or developmental effects in laboratory 
animals. Exposure to certain DBPs may produce similar effects in people. 
EPA has set standards to limit exposure to THMs, HAAs, and other DBPs.
    (80) Bromate. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that bromate is a 
health concern at certain levels of exposure. Bromate is formed as a 
byproduct of ozone disinfection of drinking water. Ozone reacts with 
naturally occurring
 
[[Page 409]]
 
bromide in the water to form bromate. Bromate has been shown to produce 
cancer in rats. EPA has set a drinking water standard to limit exposure 
to bromate.
    (81) Chlorite. The United States Environmental Protection Agency 
(EPA) sets drinking water standards and has determined that chlorite is 
a health concern at certain levels of exposure. Chlorite is formed from 
the breakdown of chlorine dioxide, a drinking water disinfectant. 
Chlorite in drinking water has been shown to affect blood and the 
developing nervous system. EPA has set a drinking water standard for 
chlorite to protect against these effects. Drinking water which meets 
this standard is associated with little to none of these risks and 
should be considered safe with respect to chlorite.
    (f) Public notices for fluoride. Notice of violations of the maximum 
contaminant level for fluoride, notices of variances and exemptions from 
the maximum contaminant level for fluoride, and notices of failure to 
comply with variance and exemption schedules for the maximum contaminant 
level for fluoride shall consist of the public notice prescribed in 
Sec. 143.5(b), plus a description of any steps which the system is 
taking to come into compliance.
    (g) Public notification by the State. The State may give notice to 
the public required by this section on behalf of the owner or operator 
of the public water system if the State complies with the requirements 
of this section. However, the owner or operator of the public water 
system remains legally responsible for ensuring that the requirements of 
this section are met.
 
[52 FR 41546, Oct. 28, 1987, as amended at 54 FR 15188, Apr. 17, 1989; 
54 FR 27527, 27566, June 29, 1989; 55 FR 25064, June 19, 1990; 56 FR 
3587, Jan. 30, 1991; 56 FR 26548, June 7, 1991; 56 FR 30279, July 1, 
1991; 57 FR 31843, July 17, 1992; 59 FR 34323, July 1, 1994; 60 FR 
33932, June 29, 1995; 63 FR 69464, 69515, Dec. 16, 1998; 65 FR 26022, 
May 4, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.33]
 
[Page 409]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart D--Reporting and Recordkeeping
 
Sec. 141.33  Record maintenance.
 
    Any owner or operator of a public water system subject to the 
provisions of this part shall retain on its premises or at a convenient 
location near its premises the following records:
    (a) Records of bacteriological analyses made pursuant to this part 
shall be kept for not less than 5 years. Records of chemical analyses 
made pursuant to this part shall be kept for not less than 10 years. 
Actual laboratory reports may be kept, or data may be transferred to 
tabular summaries, provided that the following information is included:
    (1) The date, place, and time of sampling, and the name of the 
person who collected the sample;
    (2) Identification of the sample as to whether it was a routine 
distribution system sample, check sample, raw or process water sample or 
other special purpose sample;
    (3) Date of analysis;
    (4) Laboratory and person responsible for performing analysis;
    (5) The analytical technique/method used; and
    (6) The results of the analysis.
    (b) Records of action taken by the system to correct violations of 
primary drinking water regulations shall be kept for a period not less 
than 3 years after the last action taken with respect to the particular 
violation involved.
    (c) Copies of any written reports, summaries or communications 
relating to sanitary surveys of the system conducted by the system 
itself, by a private consultant, or by any local, State or Federal 
agency, shall be kept for a period not less than 10 years after 
completion of the sanitary survey involved.
    (d) Records concerning a variance or exemption granted to the system 
shall be kept for a period ending not less than 5 years following the 
expiration of such variance or exemption.
    (e) Copies of public notices issued pursuant to Subpart Q of this 
part and certifications made to the primacy agency pursuant to 
Sec. 141.31 must be kept for three years after issuance.
 
[40 FR 59570, Dec. 24, 1975, as amended at 65 FR 26022, May 4, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.35]
 
[Page 409-412]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart D--Reporting and Recordkeeping
 
Sec. 141.35  Reporting of unregulated contaminant monitoring results.
 
    (a) Does this reporting apply to me? (1) This section applies to any 
owner or
 
[[Page 410]]
 
operator of a public water system required to monitor for unregulated 
contaminants under Sec. 141.40. This section requires you to report the 
results of this monitoring.
    (2) Exception. You do not need to report results if you are a system 
serving a population of 10,000 or less, since EPA will arrange for 
testing and reporting of the results. However, you will still need to 
comply with consumer confidence reporting and public notification 
requirements for these results.
    (b) To whom must I report? You must report the results of 
unregulated contaminant monitoring to EPA and provide a copy to the 
State. You must also notify the public of the monitoring results as 
provided in Subpart O (Consumer Confidence Reports) and Subpart Q 
(Public Notification) of this part.
    (c) When must I report monitoring results? You must report the 
results of unregulated contaminant monitoring within thirty (30) days 
following the month in which you received the results from the 
laboratory. EPA will conduct its quality control review of the data for 
sixty (60) days after you report the data, which will also allow for 
quality control review by systems and States. After the quality control 
review, EPA will place the data in the national drinking water 
contaminant occurrence database at the time of the next database update. 
Exception: Reporting of monitoring results to EPA received by public 
water systems prior to June 30, 2001, must occur between July 1 and 
September 30, 2001.
    (d) What information must I report? (1) You must provide the 
following "point of contact" information: name, mailing address, phone 
number, and e-mail address for:
    (i) PWS Technical Contact, the person at your PWS that is 
responsible for the technical aspects of your unregulated contaminant 
monitoring regulation (UCMR) activities, such as details concerning 
sampling and reporting;
    (ii) PWS Official, the person at your PWS that is able to function 
as the official spokesperson for your UCMR activities; and
    (iii) Laboratory Contact Person, the person at your laboratory that 
is able to address questions concerning the analysis that they provided 
for you.
    (2) You must update this information if it changes during the course 
of UCMR implementation.
    (3) You must report the information specified for data elements 1 
through 16 in the following table for each sample.
 
   Table 1.--Unregulated Contaminant Monitoring Reporting Requirements
------------------------------------------------------------------------
         Data Element                          Definition
------------------------------------------------------------------------
1. Public Water System (PWS)   The code used to identify each PWS. The
 Identification Number.         code begins with the standard two-
                                character postal State abbreviation; the
                                remaining seven characters are unique to
                                each PWS.
2. Public Water System         The Sampling point identification number
 Facility Identification        and sampling point type identification
 Number--Sampling Point         must either be static or traceable to
 Identification Number and      previous numbers and type
 Sampling Point Type            identifications throughout the period of
 Identification.                unregulated contaminant monitoring. The
                                Sampling point identification number is
                                a three-part alphanumeric designation,
                                made up of:
                               a. The Public Water System Facility
                                Identification Number is an
                                identification number established by the
                                State, or at the State's discretion the
                                PWS, that is unique to the PWS for an
                                intake for each source of water, a
                                treatment plant, a distribution system,
                                or any other facility associated with
                                water treatment or delivery and provides
                                for the relationship of facilities to
                                each other to be maintained;
                               b. The Sampling Point Identification
                                Number is an identification number
                                established by the State, or at the
                                State's discretion the PWS, that is
                                unique to each PWS facility that
                                identifies the specific sampling point
                                and allows the relationship of the
                                sampling point to other facilities to be
                                maintained; and
                               c. Sampling Point Type Identification is
                                one of following:
                               SR--Untreated water collected at the
                                source of the water system facility.
                               EP--Entry point to the distribution
                                system.
                               MD--midpoint in the distribution system
                                where the disinfectant residual would be
                                expected to be typical for the system
                                such as the location for sampling
                                coliform indicator bacteria as described
                                in 40 CFR 141.21.
                               MR--point of maximum retention is the
                                point located the furthest from the
                                entry point to the distribution system
                                which is approved by the State for
                                trihalomethane (THM) (disinfectant
                                byproducts (DBP)) and/or total coliform
                                sampling.
                               LD--location in the distribution system
                                where the disinfectant residual is the
                                lowest which is approved by the State
                                for THM (DBP) and/or total coliform
                                sampling.
3. Sample Collection Date....  The date the sample is collected reported
                                as 4-digit year, 2-digit month, and 2-
                                digit day.
 
[[Page 411]]
 
 
4. Sample Identification       An alphanumeric value of up to 15
 Number.                        characters assigned by the laboratory to
                                uniquely identify containers or groups
                                of containers containing water samples
                                collected at the same time and sampling
                                point.
5. Contaminant/Parameter.....  The unregulated contaminant or water
                                quality parameter for which the sample
                                is being analyzed.
6. Analytical Results--Sign..  An alphanumeric value indicating whether
                                the sample analysis result was:
                               a. () "less than" means the contaminant
                                was not detected or was detected at a
                                level "less than" the MRL.
                               b. (=) "equal to" means the contaminant
                                was detected at a level "equal to" the
                                value reported in "Analytical Result--
                                Value."
7. Analytical Result--Value..  The actual numeric value of the analysis
                                for chemical and microbiological
                                results, or the minimum reporting level
                                (MRL) if the analytical result is less
                                than the contaminant's MRL.
8. Analytical Result--Unit of  The unit of measurement for the
 Measure.                       analytical results reported. [e.g.,
                                micrograms per liter, (<greek-m>g/L);
                                colony-forming units per 100
                                milliliters, (CFU/100 mL), etc.]
9. Analytical Method Number..  The identification number of the
                                analytical method used.
10. Sample Analysis Type.....  The type of sample collected. Permitted
                                values include:
                               a. RFS--Raw field sample--untreated
                                sample collected and submitted for
                                analysis under this rule.
                               b. RDS--Raw duplicate field sample--
                                untreated field sample duplicate
                                collected at the same time and place as
                                the raw field sample and submitted for
                                analysis under this rule.
                               c. TFS--Treated field sample--treated
                                sample collected and submitted for
                                analysis under this rule.
                               d. TDS--Treated duplicate field sample--
                                treated field sample duplicate collected
                                at the same time and place as the
                                treated field sample and submitted for
                                analysis under this rule.
11. Sample Batch               The sample batch identification number
 Identification Number.         consists of three parts:
                               a. Up to a 10-character laboratory
                                identification code assigned by EPA.
                               b. Up to a 15-character code assigned by
                                the laboratory to uniquely identify each
                                extraction or analysis batch.
                               c. The date that the samples contained in
                                each extraction batch extracted or in an
                                analysis batch were analyzed, reported
                                as an 8-digit number in the form 4-digit
                                year, 2-digit month, and 2-digit day.
12. Minimum Reporting Level..  Minimum Reporting Level (MRL) refers to
                                the lowest concentration of an analyte
                                that may be reported. Unregulated
                                contaminant monitoring (UCM) MRLs are
                                established in Sec.  141.40 monitoring
                                requirements for unregulated
                                contaminants.
13. Minimum Reporting Level    The unit of measure to express the
 Unit of Measure.               concentration, count, or other value of
                                a contaminant level for the Minimum
                                Reporting Level reported. (e.g., <greek-
                                m>g/L, colony forming units/100 mL (CFU/
                                100 mL), etc.).
14. Analytical Precision.....  Precision is the degree of agreement
                                between two repeated measurements and is
                                monitored through the use of duplicate
                                spiked samples. For purposes of the
                                Unregulated Contaminant Monitoring
                                Regulation (UCMR), Analytical Precision
                                is defined as the relative percent
                                difference (RPD) between spiked matrix
                                duplicates. The RPD for the spiked
                                matrix duplicates analyzed in the same
                                batch of samples as the analytical
                                result being reported is to be entered
                                in this field. Precision is calculated
                                as Relative Percent Difference (RPD) of
                                spiked matrix duplicates from the mean
                                using:
                               RPD = absolute value of [(X<INF>1</INF>--X<INF>2</INF>) /(X<INF>1</INF>
                                +X<INF>2</INF>)/2 ] x 100%.
                               where:
                               X<INF>1</INF> is the concentration observed in
                                spiked field sample minus the
                                concentration observed in unspiked field
                                sample.
                               X<INF>2</INF> is the concentration observed in
                                duplicate spiked field sample minus the
                                concentration observed in unspiked field
                                sample.
15. Analytical Accuracy......  Accuracy describes how close a result is
                                to the true value measured through the
                                use of spiked field samples. For
                                purposes of unregulated contaminant
                                monitoring, accuracy is defined as the
                                percent recovery of the contaminant in
                                the spiked matrix sample analyzed in the
                                same analytical batch as the sample
                                result being reported and calculated
                                using:
                               % recovery = [(amt. found in spiked
                                sample--amt. found in sample)/amt.
                                spiked]  x  100%.
16. Spiking Concentration....  The concentration of method analyte(s)
                                added to a sample to be analyzed for
                                calculating analytical precision and
                                accuracy where the value reported use
                                the same unit of measure reported for
                                Analytical Results.
17. Presence/Absence.........  Reserved.
------------------------------------------------------------------------
 
    (e) How must I report this information? (1) You must report results 
from monitoring under this rule using EPA's
 
[[Page 412]]
 
electronic reporting system. For quality control purposes, you must 
instruct the organization(s) responsible for the analysis of unregulated 
contaminant samples taken under Sec. 141.40 to enter the results into 
the reporting system, in the format specified by EPA. You are 
responsible for reviewing those results and approving the reporting (via 
the electronic system) of the results to EPA. You must also provide a 
copy of the results to the State, as directed by the State.
 
    (2) If you report more than one set of valid results for the same 
sampling point and the same sampling event (for example, because you 
have had more than one organization (e.g., a laboratory) analyze 
replicate samples collected under Sec. 141.40, or because you have 
collected multiple samples during a single monitoring event at the same 
sampling point), EPA will use the highest of the reported values as the 
official result.
    (f) Does the laboratory to which I send samples report the results 
for me? While you must instruct the organization conducting unregulated 
contaminant analysis (e.g., a laboratory) to enter the results into 
EPA's electronic reporting system, you are responsible for reviewing and 
approving the submission of the results to EPA. If the analytical 
organization or laboratory cannot enter these data for you using EPA's 
electronic reporting system, then you may explain to EPA in writing the 
reasons why alternate reporting is necessary and must receive EPA's 
approval to use an alternate reporting procedure.
    (g) Can I report previously collected data to meet the testing and 
reporting requirements for the contaminants listed in Sec. 141.40(a)(3)? 
Yes, as long as the data meet the specific requirements of 
Sec. 141.40(a)(3), (4), (5), and Appendix A of Sec. 141.40 and you 
report the data with the information specified in paragraph (d) of this 
section.
 
[64 FR 50611, Sept. 17, 1999, as amended at 66 FR 2300, Jan. 11, 2001; 
66 FR 27215, May 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.40]
 
[Page 412-427]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
  Subpart E--Special Regulations, Including Monitoring Regulations and 
                         Prohibition on Lead Use
 
Sec. 141.40  Monitoring requirements for unregulated contaminants.
 
 
    (a) Requirements for owners and operators of public water systems. 
(1) Do I have to monitor for unregulated contaminants?
    (i) Transient systems. If you own or operate a transient non-
community water system, you do not have to monitor for unregulated 
contaminants.
    (ii) Large systems not purchasing their entire water supply from 
another system. If you own or operate a wholesale or retail public water 
system (other than a transient system) that serves more than 10,000 
persons, as determined by the State, and do not purchase your entire 
water supply from another public water system, you must monitor as 
follows:
    (A) You must monitor for the unregulated contaminants on List 1 of 
Table 1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section.
    (B) You must monitor for the unregulated contaminants on List 2 of 
Table 1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section, if notified by your State or EPA that 
you are part of the Screening Surveys.
    (C) You must monitor for the unregulated contaminants on List 3 of 
Table 1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section, if notified by your State or EPA that 
you are part of the Pre-Screen Testing.
    (iii) Large systems purchasing their entire water supply from 
another system. If you own or operate a public water system (other than 
a transient system) that serves more than 10,000 persons and purchase 
your entire water supply from a wholesale or retail public water system, 
you must monitor as follows:
    (A) You must monitor for the unregulated contaminants on List 1 of 
Table 1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section, that
 
[[Page 413]]
 
have a "sampling location" indicated as "distribution system".
    (B) You must monitor for the unregulated contaminants on List 2 of 
Table 1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section, that have a "sampling location" 
indicated as "distribution system" if notified by your State or EPA 
that you are part of the Screening Surveys.
    (C) You must monitor for the unregulated contaminants on List 3 of 
Table 1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section, that have a "sampling location" 
indicated as "distribution system" if notified by your State or EPA 
that you are part of the Pre-Screen Testing.
    (iv) Small systems not purchasing their entire water supply from 
another system. If you own or operate a public water system (other than 
a transient system) that serves 10,000 or fewer persons and do not 
purchase your entire water supply from another public water system, you 
must monitor as follows:
    (A) You must monitor for the unregulated contaminants on List 1 of 
Table 1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section, if you are notified by your State or 
EPA that you are part of the State Monitoring Plan for small systems.
    (B) You must monitor for the unregulated contaminants on List 2 of 
Table 1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section, if you are notified by your State or 
EPA that you are part of the Screening Surveys.
    (C) You must monitor for the unregulated contaminants on List 3 of 
Table 1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section, if you are notified by your State or 
EPA that you are part of the Pre-Screen Testing.
    (v) Small systems purchasing their entire water supply from another 
system. If you own or operate a public water system (other than a 
transient system) that serves 10,000 or fewer persons and purchase your 
entire water supply from another public water system, you must monitor 
as follows:
    (A) You must monitor for the unregulated contaminants on List 1 of 
Table 1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section, that have a "sampling location" 
indicated as "distribution system" if you are notified by your State 
or EPA that you are part of the State Monitoring Plan for small systems.
    (B) You must monitor for the unregulated contaminants on List 2 of 
Table 1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section, that have a "sampling location" 
indicated as "distribution system" if you are notified by your State 
or EPA that you are part of the Screening Surveys.
    (C) You must monitor for the unregulated contaminants on List 3 of 
Table 1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section, that have a "sampling location" 
indicated as "distribution system" if you are notified by your State 
or EPA that you are part of the Pre-Screen Testing.
    (2) How would I be selected for the monitoring under the State 
Monitoring Plan, the Screening Surveys, or the Pre-Screen Testing? (i) 
State Monitoring Plan. Only a representative sample of small systems 
must monitor for unregulated contaminants. EPA will select a national 
representative sample of small public water systems in each State 
through the use of a random number generator. Selection will be weighted 
by population served within each system water source type (surface or 
ground water) and system size category (systems serving 25-500, 501-
3,300, and 3,301-10,000 persons). EPA may allocate additional systems to 
water source types or system size categories to increase the statistical 
inferential ability for those categories. EPA will also select a small 
group of systems to be "Index systems." Systems selected as Index 
systems are required to provide information about their site and 
operation that will serve to allow extrapolation of their results to 
other systems of similar size, rather than collecting detailed 
information at every small system. Each State will have the opportunity 
to make some modifications to the list of small systems that EPA
 
[[Page 414]]
 
selects. You will be notified by the State or EPA if your system is part 
of the final State Monitoring Plan.
    (ii) Screening Surveys. The purpose of the Screening Surveys is to 
determine the occurrence of contaminants in drinking water or sources of 
drinking water for which analytical methods have recently been developed 
for unregulated contaminant monitoring. EPA will select up to 300 
systems to participate in each survey by using a random number 
generator. You will be notified by the State or EPA if your system is 
selected for monitoring under the Screening Surveys.
    (iii) Pre-screen Testing. The purpose of Pre-Screen Testing is to 
determine the occurrence of contaminants for which EPA needs to evaluate 
new analytical methods in locations where the contaminants are most 
likely to be found. EPA will select up to 200 systems to participate in 
this testing after considering the characteristics of the contaminants, 
precipitation, system operation, and environmental conditions. You will 
be notified by the State or EPA that your system has been selected for 
monitoring under the Pre-Screen Testing program.
    (3) For which contaminants must I monitor? Lists 1, 2 and 3 of 
unregulated contaminants are listed in the following table:
 
                       Table 1.--Unregulated Contaminant Monitoring Regulation (1999) List
----------------------------------------------------------------------------------------------------------------
                               List 1--assessment monitoring chemical contaminants
-----------------------------------------------------------------------------------------------------------------
                                                                                                       6-period
                                                                                                        during
                                         2-CAS registry    3-analytical     4-minimum    5-sampling     which
             1-contaminant                   number           methods       reporting     location    monitoring
                                                                              level                     to be
                                                                                                      completed
----------------------------------------------------------------------------------------------------------------
2, 4-dinitrotoluene....................        121-14-2  EPA Method 525.2    2 <greek-      EPTDS <SUP>f</SUP>    2001-2003
                                                                        <SUP>a</SUP>      m>g/L <SUP>e</SUP>
2, 6 dinitrotoluene....................        606-20-2  EPA Method 525.2    2 <greek-      EPTDS <SUP>f</SUP>    2001-2003
                                                                        <SUP>a</SUP>      m>g/L <SUP>e</SUP>
Acetochlor.............................      34256-82-1  EPA Method 525.2    2 <greek-      EPTDS <SUP>f</SUP>    2001-2003
                                                                        <SUP>a</SUP>      m>g/L <SUP>o</SUP>
DCPA mono-acid degradate <SUP>h</SUP>.............        887-54-7  EPA Method 515.1    1 <greek-      EPTDS <SUP>f</SUP>    2001-2003
                                                            <SUP>a</SUP>, EPA Method      m>g/L <SUP>e</SUP>
                                                             515.2 <SUP>a</SUP>, EPA
                                                             Method 515.3
                                                          <SUP>i,j</SUP>, EPA Method
                                                          515.4 <SUP>k</SUP>, D5317-
                                                               93 <SUP>b</SUP>, AOAC
                                                                 992.32 <SUP>c</SUP>
DCPA di-acid degradate <SUP>h</SUP>...............       2136-79-0  EPA Method 515.1    1 <greek-      EPTDS <SUP>f</SUP>    2001-2003
                                                            <SUP>a</SUP>, EPA Method      m>g/L <SUP>e</SUP>
                                                             515.2 <SUP>a</SUP>, EPA
                                                             Method 515.3
                                                          <SUP>i,j</SUP>, EPA Method
                                                          515.4 <SUP>k</SUP>, D5317-
                                                               93 <SUP>b</SUP>, AOAC
                                                                 992.32 <SUP>c</SUP>
4,4'-DDE...............................         72-55-9    EPA Method 508  0.8 <greek-      EPTDS <SUP>f</SUP>    2001-2003
                                                            <SUP>a</SUP>, EPA Method      m>g/L <SUP>e</SUP>
                                                             508.1 <SUP>a</SUP>, EPA
                                                          Method 525.2 <SUP>a</SUP>,
                                                         D5812-96 <SUP>b</SUP>, AOAC
                                                                 990.06 <SUP>c</SUP>
EPTC...................................        759-94-4    EPA Method 507    1 <greek-      EPTDS <SUP>f</SUP>    2001-2003
                                                            <SUP>a</SUP>, EPA Method      m>g/L <SUP>e</SUP>
                                                          525.2 <SUP>a</SUP>, D5475-
                                                               93 <SUP>b</SUP>, AOAC
                                                                 991.07 <SUP>c</SUP>
Molinate...............................       2212-67-1    EPA Method 507  0.9 <greek-      EPTDS <SUP>f</SUP>    2001-2003
                                                            <SUP>a</SUP>, EPA Method      m>g/L <SUP>e</SUP>
                                                          525.2 <SUP>a</SUP>, D5475-
                                                               93 <SUP>b</SUP>, AOAC
                                                                 991.07 <SUP>c</SUP>
 
[[Page 415]]
 
 
MTBE...................................       1634-04-4  EPA Method 502.2    5 <greek-      EPTDS <SUP>f</SUP>    2001-2003
                                                            <SUP>a,n</SUP>, SM 6200C      m>g/L <SUP>g</SUP>
                                                          <SUP>d,n</SUP>, EPA Method
                                                          524.2 <SUP>a</SUP>, D5790-
                                                           95 <SUP>b</SUP>, SM 6210D
                                                            <SUP>d</SUP>, SM 6200B <SUP>d</SUP>
Nitrobenzene...........................         98-95-3  EPA Method 524.2   10 <greek-      EPTDS <SUP>f</SUP>    2001-2003
                                                           <SUP>a</SUP>, D5790-95 <SUP>b</SUP>,      m>g/L <SUP>g</SUP>
                                                               SM6210D <SUP>d</SUP>,
                                                                SM6200B <SUP>d</SUP>
Perchlorate............................      14797-73-0  EPA Method 314.0    4 <greek-      EPTDS <SUP>f</SUP>    2001-2003
                                                                        <SUP>l</SUP>      m>g/L <SUP>m</SUP>
Terbacil...............................       5902-51-2    EPA Method 507    2 <greek-      EPTDS <SUP>f</SUP>   2001-2003
                                                            <SUP>a</SUP>, EPA Method      m>g/L <SUP>e</SUP>
                                                          525.2 <SUP>a</SUP>, D5475-
                                                               93 <SUP>b</SUP>, AOAC
                                                                 991.07 <SUP>c</SUP>
----------------------------------------------------------------------------------------------------------------
Column headings are:
\1\--Chemical or microbiological contaminant: the name of the contaminants to be analyzed.
\2\--CAS (Chemical Abstract Service Number) Registry No. or Identification Number: a unique number identifying
  the chemical contaminants.
\3\--Analytical Methods: method numbers identifying the methods that must be used to test the contaminants.
\4\--Minimum Reporting Level: the value and unit of measure at or above which the concentration or density of
  the contaminant must be measured using the Approved Analytical Methods.
\5\--Sampling Location: the locations within a PWS at which samples must be collected.
\6\--Years During Which Monitoring to be Completed: The years during which the sampling and testing are to occur
  for the indicated contaminant.
The procedures shall be done in accordance with the documents listed next in these footnotes. The incorporation
  by reference of the following documents listed in footnotes b-d, i, k and l was approved by the Director of
  the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the documents may be
  obtained from the following sources. Information regarding obtaining these documents can be obtained from the
  Safe Drinking Water Hotline at 800-426-4791. Documents may be inspected at EPA's Drinking Water Docket, 401 M
  Street, SW., Washington, DC 20460 (Telephone: 202-260-3027); or at the Office of Federal Register, 800 North
  Capitol Street, NW., Suite 700, Washington, DC.
<SUP>a</SUP> The version of the EPA methods which you must follow for this Rule are listed at Sec.  141.24 (e).
<SUP>b</SUP> Annual Book of ASTM Standards, 1996, 1998 and 1999, Vol. 11.02, American Society for Testing and Materials.
  Method D5812-96, "Standard Test Method for Determination of Organochlorine Pesticides in Water by Capillary
  Column Gas Chromatography", is located in the Annual Book of ASTM Standards, 1998 and 1999, Vol. 11.02.
  Methods D5790-95, "Standard Test Method for Measurement of Purgeable Organic Compounds in Water by Capillary
  Column Gas Chromatography/Mass Spectrometry"; D5475-93, "Standard Test Method for Nitrogen- and Phosphorus-
  Containing Pesticides in Water by Gas Chromatography with a Nitrogen-Phosphorus Detector"; and D5317-93,
  "Standard Test Method for Determination of Chlorinated Organic Acid Compounds in Water by Gas Chromatography
  with an Electron Capture Detector" are located in the Annual Book of ASTM Standards, 1996 and 1998, Vol
  11.02. Copies may be obtained from the American Society for Testing and Materials, 100 Barr Harbor Drive, West
  Conshohocken, PA 19428.
<SUP>c</SUP> Official Methods of Analysis of AOAC (Association of Official Analytical Chemist) International, Sixteenth
  Edition, 4th Revision, 1998, Volume I, AOAC International, First Union National Bank Lockbox, PO Box 75198,
  Baltimore, MD 21275-5198. 800-379-2622.
<SUP>d</SUP> SM 6210 D is only found in the 18th and 19th editions of Standard Methods for the Examination of Water and
  Wastewater, 1992 and 1995, American Public Health Association; either edition may be used. SM 6200 B and 6200
  C are only found in the 20th edition of Standard Methods for the Examination of Water and Wastewater, 1998.
  Copies may be obtained from the American Public Health Association, 1015 Fifteenth Street NW, Washington, DC
  20005.
<SUP>e</SUP> Minimum Reporting Level determined by multiplying by 10 the least sensitive method's detection limit
  (detection limit =standard deviation times the Student's t value for 99% confidence level with n-1 degrees of
  freedom), or when available, multiplying by 5 the least sensitive method's estimated detection limit (where
  the estimated detection limit equals the concentration of compound yielding approximately a 5 to 1 signal to
  noise ratio or the calculated detection limit, whichever is greater).
<SUP>f</SUP> Entry Points to the Distribution System (EPTDS), after treatment, representing each non-emergency water source
  in use over the twelve-month period of monitoring: this only includes entry points for sources in operation
  during the months in which sampling is to occur. Sampling must occur at the EPTDS, unless the State has
  specified other sampling points that are used for compliance monitoring under 40 CFR 141.24 (f)(1), (2), and
  (3). See 40 CFR 141.40(a)(5)(ii)(C) for a complete explanation of requirements, including the use of source
  (raw) water sampling points.
<SUP>g</SUP> Minimum Reporting Levels (MRL) for Volatile Organic Compounds (VOC) determined by multiplying either the
  published detection limit or 0.5 <greek-m>g/L times 10, whichever is greater. The detection limit of 0.5
  <greek-m>g/L (0.0005 mg/L) was selected to conform to VOC detection limit requirements of 40 CFR
  141.24(f)(17)(E).
<SUP>h</SUP> The approved methods do not allow for the identification and quantitation of the individual acids. The single
  analytical result obtained should be reported as total DCPA mono- and di-acid degradates.
<SUP>i</SUP> EPA Method 515.3, "Determination of Chlorinated Acids in Drinking Water by Liquid-Liquid Extraction,
  Derivatization and Gas Chromatography with Electron Capture Detection," Revision 1.0 July 1996. EPA 815-R-00-
  014, "Methods for the Determination of Organic and Inorganic compounds in Drinking Water, Volume 1," August
  2000. Available from the National Technical Information Service, NTIS PB2000-106981, U.S. Department of
  Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. The toll free number is 800-553-6847.
  Alternatively, the method can be assessed and downloaded directly on-line at www.epa.gov/safewater/methods/
  sourcalt.html.
 
[[Page 416]]
 
 
<SUP>J</SUP> Since EPA Method 515.3 does not include a solvent wash step following hydrolysis, the parent DCPA is not
  removed prior to analysis, therefore, only non-detect data may be reported using EPA Method 515.3. All samples
  with results above the MRL must be analyzed by one of the other approved methods.
<SUP>k</SUP> EPA Method 515.4, "Determination of Chlorinated Acids in Drinking Water by Liquid-Liquid Microextraction,
  Derivatization and Fast Gas Chromatography with Electron Capture Detection," Revision 1.0, April 2000, EPA
  .815/B-00/001. Available by requesting a copy from the EPA Safe Drinking Water Hotline within the United
  States at 800-426-4791 (Hours are Monday through Friday, excluding federal holidays, from 9 a.m. to 5:30 p.m.
  Eastern Time). Alternatively, the method can be assessed and downloaded directly on-line at www.epa.gov/
  safewater/methods/sourcalt.html.
<SUP>l</SUP> EPA Method 314.0, "Determination of Perchlorate in Drinking Water Using Ion Chromatography," Revision 1.0,
  EPA 815-B-99-003, November 1999. EPA 815-R-00-014, "Methods for the Determination of Organic and Inorganic
  Compounds in Drinking Water, Volume 1," August 2000. Available from the National Technical Information
  Service, NTIS PB2000-106981, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161.
  The toll free number is 800-553-6847. Alternatively, the method can be assessed and downloaded directly on-
  line at www.epa.gov/safewater/methods/sourcalt.html.
<SUP>m</SUP> MRL was established at a concentration, which is at least \1/4\th the lowest known adverse health
  concentration, at which acceptable precision and accuracy has been demonstrated in spiked matrix samples.
<SUP>n</SUP> Sample preservation techniques and holding times specified in EPA Method 524.2 must be used by laboratories
  using either EPA Method 502.2 or Standard Methods 6200C.
 
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                     List 2--screening survey chemical contaminants
---------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                   6-Period during which
           1-contaminant              2-CAS registry number   3-Analytical  methods   4-Minimum  reporting   5-sampling  location     monitoring to be
                                                                                             level                                       completed
--------------------------------------------------------------------------------------------------------------------------------------------------------
1,2-diphenylhydrazine..............  122-66-7..............  EPA Method 526 <SUP>a</SUP>......  0.5 <greek-m>g/L.....  EPTDS <SUP>e</SUP>..............  2001--Selected
                                                                                                                                    Systems serving <ls-
                                                                                                                                    thn-eq>10,000
                                                                                                                                    persons;
                                                                                                                                   2002--Selected
                                                                                                                                    systems serving >
                                                                                                                                    10,000 persons.
2-methyl-phenol....................  95-48-7...............  EPA Method 528 <SUP>b</SUP>......  1 <greek-m>g/L <SUP>f</SUP>.....  EPTDS <SUP>e</SUP>..............  Same as above.
2,4-dichlorophenol.................  120-83-2..............  EPA Method 528 <SUP>b</SUP>......  1 <greek-m>g/L <SUP>f</SUP>.....  EPTDS <SUP>e</SUP>..............  Same as above.
2,4-dinitrophenol..................  51-28-5...............  EPA Method 528 <SUP>b</SUP>......  5 <greek-m>g/L <SUP>f</SUP>.....  EPTDS <SUP>e</SUP>..............  Same as above.
2,4,6-trichlorophenol..............  88-06-2...............  EPA Method 528 <SUP>b</SUP>......  1 <greek-m>g/L <SUP>f</SUP>.....  EPTDS <SUP>e</SUP>..............  Same as above.
Alachlor ESA.......................  Reserved <SUP>d</SUP>............  Reserved <SUP>d</SUP>............  Reserved <SUP>d</SUP>...........  Reserved <SUP>d</SUP>...........  Reserved <SUP>d</SUP>
Diazinon...........................  333-41-5..............  EPA Method 526 <SUP>a</SUP>......  0.5 <greek-m>g/L <SUP>f</SUP>...  EPTDS <SUP>e</SUP>..............  2001--Seleected
                                                                                                                                    Systems serving <ls-
                                                                                                                                    thn-eq>10,000
                                                                                                                                    persons;
                                                                                                                                   2002--Selected
                                                                                                                                    systems serving >
                                                                                                                                    10,000 persons.
Disulfoton.........................  298-04-4..............  EPA Method 526 <SUP>a</SUP>......  0.5 <greek-m>g/L <SUP>f</SUP>...  EPTDS <SUP>e</SUP>..............  Same as above.
Diuron.............................  330-54-1..............  EPA Method 532 <SUP>c</SUP>......  1 <greek-m>g/L <SUP>f</SUP>.....  EPTDS <SUP>e</SUP>..............  Same as above.
Fonofos............................  944-22-9..............  EPA Method 526 <SUP>a</SUP>......  0.5 <greek-m>g/L <SUP>f</SUP>...  EPTDS <SUP>e</SUP>..............  Same as above.
Linuron............................  330-55-2..............  EPA Method 532 <SUP>c</SUP>......  1 <greek-m>g/L <SUP>f</SUP>.....  EPTDS <SUP>e</SUP>..............  Same as above.
Nitrobenzene.......................  98-95-3...............  EPA Method 526 <SUP>a</SUP>......  0.5 <greek-m>g/L <SUP>f</SUP>...  EPTDS <SUP>e</SUP>..............  Same as above.
Prometon...........................  1610-18-0.............  EPA Method 526 <SUP>a</SUP>......  0.5 <greek-m>g/L <SUP>f</SUP>...  EPTDS <SUP>e</SUP>..............  Same as above.
RDX................................  121-82-4..............  Reserved <SUP>d</SUP>............  Reserved <SUP>d</SUP>...........  Reserved <SUP>d</SUP>...........  Reserved <SUP>d</SUP>.
Terbufos...........................  13071-79-9............  EPA Method 526 <SUP>a</SUP>......  0.5 <greek-m>g/L <SUP>f</SUP>...  EPTDS <SUP>e</SUP>..............  2001--Selected
                                                                                                                                    Systems serving <ls-
                                                                                                                                    thn-eq>10,000
                                                                                                                                    persons;
                                                                                                                                   2002-Selected systems
                                                                                                                                    serving > 10,000
                                                                                                                                    persons.
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
                   List 2--screening survey microbiological contaminants to be sampled after notice of analytical methods availability
---------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                   6-period during which
           1-contaminant                2-identification      3-analytical methods    4-minimum reporting    5-sampling location      monitoring to be
                                             number                                          level                                       completed
--------------------------------------------------------------------------------------------------------------------------------------------------------
Aeromonas..........................  NA....................  Reserved <SUP>d</SUP>............  Reserved <SUP>d</SUP>...........  Distribution System <SUP>g</SUP>  2003 <SUP>h</SUP>
--------------------------------------------------------------------------------------------------------------------------------------------------------
 Column headings are:
<SUP>1</SUP> --Chemical or microbiological contaminant: the name of the contaminants to be analyzed.
<SUP>2</SUP> --CAS (Chemical Abstract Service Number) Registry No. or Identification Number: a unique number identifying the chemical contaminants.
<SUP>3</SUP> --Analytical Methods: method numbers identifying the methods that must be used to test the contaminants.
<SUP>4</SUP> --Minimum Reporting Level: the value and unit of measure at or above which the concentration or density of the contaminant must be measured using the
  Approved Analytical Methods.
<SUP>5</SUP> --Sampling Location: the locations within a PWS at which samples must be collected.
<SUP>6</SUP> --Years During Which Monitoring to be Completed: the years during which the sampling and testing are to occur for the indicated contaminant.
 
[[Page 417]]
 
 
 The procedures shall be done in accordance with the documents listed next in these footnotes. The incorporation by reference of the following documents
  listed in footnotes a-c, was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies of the
  documents may be obtained from the following sources. Information regarding obtaining these documents can be obtained from the Safe Drinking Water
  Hotline at 800-426-4791. Copies of the documents may be obtained from the sources listed in these footnotes. Information regarding obtaining these
  documents can be obtained from the Safe Drinking Water Hotline at 800-426-4791. Documents may be inspected at EPA's Drinking Water Docket, 401 M
  Street, SW., Washington, DC 20460 (Telephone: 202-260-3027); or at the Office of Federal Register, 800 North Capitol Street, NW., Suite 700,
  Washington, DC.
<SUP>a</SUP> EPA Method 526, "Determination of Selected Semivolatile Organic Compounds in Drinking Water by Solid Phase Extraction and Capillary Column Gas
  Chromatography/Mass Spectrometry (GC/MS)," Revision 1.0, June 2000. EPA 815-R-00-014, "Methods for the Determination of Organic and Inorganic
  Compounds in Drinking Water, Volume 1," August 2000. Available from the National Technical Information Service, NTIS PB2000-106981, U.S. Department
  of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. The toll free number is 800-553-6847. Alternatively, the method can be assessed and
  downloaded directly on-line at www.epa.gov/safewater/methods/sourcalt.html.
<SUP>b</SUP> EPA Method 528, "Determination of Phenols in Drinking Water by Solid Phase Extraction and Capillary Column Gas Chromatography/Mass Spectrometry (GC/
  MS)," Revision 1.0, April 2000. EPA 815-R-00-014, "Methods for the Determination of Organic and Inorganic Compounds in Drinking Water, Volume 1,"
  August 2000. Available from the National Technical Information Service, NTIS PB2000-106981, U.S. Department of Commerce, 5285 Port Royal Road,
  Springfield, Virginia 22161. The toll free number is 800-553-6847. Alternatively, the method can be assessed and downloaded directly on-line at
  www.epa.gov/nerlcwww/ordmeth.htm.
<SUP>c</SUP> EPA Method 532, "Determination of Phenylurea Compounds in Drinking Water by Solid Phase Extraction and High Performance Liquid Chromatography with UV
  Detection," Revision 1.0, June 2000. EPA 815-R-00-014, "Methods for the Determination of Organic and Inorganic Compounds in Drinking Water, Volume
  1," August 2000. Available from the National Technical Information Service, NTIS PB2000-106981, U.S. Department of Commerce, 5285 Port Royal Road,
  Springfield, Virginia 22161. The toll free number is 800-553-6847. Alternatively, the method can be assessed and downloaded directly on-line at
  www.epa.gov/safewater/methods/sourcalt.html.
<SUP>d</SUP> To be specified at a later time.
<SUP>e</SUP> Entry Points to the Distribution System (EPTDS), after treatment, representing each non-emergency water source in use over the twelve-month period of
  monitoring: this only includes entry points for sources in operation during the months in which sampling is to occur. Sampling must occur at the
  EPTDS, source water sampling points are not permitted for List 2 contaminant monitoring.
<SUP>f</SUP> Minimum Reporting Level represents the value of the lowest concentration precision and accuracy determination made during methods development and
  documented in the method. If method options are permitted, the concentration used was for the least sensitive option.
<SUP>g</SUP> Three samples must be taken from the distribution system, which is owned or controlled by the selected PWS. The sample locations must include one
  sample from a point (MD from Sec.  141.35(d)(3), Table 1) where the disinfectant residual is representative of the distribution system. This sample
  location may be selected from sample locations which have been previously identified for samples to be analyzed for coliform indicator bacteria.
  Coliform sample locations encompass a variety of sites including midpoint samples which may contain a disinfectant residual that is typical of the
  system. Coliform sample locations are described in 40 CFR 141.21. This same approach must be used for the Aeromonas midpoint sample where the
  disinfectant residual would not have declined and would be typical for the distribution system. Additionally, two samples must be taken from two
  different locations: the distal or dead-end location in the distribution system (MR from Sec.  141.35(d)(3), Table 1), avoiding disinfectant booster
  stations, and from a location where previous determinations have indicated the lowest disinfectant residual in the distribution system (LD from Sec.
  141.35(d)(3), Table 1). If these two locations of distal and low disinfectant residual sites coincide, then the second sample must be taken at a
  location between the MD and MR sites. Locations in the distribution system where the disinfectant residual is expected to be low are similar to TTHM
  sampling points. Sampling locations for TTHMs are described in 63 FR 69468.
<SUP>h</SUP> This monitoring period is contingent upon promulgation of the analytical method and minimum reporting level.
 
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
                         List 3--Pre-screen testing radionuclides to be sampled after notice of analytical methods availability
---------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                   6-Period during which
           1-contaminant              2-CAS registry number   3-Analytical methods    4-Minimum  reporting   5-Sampling  location     monitoring to be
                                                                                             level                                       completed
--------------------------------------------------------------------------------------------------------------------------------------------------------
Lead-210...........................  14255-04-0............  Reserved <SUP>a</SUP>............  Reserved <SUP>a</SUP>...........  Reserved <SUP>a</SUP>...........  Reserved.<SUP>a</SUP>
Polonium-210.......................  13981-52-7............  Reserved <SUP>a</SUP>............  Reserved <SUP>a</SUP>...........  Reserved <SUP>a</SUP>...........  Reserved.<SUP>a</SUP>
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
 
[[Page 418]]
 
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
                         List 3--Pre-screen testing microorganisms to be sampled after notice of analytical methods availability
---------------------------------------------------------------------------------------------------------------------------------------------------------
                                      2-                                                                                          6-Period during which
         1-contaminant          identification     3-Analytical methods    4-Minimum reporting level     5-Sampling location        monitoring to be
                                    number                                                                                              completed
--------------------------------------------------------------------------------------------------------------------------------------------------------
Cyanobacteria (blue-green           Reserved <SUP>a</SUP>  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>..............  Reserved.<SUP>a</SUP>
 algae, other freshwater algae
 and their toxins).
Echoviruses...................      Reserved <SUP>a</SUP>  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>..............  Reserved.<SUP>a</SUP>
Coxsackieviruses..............      Reserved <SUP>a</SUP>  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>..............  Reserved.<SUP>a</SUP>
Helicobacter pylori...........      Reserved <SUP>a</SUP>  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>..............  Reserved.<SUP>a</SUP>
Microsporidia.................      Reserved <SUP>a</SUP>  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>..............  Reserved.<SUP>a</SUP>
Calciviruses..................      Reserved <SUP>a</SUP>  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>..............  Reserved.<SUP>a</SUP>
Adenoviruses..................      Reserved <SUP>a</SUP>  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>...............  Reserved <SUP>a</SUP>..............  Reserved.<SUP>a</SUP>
--------------------------------------------------------------------------------------------------------------------------------------------------------
Column headings are:
1-Chemical or microbiological contaminant: the name of the contaminants to be analyzed.
2-CAS (Chemical Abstract Service Number) Registry No. or Identification Number: a unique number identifying the chemical contaminants.
3-Analytical Methods: method numbers identifying the methods that must be used to test the contaminants.
4-Minimum Reporting Level: the value and unit of measure at or above which the concentration or density of the contaminant must be measured using the
  Approved Analytical Methods.
5-Sampling Location: the locations within a PWS at which samples must be collected.
6-Years During Which Monitoring to be Completed: the years during which the sampling and testing are to occur for the indicated contaminant.
<SUP>a</SUP> To be determined at a later time.
 
 
 
[[Page 419]]
 
    (4) What general requirements must I follow for monitoring List 1 
contaminants? (i) All systems. You must:
    (A) Collect samples of the listed contaminants in accordance with 
paragraph (a)(5) of this section and Appendix A of this section and any 
other specific instructions provided to you by the State or EPA,
    (B) Analyze the additional parameters specified below in Table 2. 
"Water Quality Parameters to be Monitored with UCMR Contaminants" for 
each relevant contaminant type. You must analyze the parameters for each 
sampling event of each sampling point, using the method indicated, and 
report using the data elements 1 through 10 in Table 1, Sec. 141.35(d), 
Unregulated Contaminant Monitoring Reporting Requirements;
    (C) Review the laboratory testing results to ensure reliability; and
    (D) Report the results as specified in Sec. 141.35.
 
                    Table 2.--Water Quality Parameters To Be Monitored with UCMR Contaminants
----------------------------------------------------------------------------------------------------------------
                                                                          Analytical methods
                                                     -----------------------------------------------------------
            Parameter              Contaminant type                        Standard methods
                                                          EPA method              \1\                Other
----------------------------------------------------------------------------------------------------------------
pH..............................  Microbiological...  EPA Method          4500-H<SUP>+</SUP> B.........  ASTM D1293-84\3\,
                                                       150.1\2\, EPA                           ASTM D1293-95\3\.
                                                       Method 150.2\2\.
Turbidity.......................  Microbiological...  EPA Method 180.1    2130 B \4\........  GLI Method 2<SUP>4,6</SUP>.
                                                       <SUP>4,5</SUP>.
Temperature.....................  Microbiological...  ..................  2550..............
Free Disinfectant Residual......  Microbiological...  ..................  4500-Cl D, 4500-Cl  ASTM 1253-86\3\
                                                                           F, 4500-Cl G,
                                                                           4500-Cl H, 4500-
                                                                           ClO<INF>2</INF> D, 4500-ClO<INF>2</INF>
                                                                           E, 4500-O<INF>3</INF> B.
Total Disinfectant Residual.....  Microbiological...  ..................  4500-Cl D, 4500-Cl  ASTM D 1253-86 \3\
                                                                           E,\4\ 4500-Cl F,
                                                                           4500-Cl G\4\,
                                                                           4500-Cl I.
----------------------------------------------------------------------------------------------------------------
The procedures shall be done in accordance with the documents listed in these footnotes. The incorporation by
  reference of the following documents was approved by the Director of the Federal Register in accordance with 5
  U.S.C. 552(a) and 1 CFR part 51. Copies of the documents may be obtained from the sources listed in these
  footnotes. Information regarding obtaining these documents can be obtained from the Safe Drinking Water
  Hotline at 800-426-4791. Documents may be inspected at EPA's Drinking Water Docket, 401 M Street, SW.,
  Washington, DC 20460 (Telephone: 202-260-3027); or at the Office of Federal Register, 800 North Capitol
  Street, NW., Suite 700, Washington, DC.
\1\ The 18th and 19th Editions of Standard Methods for the Examination of Water and Wastewater, 1992 and 1995.
  Methods 2130 B; 2550; 4500-Cl D, E, F, G, H, I; 4500-ClO<INF>2</INF> D, E; 4500-H<SUP>+</SUP> B; and 4500-O<INF>3</INF> B in the 20th edition
  Standard Methods for the Examination of Water and Wastewater, 1998, American Public Health Association, 1015
  Fifteenth St. NW, Washington D.C., 20005.
\2\ EPA Methods 150.1 and 150.2 are available from US EPA, NERL, 26 W. Martin Luther King Dr., Cincinnati, Ohio
  45268. The identical methods are also in "Methods for Chemical Analysis of Water and Wastes," EPA-600/4-79-
  020, March 1983, available from the National Technical Information Service (NTIS), U.S. Department of
  Commerce, 5285 Port Royal Rd., Springfield, Virginia 22161, PB84-128677. (Note: NTIS toll-free number is 800-
  553-6847.)
\3\ Annual Book of ASTM Standards, Editions 1994, 1996, 1998 and 1999, Volumes 11.01, American Society for
  Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA 19428. Version D1293-84, "Standard Test
  Methods for pH of Water" is located in the Annual Book of ASTM Standards, 1994, Volumes 11.01. Version D1293-
  95, "Standard Test Methods for pH of Water" is located in the Annual Book of ASTM Standards, 1996, 1998 and
  1999, Volumes 11.01.
\4\ "Technical Notes on Drinking Water," EPA-600/R-94-173, October 1994, Available at NTIS, PB95-104766.
\5\ "Methods for the Determination of Inorganic Substances in Environmental Samples," EPA-600/R-93-100, August
  1993. Available at NTIS, PB94-121811
\6\ GLI Method 2, "Turbidity," November 2, 1992, Great Lakes Instruments Inc., 8855 North 55th St., Milwaukee,
  Wisconsin 53223.
 
    (ii) Large systems. In addition to paragraph (a)(4)(i) of this 
section, you must arrange for testing of the samples according to the 
methods specified for each contaminant in Table 1, Unregulated 
Contaminant Monitoring Regulation (1999) List, in paragraph (a)(3) of 
this section, and in Appendix A of this section.
    (iii) Small systems. Unless directed otherwise by the State or EPA, 
in addition to paragraph (a)(4)(i) of this section , you must:
    (A) Properly receive, store, maintain and use the sampling equipment 
sent to you from the laboratory designated by EPA;
    (B) Sample at the times specified by the State or the EPA;
    (C) Collect and pack samples in accordance with the instructions 
sent to you by the laboratory designated by EPA; and
    (D) Send the samples to the laboratory designated by EPA.
 
[[Page 420]]
 
    (5) What specific sampling and quality control requirements must I 
follow for monitoring of List 1 contaminants? (i) All systems. Unless 
the State or EPA informs you of other sampling arrangements, you must 
comply with the following requirements:
    (A) Sample collection and shipping time. If you must ship the 
samples for testing, you must collect the samples early enough in the 
day to allow adequate time to send the samples for overnight delivery to 
the laboratory since some samples must be processed at the laboratory 
within 30 hours of collection. You must not collect samples on Friday, 
Saturday or Sunday because sampling on these days would not allow 
samples to be shipped and received at the laboratory within 30 hours.
    (B) No compositing of samples. You must not composite (that is, 
combine, mix or blend) the samples. You must collect, preserve and test 
each sample separately.
    (C) Review and reporting of results. After you have received the 
laboratory results, you must review and confirm the system information 
and data regarding sample collection and test results. You must report 
the results as provided in Sec. 141.35.
    (ii) Large systems. In addition to paragraph (a)(5)(i) of this 
section, you must comply with the following:
    (A) Timeframe. You must collect the samples in one twelve-month 
period during the years indicated in column 6 of Table 1, Unregulated 
Contaminant Monitoring Regulation (1999) List.
    (B) Frequency. You must collect the samples within the timeframe and 
according to the following frequency specified by contaminant type and 
water source type:
 
                      Table 3.--Monitoring Frequency by Contaminant and Water Source Types
----------------------------------------------------------------------------------------------------------------
          Contaminant type              Water source type           Timeframe                 Frequency
----------------------------------------------------------------------------------------------------------------
Chemical...........................  Surface water.........  Twelve (12) months....  Four quarterly samples
                                                                                      taken as follows: Select
                                                                                      either the first, second,
                                                                                      or third month of a
                                                                                      quarter and sample in that
                                                                                      same month of each of four
                                                                                      (4) consecutive quarters <SUP>a</SUP>
                                                                                      to ensure that one of
                                                                                      those sampling events
                                                                                      occurs during the
                                                                                      vulnerable time.<SUP>b</SUP>
                                     Ground water..........  Twelve (12) months....  Two (2) times in a year
                                                                                      taken as follows: Sample
                                                                                      during one (1) month of
                                                                                      the vulnerable time <SUP>b</SUP> and
                                                                                      during one (1) month five
                                                                                      (5) to seven (7) months
                                                                                      earlier or later.<SUP>c</SUP>
Microbiological....................  Surface and ground      Twelve (12) months....  Six (6) times in a year
                                      water.                                          taken as follows: Select
                                                                                      either the first, second,
                                                                                      or third month of a
                                                                                      quarter and sample in that
                                                                                      same month of each of four
                                                                                      (4) consecutive quarters,
                                                                                      and sample an additional 2
                                                                                      months during the warmest
                                                                                      (vulnerable) quarter of
                                                                                      the year.<SUP>d</SUP>
----------------------------------------------------------------------------------------------------------------
<SUP>a</SUP> "Select either the first, second, or third month of a quarter and sample in that same month of each of four
  (4) consecutive quarters" means that you must monitor during each of the four (4) months of either: January,
  April, July, October; or February, May, August, November; or March, June, September, December.
<SUP>b</SUP> "Vulnerable time" means May 1 through July 31, unless the State or EPA informs you that it has selected a
  different time period for sampling as your system's vulnerable time.
<SUP>c</SUP> "Sample during one (1) month of the vulnerable time and during one (1) month five (5) to seven (7) months
  earlier or later" means, for example, that if you select May as your "vulnerable time" month to sample,
  then one (1) month five (5) to seven (7) months earlier would be either October, November or December of the
  preceding year, and one (1) month five (5) to seven (7) months later would be either, October, November, or
  December of the same year.
<SUP>d</SUP> This means that you must monitor during each of the six (6) months of either: January, April, July, August,
  September, October; or February, May, July, August, September, November; or March, June, July, August,
  September, December; unless the State or EPA informs you that a different vulnerable quarter has been selected
  for your system.
 
    (C) Location. You must collect samples at the location specified for 
each listed contaminant in column 5 of the Table 1, UCMR (1999) List, in 
paragraph (a)(3) of this section. The sampling location for chemical 
contaminants must be the entry point to the distribution system or the 
compliance monitoring point specified by the State or EPA under 40 CFR 
141.24 (f)(1), (2), and (3). Except as provided in this paragraph 
(a)(5)(ii)(C), if the compliance monitoring point as specified by the 
State is for source (raw) water and any of the contaminants in paragraph 
(a)(3) of this section are detected, then you must complete the source 
water monitoring for the indicated timeframe and
 
[[Page 421]]
 
also sample at the entry point to the distribution system representative 
of the affected source water only for the contaminant(s) found in the 
source water over the next twelve month timeframe, beginning in the next 
required monitoring period as indicated in paragraph (a)(5)(ii)(B), 
Table 3 of this section, even though monitoring might extend beyond the 
last year indicated in column 6, Period during which monitoring to be 
completed, in Table 1 of paragraph (a)(3). Exception: If the State or 
EPA determines that sampling at the entry point to the distribution 
system is unnecessary because no treatment was instituted between the 
source water and the distribution system that would affect measurement 
of the contaminants listed in paragraph (a)(3) of this section, then you 
do not have to sample at the entry point to the distribution system. 
Note: The sampling for List 2 chemical contaminants must be at the entry 
point to the distribution system, as specified in Table 1, List 2.
    (D) Sampling instructions. You must follow the sampling procedure 
for the method specified in column 3 of List 1 of Table 1, Unregulated 
Contaminant Monitoring Regulation (1999) List, in paragraph (a)(3) of 
this section, for each contaminant.
    (E) Testing and analytical methods. For each listed contaminant, you 
must use the analytical method specified in column 3 of List 1 of Table 
1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section, the minimum reporting levels in column 
4 of List 1 of Table 1, Unregulated Contaminant Monitoring Regulation 
(1999) List, in paragraph (a)(3) of this section, and the quality 
control procedures specified in Appendix A of this section.
    (F) Sampling deviations. If you do not collect a sample according to 
the procedures specified for a listed contaminant, you must resample 
within 14 days of observing the occurrence of the error (which may 
include notification from the laboratory that you must resample) 
following the procedures specified for the method. (This resampling is 
not for confirmation sampling but to correct the sampling error.)
    (G) Testing. (1) Except as provided in paragraph (a)(5)(ii)(G)(2) 
and (3) of this section, you must arrange for the testing of the 
contaminants identified in List 1 of Table 1 by a laboratory certified 
under Sec. 141.28 for compliance analysis using any of the analytical 
methods listed in column 3 for each contaminant in List 1 of Table 1, 
Unregulated Contaminant Monitoring Regulation (1999) List, in paragraph 
(a)(3) of this section, whether you use the EPA analytical methods or 
non-EPA methods listed in List 1 of Table 1. Laboratories are 
automatically certified for the analysis of UCMR contaminants in List 1 
of Table 1 if they are already certified to conduct compliance 
monitoring for a contaminant included in the same method being approved 
for UCMR analysis.
    (2) You must arrange for the testing of Perchlorate as identified in 
List 1 of Table 1 by a laboratory certified under Sec. 141.28 for 
compliance analysis using an approved ion chromatographic method as 
listed in Sec. 141.28 and that has analyzed and successfully passed the 
Performance Testing (PT) Program administered by EPA.
    (3) You must arrange for the testing of the chemical contaminants 
identified in List 2 of Table 1 by a laboratory certified under 
Sec. 141.28 for compliance analysis using EPA Method 525.2 if performing 
UCMR analysis using EPA Methods 526 or 528, or a laboratory certified 
under Sec. 141.28 for compliance analysis using EPA Methods 549.1 or 
549.2 if performing UCMR analysis using EPA Method 532. You must arrange 
for the testing for Aeromonas using the approved method as identified in 
List 2 of Table 1 by a laboratory which is both certified under 
Sec. 141.28 for compliance analysis for coliform indicator bacteria 
using an EPA approved membrane filtration procedure and which also has 
been granted approval for UCMR monitoring of Aeromonas by successfully 
passing the Aeromonas Performance Testing (PT) Program administered by 
EPA.
    (iii) Small systems that are part of the State Monitoring Plan. 
Unless directed otherwise by the State or EPA, in addition to paragraph 
(a)(5)(i) of this section, you must comply with the following:
 
[[Page 422]]
 
    (A) Timeframe and frequency. You must collect samples at the times 
specified for you by the State or EPA, within the timeframe specified in 
paragraph (a)(5)(ii)(A) of this section and according to the frequency 
specified in paragraph (a)(5)(ii)(B) of this section for the contaminant 
type and water source type.
    (B) Location. You must collect samples at the locations specified 
for you by the State or EPA.
    (C) Sampling deviations. If you do not collect a sample according to 
the instructions provided to you for a listed contaminant, then you must 
report the deviation on the sample reporting form that you send to the 
laboratory with the samples. You must resample following instructions 
that you will be sent from EPA's designated laboratory or the State.
    (D) Sample kits. You must store and maintain the sample collection 
kits sent to you by EPA's designated laboratory in a secure place until 
used for sampling. You should read the instructions for each kit when 
you receive it. If indicated in the kit's instructions, you must freeze 
the cold packs. The sample kit will include all necessary containers, 
packing materials and cold packs, instructions for collecting the sample 
and sample treatment (such as dechlorination or preservation), report 
forms for each sample, contact name and telephone number for the 
laboratory, and a prepaid return shipping docket and return address 
label. If any of the materials listed in the kit's instructions are not 
included or arrive damaged, you must notify EPA's designated laboratory 
which sent you the sample collection kits.
    (E) Sampling instructions. You must comply with the instructions 
sent to you by the State or EPA concerning the use of containers, 
collection (how to fill the sample bottle), dechlorination and/or 
preservation, and sealing and preparing the sample and shipping 
containers for shipment. You must also comply with the instructions sent 
to you by EPA's designated laboratory concerning the handling of sample 
containers for specific contaminants.
    (F) Duplicate samples. EPA will select systems in the State 
Monitoring Plan that must collect duplicate samples for quality control. 
If your system is selected, you will receive two sample kits that you 
must use. You must use the same sampling protocols for both sets of 
samples, following the instructions in the duplicate sample kit.
    (G) Sampling forms. You must completely fill out the sampling forms 
sent to you by the laboratory, including the data elements 1 through 4 
listed in Sec. 141.35(d) for each sample. If EPA requests that you 
conduct field analysis of water quality parameters specified in 
paragraph (a)(4)(i)(B) of this section, you must also complete the 
sampling form to include the information for data elements 5 through 10 
listed in Sec. 141.35(d) for each sample. You must sign and date the 
sampling forms.
    (H) Sample submission. Once you have collected the samples and 
completely filled in the sampling forms, you must send the samples and 
the sampling forms to the laboratory designated in your instructions.
    (6) What additional requirements must I follow if my system is 
selected as an Index system? If your system is selected as an Index 
system in the State Monitoring Plan, you must assist the State or EPA in 
identifying appropriate sampling locations and provide information on 
which wells and intakes are in use at the time of sampling, well casing 
and screen depths (if known) for those wells, and the pumping rate of 
each well or intake at the time of sampling.
    (7) What must I do if my system is selected for the Screening 
Surveys or Pre-Screen Testing? (i) All systems. You must:
    (A) Analyze the additional parameters specified in paragraph 
Sec. 141.40(a)(4)(i), Table 2, "Water Quality Parameters to be 
Monitored with UCMR Contaminants" for each relevant contaminant type. 
You must analyze the parameters for each sampling event of each sampling 
point, using the method indicated, and report the results using the data 
elements 1 through 10 in Table 1, Sec. 141.35(d), Unregulated 
Contaminant Monitoring Reporting requirements;
    (B) Review the laboratory results to ensure reliability; and
    (C) Report the results as specified in Sec. 141.35.
 
[[Page 423]]
 
    (ii) Large systems. If your system serves over 10,000 persons, you 
must collect and arrange for testing of the contaminants in List 2 and 
List 3 of Table 1, Unregulated Contaminant Monitoring Regulation (1999) 
List, in paragraph (a)(3) of this section, in accordance with the 
requirements set out in paragraphs (a)(4) and (5) of this section, with 
one exception: you must sample only at sampling locations specified in 
Table 1. You must send the samples to one of the laboratories approved 
under paragraph (G), this section. You are also responsible for 
reporting these results as required in Sec. 141.35.
    (iii) Small systems. If your system serves 10,000 or fewer persons, 
you must collect samples in accordance with the instructions sent to you 
by the EPA or State, or, if informed by the EPA or State that the EPA or 
State will collect the sample, you must assist the State or EPA in 
identifying the appropriate sampling locations and in taking the 
samples. EPA will report the results to you and the State.
    (8) What is a violation of this Rule? (i) Any failure to monitor in 
accordance with Sec. 141.40(a)(3) through (7) and Appendix A is a 
monitoring violation. (ii) Any failure to report in accordance with 
Sec. 141.35 is a reporting violation.
    (b) Requirements for State and Tribal Participation. (1) How can I, 
as the director of a State or Tribal drinking water program, participate 
in unregulated contaminant monitoring, including Assessment Monitoring 
(which includes the State Monitoring Plan for small systems), the 
Screening Surveys, and Pre-Screen Testing of all systems? You can enter 
into a Memorandum of Agreement (MOA) with the EPA that describes your 
State's or Tribe's activities to:
    (i) Accept or modify the initial plan. EPA will first specify the 
systems serving 10,000 or fewer persons by water source and size in an 
initial State Monitoring Plan for each State using a random number 
generator. EPA will also generate a replacement list of systems for 
systems that may not have been correctly specified on the initial plan. 
This initial State Monitoring Plan will also indicate the year and day, 
plus or minus two (2) weeks from the day, that each system must monitor 
for the contaminants in List 1 of Table 1 of this section, Unregulated 
Contaminant Monitoring Regulation (1999) List. EPA will provide you with 
the initial monitoring plan for your State or Tribe, including systems 
to be Index systems and those systems to be part of the Screening 
Surveys. Within sixty (60) days of receiving your State's initial plan, 
you may notify EPA that you either accept it as your State Monitoring 
Plan or request to modify the initial plan by removing systems that have 
closed, merged or are purchasing water from another system and replacing 
them with other systems. Any purchased water system associated with a 
non-purchased water system must be added to the State Monitoring Plan if 
the State determines that its distribution system is the location of the 
maximum residence time or lowest disinfectant residual of the combined 
distribution system. In this case, the purchased water system must 
monitor for the contaminants for which the "distribution system" is 
identified as the point of "maximum residence time" or "lowest 
disinfectant residual," depending on the contaminant, and not the 
community water system selling water to it. You must replace any systems 
you removed from the initial plan with systems from the replacement list 
in the order they are listed. Your request to modify the initial plan 
must include the modified plan and the reasons for the removal and 
replacement of systems. If you believe that there are reasons other than 
those previously listed for removing and replacing one or more other 
systems from the initial plan, you may include those systems and their 
replacement systems in your request to modify the initial plan. EPA will 
review your request to modify your State's initial plan. Please note 
that information about the actual or potential occurrence or non-
occurrence of contaminants at a system or a system's vulnerability to 
contamination is not a basis for removal from or addition to the plan.
    (ii) Determine an alternate vulnerable time. Within 60 days of 
receiving the initial State Monitoring Plan, you may also determine that 
the most vulnerable time of the year for any or all of
 
[[Page 424]]
 
the systems in the plan, and for any of the large systems that must 
monitor, is some period other than May 1 through July 31. If you make 
this determination, you must modify the initial plan to indicate the 
alternate vulnerable time and to which systems the alternate vulnerable 
time applies. EPA will review these determinations when you submit your 
request to modify your State's initial monitoring plan to the EPA. You 
must notify the small system(s) in your final State Monitoring Plan and 
the large system(s) of the most vulnerable time(s) of the year that you 
have specified for them to sample for one of their sampling events. You 
must notify them at least 90 days before their first unregulated 
contaminant sampling is to occur. You may need to consider the timing of 
monitoring in paragraph (b)(1)(iii) of this section.
    (iii) Modify the timing of monitoring. Within sixty (60) days of 
receiving the initial plan, you may also modify the plan by selecting an 
alternative year and day, plus or minus two (2) weeks, within the years 
specified in column 6, List 1 of Table 1, Unregulated Contaminant 
Monitoring Regulation (1999) List, in paragraph (a)(3) of this section, 
for monitoring for each system in the initial plan as long as 
approximately one-third of the systems in the State Plan monitor in each 
of the three (3) years listed. This monitoring may be coordinated with 
regulated contaminant compliance monitoring at your discretion. You must 
send the modified plan to EPA.
    (iv) Identify alternate sampling points for small systems in the 
State Monitoring Plan. All systems are required to monitor for the 
contaminants at the sampling locations specified in column 5, List 1 of 
Table 1, Unregulated Contaminant Monitoring Regulation (1999) List, in 
paragraph (a)(3) of this section, unless the State specifies an 
alternate compliance sampling point as the sampling location. If the 
compliance sampling points for the small systems in the State Monitoring 
Plan are different than those specified in paragraph (a)(3) of this 
section, then you must indicate these sampling points in the plan. These 
alternative sampling points must allow proper sampling and testing for 
the unregulated contaminants.
    (v) Notify small and large systems of their monitoring 
responsibilities. You must provide notification to systems in the plan 
and, where appropriate, the large systems, at least ninety (90) days 
before sampling must occur.
    (vi) Provide instructions to systems that are part of the final 
State Monitoring Plan. You must send a monitoring schedule to each 
system listed in the State Monitoring Plan and instructions on location, 
frequency, timing of sampling, use of sampling equipment, and handling 
and shipment of samples based on these regulations. EPA will provide you 
with guidance for these instructions. If you perform the sampling or 
make alternative arrangements for the sampling at the systems in the 
plan, you must inform EPA at least six (6) months before the first 
monitoring is to occur and address the alternative monitoring 
arrangements in the MOA.
    (vii) Participate in monitoring for the Screening Surveys for small 
and large systems. Within 120 days prior to sampling, EPA will notify 
you which systems have been selected to participate in the Screening 
Surveys, the sampling dates, the designated laboratory for testing, and 
instructions for sampling. You must review the small systems that EPA 
selected for the State Monitoring Plan to ensure that the systems are 
not closed, merged or purchasing water from another system (unless the 
system is to conduct monitoring for a contaminant with the sampling 
location specified as "distribution system"), and then make any 
replacements in the plan, as described in paragraph (b)(1)(i) of this 
section. You must notify the selected systems in your State of these 
Screening Surveys requirements. You must provide the necessary Screening 
Surveys information to the selected systems at least ninety (90) days 
prior to the sampling date.
    (viii) Participate in monitoring for Pre-Screen Testing for small 
and large systems. You can participate in Pre-Screen Testing in two 
ways.
    (A) First, within ninety (90) days of EPA's letter to you concerning 
initiation of Pre-Screen Testing for specific contaminants, you can 
identify from five (5) up to twenty-five (25) systems
 
[[Page 425]]
 
in your State that you determine to be representative of the most 
vulnerable systems to these contaminants, modify your State Monitoring 
Plan to include these most vulnerable systems if any serve 10,000 or 
fewer persons, and notify EPA of the addition of these systems to the 
State Plan. These systems must be selected from all community and non-
transient noncommunity water systems. EPA will use the State-identified 
vulnerable systems to select up to 200 systems nationally to be 
monitored considering the characteristics of the contaminants, 
precipitation, system operation, and environmental conditions.
    (B) Second, within 120 days prior to sampling, EPA will notify you 
which systems have been selected, sampling dates, the designated 
laboratory for testing of samples for systems serving 10,000 or fewer 
persons and approved laboratories for systems serving more than 10,000 
persons, and instructions for sampling. You must notify the owners or 
operators of the selected systems in your State of these Pre-Screen 
Testing requirements. At least ninety (90) days prior to the sampling 
date, you must provide the necessary Pre-Screen Testing information to 
the owners or operators of the selected systems and then inform EPA that 
you took this action to allow sufficient time for EPA to ensure 
laboratory readiness.
    (ix) Revise system's treatment plant location(s) to include latitude 
and longitude. For reporting to the Safe Drinking Water Information 
System, EPA already requires reporting of either the latitude and 
longitude or the street address for the treatment plant location. If the 
State enters into an MOA, the State must report each system's treatment 
plant location(s) as latitude and longitude (in addition to street 
address, if previously reported) by the time of the system's reporting 
of Assessment Monitoring results to the National Drinking Water 
Contaminant Occurrence Database. The State may use the latitude and 
longitude of facilities related to the public water system on the same 
site, or closely adjacent to the same site as the treatment plant, such 
as the latitude and longitude of the intake or wellhead/field or the 
entry point to the distribution system, if such measurements are 
available.
    (2) What if I decide not to participate in an MOA? If you decide not 
to enter into an MOA with EPA to develop the State Monitoring Plan for 
small systems, the initial monitoring plan that EPA sent you will become 
the final State Monitoring Plan for your State or Tribe. In that case, 
you may still notify each public water system of its selection for the 
plan and instructions for monitoring as long as you notify EPA that you 
will be undertaking this responsibility at least six (6) months prior to 
the first unregulated contaminant monitoring.
    (3) Can I add contaminants to the Unregulated Contaminant Monitoring 
List? Yes, the SDWA allows Governors of seven (7) or more States to 
petition the EPA Administrator to add one or more contaminants to the 
Unregulated Contaminant Monitoring Regulation (1999) List, in paragraph 
(a)(3) of this section. The petition must clearly identify the reason(s) 
for adding the contaminant(s) to the monitoring list in paragraph (a)(3) 
of this section, including the potential risk to public health, 
particularly any information that might be available regarding 
disproportional risks to the health and safety of children, the expected 
occurrence documented by any available data, any analytical methods 
known or proposed to be used to test for the contaminant(s), and any 
other information that could assist the Administrator in determining 
which contaminants present the greatest public health concern and 
should, therefore, be included on the Unregulated Contaminant Monitoring 
Regulation (1999) List, in paragraph (a)(3) of this section.
    (4) Can I waive monitoring requirements? Only with EPA approval and 
under very limited conditions. Conditions and procedures for obtaining 
the only type of waiver available under these regulations are as 
follows:
    (i) Application. You may apply to EPA for a State-wide waiver from 
the unregulated contaminant monitoring requirements for public water 
systems serving more than 10,000 persons. To apply for such a waiver, 
you must submit an application to EPA that includes the following 
information:
 
[[Page 426]]
 
    (A) the list of contaminants on the Unregulated Contaminant 
Monitoring List for which you request a waiver, and
    (B) documentation for each contaminant in your request demonstrating 
that the contaminants have not been used, applied, stored, disposed of, 
released, naturally present or detected in the source waters or 
distribution systems in your State during the past 15 years, and that it 
does not occur naturally in your State.
    (ii) Approval. EPA will notify you if EPA agrees to waive monitoring 
requirements.
 
Appendix A to Sec. 141.40--Quality Control Requirements for Testing All 
                            Samples Collected
 
    Your system must ensure that the quality control requirements listed 
below for testing of samples collected and submitted under Sec. 141.40 
are followed:
    (1) Sample Collection/Preservation. Follow the sample collection and 
preservation requirements for the specified method for each of the 
contaminants in Table 1, UCMR (1999) List, in paragraph (a)(3) of this 
section. These requirements specify sample containers, collection, 
dechlorination, preservation, storage, sample holding time, and extract 
storage and/or holding time that the laboratory must follow.
    (2) Detection Limit. Calculate the laboratory detection limit for 
each contaminant in Table 1, Unregulated Contaminant Monitoring 
Regulation (1999) List, of paragraph (a)(3) of this section using the 
appropriate procedure in the specified method with the exception that 
the contaminant concentration used to fortify reagent water must be less 
than or equal to the minimum reporting level (MRL) for the contaminants 
as specified in column 4, Table 1, UCMR (1999) List, in paragraph (a)(3) 
of this section. The calculated detection limit is equal to the standard 
deviation times the Student's t value for 99% confidence level with n-1 
degrees of freedom. (The detection limit must be less than or equal to 
one-half of the MRL.)
    (3) Calibration. Follow the initial calibration requirements as 
specified in the method utilized. Calibration must be verified initially 
with a low-level standard at a concentration at or below the MRL for 
each contaminant. Perform a continuing calibration verification 
following every 10th sample. The calibration verification must be 
performed by alternating low-level and mid-level calibration standards. 
The low-level standard is defined as a concentration at or below the MRL 
with an acceptance range of <plus-minus>40%. The mid-level standard is 
in the middle of the calibration range with an acceptance range of 
<plus-minus>20%.
    (4) Reagent Blank Analysis. Analyze one laboratory reagent (method) 
blank per sample set/batch that is treated exactly as a sample. The 
maximum allowable background concentration is one-half of the MRL for 
all contaminants. A field reagent blank is required only for EPA Method 
524.2 (or equivalent listed methods, D5790.95, SM6210D, and SM6200B).
    (5) Quality Control Sample. Obtain a quality control sample from an 
external source to check laboratory performance at least once each 
quarter.
    (6) Matrix Spike and Duplicate. Prepare and analyze the sample 
matrix spike (SMS) for accuracy and matrix spike duplicate (MSD) samples 
for precision to determine method accuracy and precision for all 
contaminants in Table 1, Unregulated Contaminant Monitoring Regulation 
(1999) List, in paragraph (a)(3) of this section. SMS/MSD samples must 
be prepared and analyzed at a frequency of 5% (or one SMS/MSD set per 
every 20 samples) or with each sample batch whichever is more frequent. 
In addition, the SMS/MSD spike concentrations must be alternated between 
a low-level spike and mid-level spike approximately 50% of the time. 
(For example: a set of 40 samples will require preparation and analysis 
of two SMS/MSD sets. The first set must be spiked at either the low-
level or mid level, and the second set must be spiked with the other 
standard, either the low-level or mid-level, whichever was not used for 
the initial SMS/MSD set). The low-level SMS/MSD spike concentration must 
be within <plus-minus>20% of the MRL for each contaminant. The mid-level 
SMS/MSD spike concentration must be within <plus-minus>20% of the mid-
level calibration standard for each contaminant, and should represent, 
where possible, an approximate average concentration observed in 
previous analyses of that analyte. The spiking concentrations must be 
reported in the same units of measure as the analytical results.
    (7) Internal Standard Calibration. As appropriate to a method's 
requirements to be used, test and obtain an internal standard for the 
methods for each chemical contaminant in Table 1, Unregulated 
Contaminant Monitoring Regulation (1999) List, in paragraph (a)(3) of 
this section, a pure contaminant of known concentration, for calibration 
and quantitation purposes. The methods specify the percent recovery or 
response that you must obtain for acceptance.
    (8) Method Performance Test. As appropriate to a method's 
requirements, test for surrogate compounds, a pure contaminant unlikely 
to be found in any sample, to be used to monitor method performance. The 
methods specify the percent recovery that you must obtain for 
acceptance.
 
[[Page 427]]
 
    (9) Detection Confirmation. Confirm any chemical contaminant 
analyzed using a gas chromatographic method and detected above the MRL, 
by gas chromatographic/mass spectrometric (GC/MS) methods. If testing 
resulted in first analyzing the sample extracts via specified gas 
chromatographic methods, an initial confirmation by a second column 
dissimilar to the primary column may be performed. If the contaminant 
detection is confirmed by the secondary column, then the contaminant 
must be reconfirmed by GC/MS using three (3) specified ion peaks for 
contaminant identification. Use one of the following confirming 
techniques: perform single point calibration of the GC/MS system for 
confirmation purposes only as long as the calibration standard is at a 
concentration within <plus-minus> 50% of the concentration determined by 
the initial analysis; or perform a three (3) point calibration with 
single point daily calibration verification of the GC/MS system 
regardless of whether that verification standard concentration is within 
<plus-minus> 50% of sample response. If GC/MS analysis confirms the 
initial contaminant detection, report results determined from the 
initial analysis.
    (10) Reporting. Report the analytical results and other data, with 
the required data listed in 40 CFR 141.35, Table 1. Report this data 
electronically to EPA, unless EPA specifies otherwise, and provide a 
copy to the State. Systems must coordinate with their laboratories for 
electronic reporting to EPA to ensure proper formatting and timely data 
submission.
    (11) Method Defined Quality Control. As appropriate to the method's 
requirements, perform analysis of Laboratory Fortified Blanks and 
Laboratory Performance Checks as specified in the method. Each method 
specifies acceptance criteria for these quality control checks.
 
[64 FR 50612, Sept. 17, 1999, as amended at 65 FR 11382, Mar. 2, 2000; 
66 FR 2302, Jan. 11, 2001; 66 FR 27215, May 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.41]
 
[Page 427]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
  Subpart E--Special Regulations, Including Monitoring Regulations and 
                         Prohibition on Lead Use
 
Sec. 141.41  Special monitoring for sodium.
 
    (a) Suppliers of water for community public water systems shall 
collect and analyze one sample per plant at the entry point of the 
distribution system for the determination of sodium concentration 
levels; samples must be collected and analyzed annually for systems 
utilizing surface water sources in whole or in part, and at least every 
three years for systems utilizing solely ground water sources. The 
minimum number of samples required to be taken by the system shall be 
based on the number of treatment plants used by the system, except that 
multiple wells drawing raw water from a single aquifer may, with the 
State approval, be considered one treatment plant for determining the 
minimum number of samples. The supplier of water may be required by the 
State to collect and analyze water samples for sodium more frequently in 
locations where the sodium content is variable.
    (b) The supplier of water shall report to EPA and/or the State the 
results of the analyses for sodium within the first 10 days of the month 
following the month in which the sample results were received or within 
the first 10 days following the end of the required monitoring period as 
stipulated by the State, whichever of these is first. If more than 
annual sampling is required the supplier shall report the average sodium 
concentration within 10 days of the month following the month in which 
the analytical results of the last sample used for the annual average 
was received. The supplier of water shall not be required to report the 
results to EPA where the State has adopted this regulation and results 
are reported to the State. The supplier shall report the results to EPA 
where the State has not adopted this regulation.
    (c) The supplier of water shall notify appropriate local and State 
public health officials of the sodium levels by written notice by direct 
mail within three months. A copy of each notice required to be provided 
by this paragraph shall be sent to EPA and/or the State within 10 days 
of its issuance. The supplier of water is not required to notify 
appropriate local and State public health officials of the sodium levels 
where the State provides such notices in lieu of the supplier.
    (d) Analyses for sodium shall be conducted as directed in 
Sec. 141.23(k)(1).
 
[45 FR 57345, Aug. 27, 1980, as amended at 59 FR 62470, Dec. 5, 1994]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.42]
 
[Page 427-428]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
  Subpart E--Special Regulations, Including Monitoring Regulations and 
                         Prohibition on Lead Use
 
Sec. 141.42  Special monitoring for corrosivity characteristics.
 
    (a)-(c) [Reserved]
    (d) Community water supply systems shall identify whether the 
following construction materials are present in their distribution 
system and report to the State:
 
 
[[Page 428]]
 
 
Lead from piping, solder, caulking, interior lining of distribution 
mains, alloys and home plumbing.
Copper from piping and alloys, service lines, and home plumbing.
Galvanized piping, service lines, and home plumbing.
Ferrous piping materials such as cast iron and steel.
Asbestos cement pipe.
 
 
In addition, States may require identification and reporting of other 
materials of construction present in distribution systems that may 
contribute contaminants to the drinking water, such as:
 
Vinyl lined asbestos cement pipe.
Coal tar lined pipes and tanks.
 
[45 FR 57346, Aug. 27, 1980; 47 FR 10999, Mar. 12, 1982, as amended at 
59 FR 62470, Dec. 5, 1994]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.43]
 
[Page 428]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
  Subpart E--Special Regulations, Including Monitoring Regulations and 
                         Prohibition on Lead Use
 
Sec. 141.43  Prohibition on use of lead pipes, solder, and flux.
 
    (a) In general--(1) Prohibition. Any pipe, solder, or flux, which is 
used after June 19, 1986, in the installation or repair of--
    (i) Any public water system, or
    (ii) Any plumbing in a residential or nonresidential facility 
providing water for human consumption which is connected to a public 
water system shall be lead free as defined by paragraph (d) of this 
section. This paragraph (a)(1) shall not apply to leaded joints 
necessary for the repair of cast iron pipes.
    (2) [Reserved]
    (b) State enforcement--(1) Enforcement of prohibition. The 
requirements of paragraph (a)(1) of this section shall be enforced in 
all States effective June 19, 1988. States shall enforce such 
requirements through State or local plumbing codes, or such other means 
of enforcement as the State may determine to be appropriate.
    (2) [Reserved]
    (c) Penalties. If the Administrator determines that a State is not 
enforcing the requirements of paragraph (a) of this section, as required 
pursuant to paragraph (b) of this section, the Administrator may 
withhold up to 5 percent of Federal funds available to that State for 
State program grants under section 1443(a) of the Act.
    (d) Definition of lead free. For purposes of this section, the term 
lead free:
    (1) When used with respect to solders and flux refers to solders and 
flux containing not more than 0.2 percent lead;
    (2) When used with respect to pipes and pipe fittings refers to 
pipes and pipe fittings containing not more than 8.0 percent lead; and
    (3) When used with respect to plumbing fittings and fixtures 
intended by the manufacturer to dispense water for human ingestion 
refers to fittings and fixtures that are in compliance with standards 
established in accordance with 42 U.S.C. 300g-6(e).
 
[52 FR 20674, June 2, 1987, as amended at 65 FR 2003, Jan. 12, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.50]
 
[Page 428-429]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
    Subpart F--Maximum Contaminant Level Goals and Maximum Residual 
                        Disinfectant Level Goals
 
Sec. 141.50  Maximum contaminant level goals for organic contaminants.
 
 
    (a) MCLGs are zero for the following contaminants:
 
    (1) Benzene
    (2) Vinyl chloride
    (3) Carbon tetrachloride
    (4) 1,2-dichloroethane
    (5) Trichloroethylene
    (6) Acrylamide
    (7) Alachlor
    (8) Chlordane
    (9) Dibromochloropropane
    (10) 1,2-Dichloropropane
    (11) Epichlorohydrin
    (12) Ethylene dibromide
    (13) Heptachlor
    (14) Heptachlor epoxide
    (15) Pentachlorophenol
    (16) Polychlorinated biphenyls (PCBs)
    (17) Tetrachloroethylene
    (18) Toxaphene
    (19) Benzo[a]pyrene
    (20) Dichloromethane (methylene chloride)
    (21) Di(2-ethylhexyl)phthalate
    (22) Hexachlorobenzene
    (23) 2,3,7,8-TCDD (Dioxin)
    (b) MCLGs for the following contaminants are as indicated:
 
[[Page 429]]
 
 
 
------------------------------------------------------------------------
                                                                MCLG in
                         Contaminant                              mg/l
------------------------------------------------------------------------
(1) 1,1-Dichloroethylene.....................................     0.007
(2) 1,1,1-Trichloroethane....................................     0.20
(3) para-Dichlorobenzene.....................................     0.075
(4) Aldicarb.................................................     0.001
(5) Aldicarb sulfoxide.......................................     0.001
(6) Aldicarb sulfone.........................................     0.001
(7) Atrazine.................................................     0.003
(8) Carbofuran...............................................     0.04
(9) o-Dichlorobenzene........................................     0.6
(10) cis-1,2-Dichloroethylene................................     0.07
(11) trans-1,2-Dichloroethylene..............................     0.1
(12) 2,4-D...................................................     0.07
(13) Ethylbenzene............................................     0.7
(14) Lindane.................................................     0.0002
(15) Methoxychlor............................................     0.04
(16) Monochlorobenzene.......................................     0.1
(17) Styrene.................................................     0.1
(18) Toluene.................................................     1
(19) 2,4,5-TP................................................     0.05
(20) Xylenes (total).........................................    10
(21) Dalapon.................................................     0.2
(22) Di(2-ethylhexyl)adipate.................................      .4
(23) Dinoseb.................................................      .007
(24) Diquat..................................................      .02
(25) Endothall...............................................      .1
(26) Endrin..................................................      .002
(27) Glyphosate..............................................      .7
(28) Hexachlorocyclopentadiene...............................      .05
(29) Oxamyl (Vydate).........................................      .2
(30) Picloram................................................      .5
(31) Simazine................................................      .004
(32) 1,2,4-Trichlorobenzene..................................      .07
(33) 1,1,2-Trichloroethane...................................      .003
------------------------------------------------------------------------
 
 
[50 FR 46901, Nov. 13, 1985, as amended at 52 FR 20674, June 2, 1987; 52 
FR 25716, July 8, 1987; 56 FR 3592, Jan. 30, 1991; 56 FR 30280, July 1, 
1991; 57 FR 31846, July 17, 1992]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.51]
 
[Page 429]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
    Subpart F--Maximum Contaminant Level Goals and Maximum Residual 
                        Disinfectant Level Goals
 
Sec. 141.51  Maximum contaminant level goals for inorganic contaminants.
 
    (a) [Reserved]
    (b) MCLGs for the following contaminants are as indicated:
 
------------------------------------------------------------------------
                  Contaminant                          MCLG (mg/l)
------------------------------------------------------------------------
Antimony......................................                     0.006
Asbestos......................................    7 Million fibers/liter
                                                 (longer than 10 <greek-
                                                                   m>m).
Barium........................................                         2
Beryllium.....................................                      .004
Cadmium.......................................                     0.005
Chromium......................................                       0.1
Copper........................................                       1.3
Cyanide (as free Cyanide).....................                        .2
Fluoride......................................                       4.0
Lead..........................................                      zero
Mercury.......................................                     0.002
Nitrate.......................................         10 (as Nitrogen).
Nitrite.......................................          1 (as Nitrogen).
Total Nitrate+Nitrite.........................         10 (as Nitrogen).
Selenium......................................                      0.05
Thallium......................................                     .0005
------------------------------------------------------------------------
 
 
[50 FR 47155, Nov. 14, 1985, as amended at 52 FR 20674, June 2, 1987; 56 
FR 3593, Jan. 30, 1991; 56 FR 26548, June 7, 1991; 56 FR 30280, July 1, 
1991; 57 FR 31846, July 17, 1992; 60 FR 33932, June 29, 1995]
 
    Effective Date Note: At 66 FR 7063, Jan. 22, 2001, Sec. 141.51 was 
amended in paragraph (b) in the table by adding a new entry for 
"Arsenic" in alphabetical order and adding a new endnote, effective 
Mar. 23, 2001. At 66 FR 16134, Mar. 23, 2001, the effective date was 
delayed until May 22, 2001. At 66 FR 28350, May 22, 2001, the effective 
date was further delayed until Feb. 22, 2002. For the convenience of the 
user, the added text is set forth as follows:
 
Sec. 141.51  Maximum contaminant level goals for inorganic contaminants.
 
                                * * * * *
 
    (b) * * *
 
------------------------------------------------------------------------
                Contaminant                          MCLG (mg/L)
------------------------------------------------------------------------
                  *        *        *        *        *
Arsenic...................................  zero \1\
                   *        *        *        *    *
------------------------------------------------------------------------
\1\ This value for arsenic is effective January 23, 2006. Until then,
  there is no MCLG.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.52]
 
[Page 429]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
    Subpart F--Maximum Contaminant Level Goals and Maximum Residual 
                        Disinfectant Level Goals
 
Sec. 141.52  Maximum contaminant level goals for microbiological contaminants.
 
    MCLGs for the following contaminants are as indicated:
 
------------------------------------------------------------------------
                Contaminant                             MCLG
------------------------------------------------------------------------
(1) Giardia lamblia.......................  zero
(2) Viruses...............................  zero
(3) Legionella............................  zero
(4) Total coliforms (including fecal        zero.
 coliforms and Escherichia coli).
(5) Cryptosporidium.......................  zero.
------------------------------------------------------------------------
 
 
[54 FR 27527, 27566, June 29, 1989; 55 FR 25064, June 19, 1990; 63 FR 
69515, Dec. 16, 1998]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.53]
 
[Page 429]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
    Subpart F--Maximum Contaminant Level Goals and Maximum Residual 
                        Disinfectant Level Goals
 
Sec. 141.53  Maximum contaminant level goals for disinfection byproducts.
 
    MCLGs for the following disinfection byproducts are as indicated:
 
------------------------------------------------------------------------
                                                                  MCLG
                    Disinfection byproduct                       (mg/L)
------------------------------------------------------------------------
Bromodichloromethane..........................................   Zero
Bromoform.....................................................   Zero
Bromate.......................................................   Zero
Dichloroacetic acid...........................................   Zero
Trichloroacetic acid..........................................      0.3
Chlorite......................................................      0.8
Dibromochloromethane..........................................      0.06
------------------------------------------------------------------------
 
 
[63 FR 69465, Dec. 16, 1998, as amended at 65 FR 34405, May 30, 2000]
 
[[Page 430]]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.54]
 
[Page 430]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
    Subpart F--Maximum Contaminant Level Goals and Maximum Residual 
                        Disinfectant Level Goals
 
Sec. 141.54  Maximum residual disinfectant level goals for disinfectants.
 
    MRDLGs for disinfectants are as follows:
 
------------------------------------------------------------------------
          Disinfectant residual                     MRDLG(mg/L)
------------------------------------------------------------------------
Chlorine................................  4 (as Cl <INF>2</INF>).
Chloramines.............................  4 (as Cl <INF>2</INF>).
Chlorine dioxide........................  0.8 (as ClO<INF>2</INF>)
------------------------------------------------------------------------
 
 
[63 FR 69465, Dec. 16, 1998]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.55]
 
[Page 430]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
    Subpart F--Maximum Contaminant Level Goals and Maximum Residual 
                        Disinfectant Level Goals
 
Sec. 141.55  Maximum contaminant level goals for radionuclides.
 
    MCLGs for radionuclides are as indicated in the following table:
 
------------------------------------------------------------------------
                 Contaminant                              MCLG
------------------------------------------------------------------------
1. Combined radium-226 and radium-228........  Zero.
2. Gross alpha particle activity (excluding    Zero.
 radon and uranium).
3. Beta particle and photon radioactivity....  Zero.
4. Uranium...................................  Zero.
------------------------------------------------------------------------
 
 
[65 FR 76748, Dec. 7, 2000]
 
    Effective Date Note: At 65 FR 76748, Dec. 7, 2000, Sec. 141.55 was 
added, effective Dec. 8, 2003.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.60]
 
[Page 430]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
Subpart G--National Revised Primary Drinking Water Regulations: Maximum 
       Contaminant Levels and Maximum Residual Disinfectant Levels
 
Sec. 141.60  Effective dates.
 
    Effective Date Note: At 65 FR 76748, Dec. 7, 2000, the heading of 
subpart G was revised to read "National Primary Drinking Water 
Regulations: Maximum Contaminant Levels and Maximum Residual 
Disinfectant Levels", effective Dec. 8, 2003.
 
 
    (a) The effective dates for Sec. 141.61 are as follows:
    (1) The effective date for paragraphs (a)(1) through (a)(8) of 
Sec. 141.61 is January 9, 1989.
    (2) The effective date for paragraphs (a)(9) through (a)(18) and 
(c)(1) through (c)(18) of Sec. 141.61 is July 30, 1992.
    (3) The effective date for paragraphs (a)(19) through (a)(21), 
(c)(19) through (c)(25), and (c)(27) through (c)(33) of Sec. 141.61 is 
January 17, 1994. The effective date of Sec. 141.61(c)(26) is August 17, 
1992.
 
    (b) The effective dates for Sec. 141.62 are as follows:
    (1) The effective date of paragraph (b)(1) of Sec. 141.62 is October 
2, 1987.
    (2) The effective date for paragraphs (b)(2) and (b)(4) through 
(b)(10) of Sec. 141.62 is July 30, 1992.
    (3) The effective date for paragraphs (b)(11) through (b)(15) of 
Sec. 141.62 is January 17, 1994.
 
[56 FR 3593, Jan. 30, 1991, as amended at 57 FR 31846, July 17, 1992; 59 
FR 34324, July 1, 1994]
 
    Effective Date Note: At 66 FR 7063, Jan. 22, 2001, Sec. 141.60 was 
amended by adding paragraph (b)(4), effective March 23, 2001. At 66 FR 
16134, Mar. 23, 2001, the effective date was delayed until May 22, 2001. 
At 66 FR 28350, May 22, 2001, the effective date was further delayed 
until Feb. 22, 2002. For the convenience of the user, the added text is 
set forth as follows:
 
Sec. 141.60  Effective dates.
 
                                * * * * *
 
    (b) * * *
    (4) The effective date for Sec. 141.62(b)(16) is January 23, 2006.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.61]
 
[Page 430-432]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
Subpart G--National Revised Primary Drinking Water Regulations: Maximum 
       Contaminant Levels and Maximum Residual Disinfectant Levels
 
Sec. 141.61  Maximum contaminant levels for organic contaminants.
 
    (a) The following maximum contaminant levels for organic 
contaminants apply to community and non-transient, non-community water 
systems.
 
------------------------------------------------------------------------
            CAS No.                  Contaminant           MCL (mg/l)
------------------------------------------------------------------------
 (1) 75-01-4..................  Vinyl chloride.......         0.002
 (2) 71-43-2..................  Benzene..............         0.005
 (3) 56-23-5..................  Carbon tetrachloride.         0.005
 (4) 107-06-2.................  1,2-Dichloroethane...         0.005
 (5) 79-01-6..................  Trichloroethylene....         0.005
 (6) 106-46-7.................  para-Dichlorobenzene.         0.075
 (7) 75-35-4..................  1,1-Dichloroethylene.         0.007
 (8) 71-55-6..................  1,1,1-Trichloroethane         0.2
 (9) 156-59-2.................  cis-1,2-                      0.07
                                 Dichloroethylene.
 (10) 78-87-5.................  1,2-Dichloropropane..         0.005
 (11) 100-41-4................  Ethylbenzene.........         0.7
 (12) 108-90-7................  Monochlorobenzene....         0.1
 (13) 95-50-1.................  o-Dichlorobenzene....         0.6
 
[[Page 431]]
 
 
 (14) 100-42-5................  Styrene..............         0.1
 (15) 127-18-4................  Tetrachloroethylene..         0.005
 (16) 108-88-3................  Toluene..............         1
 (17) 156-60-5................  trans-1,2-                    0.1
                                 Dichloroethylene.
 (18) 1330-20-7...............  Xylenes (total)......        10
 (19) 75-09-2.................  Dichloromethane......         0.005
 (20) 120-82-1................  1,2,4-Trichloro-               .07
                                 benzene.
 (21) 79-00-5.................  1,1,2-Trichloro-               .005
                                 ethane.
------------------------------------------------------------------------
 
    (b) The Administrator, pursuant to section 1412 of the Act, hereby 
identifies as indicated in the Table below granular activated carbon 
(GAC), packed tower aeration (PTA), or oxidation (OX) as the best 
technology treatment technique, or other means available for achieving 
compliance with the maximum contaminant level for organic contaminants 
identified in paragraphs (a) and (c) of this section:
 
                         BAT for Organic Contaminants Listed in Sec.  141.61 (a) and (c)
----------------------------------------------------------------------------------------------------------------
                   CAS No.                                 Contaminant                 GAC       PTA       OX
----------------------------------------------------------------------------------------------------------------
15972-60-8..................................  Alachlor............................      X     ........  ........
116-06-3....................................  Aldicarb............................      X     ........  ........
1646-88-4...................................  Aldicarb sulfone....................      X     ........  ........
1646-87-3...................................  Aldicarb sulfoxide..................      X     ........  ........
1912-24-9...................................  Atrazine............................      X     ........  ........
71-43-2.....................................  Benzene.............................      X         X     ........
50-32-8.....................................  Benzo[a]pyrene......................      X     ........  ........
1563-66-2...................................  Carbofuran..........................      X     ........  ........
56-23-5.....................................  Carbon tetrachloride................      X         X     ........
57-74-9.....................................  Chlordane...........................      X     ........  ........
75-99-0.....................................  Dalapon.............................      X     ........  ........
94-75-7.....................................  2,4-D...............................      X     ........  ........
103-23-1....................................  Di (2-ethylhexyl) adipate...........      X         X     ........
117-81-7....................................  Di (2-ethylhexyl) phthalate.........      X     ........  ........
96-12-8.....................................  Dibromochloropropane (DBCP).........      X         X     ........
95-50-1.....................................  o-Dichlorobenzene...................      X         X     ........
106-46-7....................................  para-Dichlorobenzene................      X         X     ........
107-06-2....................................  1,2-Dichloroethane..................      X         X     ........
75-35-4.....................................  1,1-Dichloroethylene................      X         X     ........
156-59-2....................................  cis-1,2-Dichloroethylene............      X         X     ........
156-60-5....................................  trans-1,2-Dichloroethylene..........      X         X     ........
75-09-2.....................................  Dichloromethane.....................  ........      X     ........
78-87-5.....................................  1,2-Dichloropropane.................      X         X     ........
88-85-7.....................................  Dinoseb.............................      X     ........  ........
85-00-7.....................................  Diquat..............................      X     ........  ........
145-73-3....................................  Endothall...........................      X     ........  ........
72-20-8.....................................  Endrin..............................      X     ........  ........
100-41-4....................................  Ethylbenzene........................      X         X     ........
106-93-4....................................  Ethylene Dibromide (EDB)............      X         X     ........
1071-83-6...................................  Gylphosate..........................  ........  ........      X
76-44-8.....................................  Heptachlor..........................      X     ........  ........
1024-57-3...................................  Heptachlor epoxide..................      X     ........  ........
118-74-1....................................  Hexachlorobenzene...................      X     ........  ........
77-47-3.....................................  Hexachlorocyclopentadiene...........      X         X     ........
58-89-9.....................................  Lindane.............................      X     ........  ........
72-43-5.....................................  Methoxychlor........................      X     ........  ........
108-90-7....................................  Monochlorobenzene...................      X         X     ........
23135-22-0..................................  Oxamyl (Vydate).....................      X     ........  ........
87-86-5.....................................  Pentachlorophenol...................      X     ........  ........
1918-02-1...................................  Picloram............................      X     ........  ........
1336-36-3...................................  Polychlorinated biphenyls (PCB).....      X     ........  ........
122-34-9....................................  Simazine............................      X     ........  ........
100-42-5....................................  Styrene.............................      X         X     ........
1746-01-6...................................  2,3,7,8-TCDD (Dioxin)...............      X     ........  ........
127-18-4....................................  Tetrachloroethylene.................      X         X     ........
108-88-3....................................  Toluene.............................      X         X     ........
8001-35-2...................................  Toxaphene...........................      X     ........  ........
93-72-1.....................................  2,4,5-TP (Silvex)...................      X     ........  ........
120-82-1....................................  1,2,4-Trichlorobenzene..............      X         X     ........
71-55-6.....................................  1,1,1-Trichloroethane...............      X         X     ........
 
[[Page 432]]
 
 
79-00-5.....................................  1,1,2-Trichloroethane...............      X         X     ........
79-01-6.....................................  Trichloroethylene...................      X         X     ........
75-01-4.....................................  Vinyl chloride......................  ........      X     ........
1330-20-7...................................  Xylene..............................      X         X     ........
----------------------------------------------------------------------------------------------------------------
 
    (c) The following maximum contaminant levels for synthetic organic 
contaminants apply to community water systems and non-transient, non-
community water systems:
 
------------------------------------------------------------------------
            CAS No.                  Contaminant           MCL (mg/l)
------------------------------------------------------------------------
 (1) 15972-60-8...............  Alachlor.............         0.002
 (2) 116-06-3.................  Aldicarb.............         0.003
 (3) 1646-87-3................  Aldicarb sulfoxide...         0.004
 (4) 1646-87-4................  Aldicarb sulfone.....         0.002
 (5) 1912-24-9................  Atrazine.............         0.003
 (6) 1563-66-2................  Carbofuran...........         0.04
 (7) 57-74-9..................  Chlordane............         0.002
 (8) 96-12-8..................  Dibromochloropropane.         0.0002
 (9) 94-75-7..................  2,4-D................         0.07
(10) 106-93-4.................  Ethylene dibromide...         0.00005
(11) 76-44-8..................  Heptachlor...........         0.0004
(12) 1024-57-3................  Heptachlor epoxide...         0.0002
(13) 58-89-9..................  Lindane..............         0.0002
(14) 72-43-5..................  Methoxychlor.........         0.04
(15) 1336-36-3................  Polychlorinated               0.0005
                                 biphenyls.
(16) 87-86-5..................  Pentachlorophenol....         0.001
(17) 8001-35-2................  Toxaphene............         0.003
(18) 93-72-1..................  2,4,5-TP.............         0.05
(19) 50-32-8..................  Benzo[a]pyrene.......         0.0002
(20) 75-99-0..................  Dalapon..............         0.2
(21) 103-23-1.................  Di(2-ethylhexyl)              0.4
                                 adipate.
(22) 117-81-7.................  Di(2-ethylhexyl)              0.006
                                 phthalate.
(23) 88-85-7..................  Dinoseb..............         0.007
(24) 85-00-7..................  Diquat...............         0.02
(25) 145-73-3.................  Endothall............         0.1
(26) 72-20-8..................  Endrin...............         0.002
(27) 1071-53-6................  Glyphosate...........         0.7
(28) 118-74-1.................  Hexacholorbenzene....         0.001
(29) 77-47-4..................  Hexachlorocyclopentad         0.05
                                 iene.
(30) 23135-22-0...............  Oxamyl (Vydate)......         0.2
(31) 1918-02-1................  Picloram.............         0.5
(32) 122-34-9.................  Simazine.............         0.004
(33) 1746-01-6................  2,3,7,8-TCDD (Dioxin)  3 x 10<SUP>-8</SUP>
------------------------------------------------------------------------
 
 
[56 FR 3593, Jan. 30, 1991, as amended at 56 FR 30280, July 1, 1991; 57 
FR 31846, July 17, 1992; 59 FR 34324, July 1, 1994]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.62]
 
[Page 432-434]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
Subpart G--National Revised Primary Drinking Water Regulations: Maximum 
       Contaminant Levels and Maximum Residual Disinfectant Levels
 
Sec. 141.62  Maximum contaminant levels for inorganic contaminants.
 
    (a) [Reserved]
    (b) The maximum contaminant levels for inorganic contaminants 
specified in paragraphs (b) (2)-(6), (b)(10), and (b) (11)-(15) of this 
section apply to community water systems and non-transient, non-
community water systems. The maximum contaminant level specified in 
paragraph (b)(1) of this section only applies to community water 
systems. The maximum contaminant levels specified in (b)(7), (b)(8), and 
(b)(9) of this section apply to community water systems; non-transient, 
non-community water systems; and transient non-community water systems.
 
------------------------------------------------------------------------
                Contaminant                          MCL (mg/l)
------------------------------------------------------------------------
(1) Fluoride..............................  4.0
(2) Asbestos..............................  7 Million Fibers/liter
                                             (longer than 10 <greek-
                                             m>m).
(3) Barium................................  2
(4) Cadmium...............................  0.005
(5) Chromium..............................  0.1
(6) Mercury...............................  0.002
(7) Nitrate...............................  10 (as Nitrogen)
(8) Nitrite...............................  1 (as Nitrogen)
(9) Total Nitrate and Nitrite.............  10 (as Nitrogen)
 
[[Page 433]]
 
 
(10) Selenium.............................  0.05
(11) Antimony.............................  0.006
(12) Beryllium............................  0.004
(13) Cyanide (as free Cyanide)............  0.2
(14) [Reserved]...........................  ............................
(15) Thallium.............................  0.002
------------------------------------------------------------------------
 
    (c) The Administrator, pursuant to section 1412 of the Act, hereby 
identifies the following as the best technology, treatment technique, or 
other means available for achieving compliance with the maximum 
contaminant levels for inorganic contaminants identified in paragraph 
(b) of this section, except fluoride:
 
         BAT for Inorganic Compounds Listed in Section 141.62(B)
------------------------------------------------------------------------
                      Chemical Name                           BAT(s)
------------------------------------------------------------------------
Antimony................................................             2,7
Asbestos................................................           2,3,8
Barium..................................................         5,6,7,9
Beryllium...............................................       1,2,5,6,7
Cadmium.................................................         2,5,6,7
Chromium................................................     2,5,6 \2\,7
Cyanide.................................................          5,7,10
Mercury.................................................  2 \1\,4,6 \1\,
                                                                   7 \1\
Nickel..................................................           5,6,7
Nitrate.................................................           5,7,9
Nitrite.................................................             5,7
Selenium................................................   1,2 \3\,6,7,9
Thallium................................................             1,5
------------------------------------------------------------------------
\1\ BAT only if influent Hg concentrations <ls-thn-eq>10<greek-m>g/1.
\2\ BAT for Chromium III only.
\3\ BAT for Selenium IV only.
 
                          Key to BATS in Table
 
1=Activated Alumina
2=Coagulation/Filtration
3=Direct and Diatomite Filtration
4=Granular Activated Carbon
5=Ion Exchange
6=Lime Softening
7=Reverse Osmosis
8=Corrosion Control
9=Electrodialysis
10=Chlorine
11=Ultraviolet
 
[56 FR 3594, Jan. 30, 1991, as amended at 56 FR 30280, July 1, 1991; 57 
FR 31847, July 17, 1992; 59 FR 34325, July 1, 1994; 60 FR 33932, June 
29, 1995]
 
    Effective Date Note: At 66 FR 7063, Jan. 22, 2001, Sec. 141.62 was 
amended by revising the first sentence of paragraph (b) introductory 
text; adding a new entry "(16)" for arsenic to the table in paragraph 
(b); adding a new entry for "Arsenic" in alphabetical order, adding 
new endnotes 4 and 5, adding a new item 12 and revising items 2 and 6 to 
list of "Key to BATs in Table" and revising the heading to the table 
in paragraph (c); and adding paragraph (d), effective Mar. 23, 2001. At 
66 FR 16134, Mar. 23, 2001, the effective date was delayed until May 22, 
2001. At 66 FR 28350, May 22, 2001, the effective date was further 
delayed until Feb. 22, 2002. For the convenience of the user, the 
revised and added text is set forth as follows:
 
Sec. 141.62  Maximum Contaminant Levels for inorganic contaminants.
 
                                * * * * *
 
    (b) The maximum contaminant levels for inorganic contaminants 
specified in paragraphs (b) (2)-(6), (b)(10), and (b) (11)-(16) of this 
section apply to community water systems and non-transient, non-
community water systems. * * *
 
                                * * * * *
 
------------------------------------------------------------------------
                Contaminant                          MCL (mg/L)
------------------------------------------------------------------------
                  *        *        *        *        *
(16) Arsenic..............................  0.01
------------------------------------------------------------------------
 
    (c) * * *
 
          BAT FOR INORGANIC COMPOUNDS LISTED IN SECTION 141.62(b)
------------------------------------------------------------------------
               Chemical Name                           BAT(s)
------------------------------------------------------------------------
                  *        *        *        *        *
Arsenic \4\...............................  1, 2, 5, 6, 7, 9, 12 \5\
                 *        *        *        *        *
------------------------------------------------------------------------
*        *        *        *        *
\4\ BATs for Arsenic V. Pre-oxidation may be required to convert Arsenic
  III to Arsenic V.
\5\ To obtain high removals, iron to arsenic ratio must be at least
  20:1.
 
                          Key to BATs in Table
 
1 = Activated Alumina
2 = Coagulation/Filtration (not BAT for systems  500 service 
connections)
 
                                * * * * *
 
5 = Ion Exchange
6 = Lime Softening (not BAT for systems  500 service connections)
7 = Reverse Osmosis
 
                                * * * * *
 
9 = Electrodialysis
 
                                * * * * *
 
12 = Oxidation/Filtration
 
                                * * * * *
 
[[Page 434]]
 
    (d) The Administrator, pursuant to section 1412 of the Act, hereby 
identifies in the following table the affordable technology, treatment 
technique, or other means available to systems serving 10,000 persons or 
fewer for achieving compliance with the maximum contaminant level for 
arsenic:
 
    Small System Compliance Technologies (SSCTs) \1\ for Arsenic \2\
------------------------------------------------------------------------
                                           Affordable for listed small
   Small system compliance technology         system categories \3\
------------------------------------------------------------------------
Activated Alumina (centralized)........  All size categories.
Activated Alumina (Point-of-Use) \4\...  All size categories.
Coagulation/Filtration \5\.............  501-3,300, 3,301-10,000.
Coagulation-assisted Microfiltration...  501-3,300, 3,301-10,000.
Electrodialysis reversal \6\...........  501-3,300, 3,301-10,000.
Enhanced coagulation/filtration........  All size categories
Enhanced lime softening (pH> 10.5).....  All size categories.
Ion Exchange...........................  All size categories.
Lime Softening \5\.....................  501-3,300, 3,301-10,000.
Oxidation/Filtration \7\...............  All size categories.
Reverse Osmosis (centralized) \6\......  501-3,300, 3,301-10,000.
Reverse Osmosis (Point-of-Use) \4\.....  All size categories.
------------------------------------------------------------------------
\1\ Section 1412(b)(4)(E)(ii) of SDWA specifies that SSCTs must be
  affordable and technically feasible for small systems.
\2\ SSCTs for Arsenic V. Pre-oxidation may be required to convert
  Arsenic III to Arsenic V.
\3\ The Act (ibid.) specifies three categories of small systems: (i)
  those serving 25 or more, but fewer than 501, (ii) those serving more
  than 500, but fewer than 3,301, and (iii) those serving more than
  3,300, but fewer than 10,001.
\4\ When POU or POE devices are used for compliance, programs to ensure
  proper long-term operation, maintenance, and monitoring must be
  provided by the water system to ensure adequate performance.
\5\ Unlikely to be installed solely for arsenic removal. May require pH
  adjustment to optimal range if high removals are needed.
\6\ Technologies reject a large volume of water--may not be appropriate
  for areas where water quantity may be an issue.
\7\ To obtain high removals, iron to arsenic ratio must be at least
  20:1.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.63]
 
[Page 434-435]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
Subpart G--National Revised Primary Drinking Water Regulations: Maximum 
       Contaminant Levels and Maximum Residual Disinfectant Levels
 
Sec. 141.63  Maximum contaminant levels (MCLs) for microbiological contaminants.
 
    (a) The MCL is based on the presence or absence of total coliforms 
in a sample, rather than coliform density.
    (1) For a system which collects at least 40 samples per month, if no 
more than 5.0 percent of the samples collected during a month are total 
coliform-positive, the system is in compliance with the MCL for total 
coliforms.
    (2) For a system which collects fewer than 40 samples/month, if no 
more than one sample collected during a month is total coliform-
positive, the system is in compliance with the MCL for total coliforms.
    (b) Any fecal coliform-positive repeat sample or E. coli-positive 
repeat sample, or any total coliform-positive repeat sample following a 
fecal coliform-positive or E. coli-positive routine sample constitutes a 
violation of the MCL for total coliforms. For purposes of the public 
notification requirements in subpart Q, this is a violation that may 
pose an acute risk to health.
    (c) A public water system must determine compliance with the MCL for 
total coliforms in paragraphs (a) and (b) of this section for each month 
in which it is required to monitor for total coliforms.
    (d) The Administrator, pursuant to section 1412 of the Act, hereby 
identifies the following as the best technology, treatment techniques, 
or other means available for achieving compliance with the maximum 
contaminant level for total coliforms in paragraphs (a) and (b) of this 
section:
    (1) Protection of wells from contamination by coliforms by 
appropriate placement and construction;
    (2) Maintenance of a disinfectant residual throughout the 
distribution system;
    (3) Proper maintenance of the distribution system including 
appropriate pipe replacement and repair procedures, main flushing 
programs, proper operation and maintenance of storage tanks and 
reservoirs, and continual maintenance of positive water pressure in all 
parts of the distribution system;
    (4) Filtration and/or disinfection of surface water, as described in 
subpart H, or disinfection of ground water using strong oxidants such as 
chlorine, chlorine dioxide, or ozone; and
    (5) For systems using ground water, compliance with the requirements 
of
 
[[Page 435]]
 
an EPA-approved State Wellhead Protection Program developed and 
implemented under section 1428 of the SDWA.
 
[54 FR 27566, June 29, 1989; 55 FR 25064, June 19, 1990, as amended at 
65 FR 26022, May 4, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.64]
 
[Page 435]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
Subpart G--National Revised Primary Drinking Water Regulations: Maximum 
       Contaminant Levels and Maximum Residual Disinfectant Levels
 
Sec. 141.64  Maximum contaminant levels for disinfection byproducts.
 
    (a) The maximum contaminant levels (MCLs) for disinfection 
byproducts are as follows:
 
------------------------------------------------------------------------
                                                                MCL (mg/
                    Disinfection byproduct                         L)
------------------------------------------------------------------------
Total trihalomethanes (TTHM)..................................     0.080
Haloacetic acids (five) (HAA5)................................     0.060
Bromate.......................................................     0.010
Chlorite......................................................     1.0
------------------------------------------------------------------------
 
    (b) Compliance dates. (1) CWSs and NTNCWSs. Subpart H systems 
serving 10,000 or more persons must comply with this section beginning 
January 1, 2002. Subpart H systems serving fewer than 10,000 persons and 
systems using only ground water not under the direct influence of 
surface water must comply with this section beginning January 1, 2004.
    (2) A system that is installing GAC or membrane technology to comply 
with this section may apply to the State for an extension of up to 24 
months past the dates in paragraphs (b)(1) of this section, but not 
beyond December 31, 2003. In granting the extension, States must set a 
schedule for compliance and may specify any interim measures that the 
system must take. Failure to meet the schedule or interim treatment 
requirements constitutes a violation of a National Primary Drinking 
Water Regulation.
    (c) The Administrator, pursuant to Section 1412 of the Act, hereby 
identifies the following as the best technology, treatment techniques, 
or other means available for achieving compliance with the maximum 
contaminant levels for disinfection byproducts identified in paragraph 
(a) of this section:
 
------------------------------------------------------------------------
         Disinfection byproduct             Best available technology
------------------------------------------------------------------------
TTHM...................................  Enhanced coagulation or
                                          enhanced softening or GAC10,
                                          with chlorine as the primary
                                          and residual disinfectant
HAA5...................................  Enhanced coagulation or
                                          enhanced softening or GAC10,
                                          with chlorine as the primary
                                          and residual disinfectant.
Bromate................................  Control of ozone treatment
                                          process to reduce production
                                          of bromate.
Chlorite...............................  Control of treatment processes
                                          to reduce disinfectant demand
                                          and control of disinfection
                                          treatment processes to reduce
                                          disinfectant levels.
------------------------------------------------------------------------
 
 
[63 FR 69465, Dec. 16, 1998, as amended at 66 FR 3776, Jan. 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.65]
 
[Page 435-436]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
Subpart G--National Revised Primary Drinking Water Regulations: Maximum 
       Contaminant Levels and Maximum Residual Disinfectant Levels
 
Sec. 141.65  Maximum residual disinfectant levels.
 
    (a) Maximum residual disinfectant levels (MRDLs) are as follows:
 
------------------------------------------------------------------------
          Disinfectant residual                     MRDL (mg/L)
------------------------------------------------------------------------
Chlorine................................  4.0 (as Cl<INF>2</INF>).
Chloramines.............................  4.0 (as Cl<INF>2</INF>).
Chlorine dioxide........................  0.8 (as ClO<INF>2</INF>).
------------------------------------------------------------------------
 
    (b) Compliance dates. (1) CWSs and NTNCWSs. Subpart H systems 
serving 10,000 or more persons must comply with this section beginning 
January 1, 2002. Subpart H systems serving fewer than 10,000 persons and 
systems using only ground water not under the direct influence of 
surface water must comply with this subpart beginning January 1, 2004.
    (2) Transient NCWSs. Subpart H systems serving 10,000 or more 
persons and using chlorine dioxide as a disinfectant or oxidant must 
comply with the chlorine dioxide MRDL beginning January 1, 2002. Subpart 
H systems serving fewer than 10,000 persons and using chlorine dioxide 
as a disinfectant or oxidant and systems using only ground water not 
under the direct influence of surface water and using chlorine dioxide 
as a disinfectant or oxidant must comply with the chlorine dioxide MRDL 
beginning January 1, 2004.
    (c) The Administrator, pursuant to Section 1412 of the Act, hereby 
identifies the following as the best technology, treatment techniques, 
or other means available for achieving compliance with the maximum 
residual disinfectant levels identified in paragraph (a) of this 
section: control of treatment
 
[[Page 436]]
 
processes to reduce disinfectant demand and control of disinfection 
treatment processes to reduce disinfectant levels.
 
[63 FR 69465, Dec. 16, 1998, as amended at 66 FR 3776, Jan. 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.66]
 
[Page 436-438]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
Subpart G--National Revised Primary Drinking Water Regulations: Maximum 
       Contaminant Levels and Maximum Residual Disinfectant Levels
 
Sec. 141.66  Maximum contaminant levels for radionuclides.
 
    (a) [Reserved]
    (b) MCL for combined radium-226 and -228. The maximum contaminant 
level for combined radium-226 and radium-228 is 5 pCi/L. The combined 
radium-226 and radium-228 value is determined by the addition of the 
results of the analysis for radium-226 and the analysis for radium-228.
    (c) MCL for gross alpha particle activity (excluding radon and 
uranium). The maximum contaminant level for gross alpha particle 
activity (including radium-226 but excluding radon and uranium) is 15 
pCi/L.
    (d) MCL for beta particle and photon radioactivity. (1) The average 
annual concentration of beta particle and photon radioactivity from man-
made radionuclides in drinking water must not produce an annual dose 
equivalent to the total body or any internal organ greater than 4 
millirem/year (mrem/year).
    (2) Except for the radionuclides listed in table A, the 
concentration of man-made radionuclides causing 4 mrem total body or 
organ dose equivalents must be calculated on the basis of 2 liter per 
day drinking water intake using the 168 hour data list in "Maximum 
Permissible Body Burdens and Maximum Permissible Concentrations of 
Radionuclides in Air and in Water for Occupational Exposure," NBS 
(National Bureau of Standards) Handbook 69 as amended August 1963, U.S. 
Department of Commerce. This incorporation by reference was approved by 
the Director of the Federal Register in accordance with 5 U.S.C. 552(a) 
and 1 CFR part 51. Copies of this document are available from the 
National Technical Information Service, NTIS ADA 280 282, U.S. 
Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 
22161. The toll-free number is 800-553-6847. Copies may be inspected at 
EPA's Drinking Water Docket, 401 M Street, SW., Washington, DC 20460; or 
at the Office of the Federal Register, 800 North Capitol Street, NW., 
Suite 700, Washington, DC. If two or more radionuclides are present, the 
sum of their annual dose equivalent to the total body or to any organ 
shall not exceed 4 mrem/year.
 
Table A.--Average Annual Concentrations Assumed To Produce: a Total Body
                       or Organ Dose of 4 mrem/yr
------------------------------------------------------------------------
 
------------------------------------------------------------------------
1. Radionuclide.................  Critical organ....  pCi per liter
2. Tritium......................  Total body........  20,000
3. Strontium-90.................  Bone Marrow.......  8
------------------------------------------------------------------------
 
    (e) MCL for uranium. The maximum contaminant level for uranium is 30 
<greek-m>g/L.
    (f) Compliance dates. (1) Compliance dates for combined radium-226 
and -228, gross alpha particle activity, gross beta particle and photon 
radioactivity, and uranium: Community water systems must comply with the 
MCLs listed in paragraphs (b), (c), (d), and (e) of this section 
beginning December 8, 2003 and compliance shall be determined in 
accordance with the requirements of Secs. 141.25 and 141.26. Compliance 
with reporting requirements for the radionuclides under appendix A to 
subpart O and appendices A and B to subpart Q is required on December 8, 
2003.
    (g) Best available technologies (BATs) for radionuclides. The 
Administrator, pursuant to section 1412 of the Act, hereby identifies as 
indicated in the following table the best technology available for 
achieving compliance with the maximum contaminant levels for combined 
radium-226 and -228, uranium, gross alpha particle activity, and beta 
particle and photon radioactivity.
 
[[Page 437]]
 
 
 
  Table B.--BAT for Combined Radium-226 and Radium-228, Uranium, Gross
   Alpha Particle Activity, and Beta Particle and Photon Radioactivity
------------------------------------------------------------------------
              Contaminant                              BAT
------------------------------------------------------------------------
1. Combined radium-226 and radium-228..  Ion exchange, reverse osmosis,
                                          lime softening.
2. Uranium.............................  Ion exchange, reverse osmosis,
                                          lime softening, coagulation/
                                          filtration.
3. Gross alpha particle activity         Reverse osmosis.
 (excluding Radon and Uranium).
4. Beta particle and photon              Ion exchange, reverse osmosis.
 radioactivity.
------------------------------------------------------------------------
 
    (h) Small systems compliance technologies list for radionuclides.
 
        Table C.--List of Small Systems Compliance Technologies for Radionuclides and Limitations to Use
----------------------------------------------------------------------------------------------------------------
                                          Limitations
           Unit technologies                 (see         Operator skill level      Raw water quality range and
                                          footnotes)          required \1\               considerations.\1\
----------------------------------------------------------------------------------------------------------------
1. Ion exchange (IE)...................          (<SUP>a</SUP>)   Intermediate..............  All ground waters.
2. Point of use (POU \2\) IE...........          (<SUP>b</SUP>)   Basic.....................  All ground waters.
3. Reverse osmosis (RO)................          (<SUP>c</SUP>)   Advanced..................  Surface waters usually
                                                                                    require pre-filtration.
4. POU\2\ RO...........................          (<SUP>b</SUP>)   Basic.....................  Surface waters usually
                                                                                    require pre-filtration.
5. Lime softening......................          (<SUP>d</SUP>)   Advanced..................  All waters.
6. Green sand filtration...............          (<SUP>e</SUP>)   Basic.                      .............................
7. Co-precipitation with Barium sulfate          (<SUP>f</SUP>)   Intermediate to Advanced..  Ground waters with suitable
                                                                                    water quality.
8. Electrodialysis/electrodialysis       ............  Basic to Intermediate.....  All ground waters.
 reversal.
9. Pre-formed hydrous Manganese oxide            (<SUP>g</SUP>)   Intermediate..............  All ground waters.
 filtration.
10. Activated alumina..................     (<SUP>a</SUP>), (<SUP>h</SUP>)   Advanced..................  All ground waters; competing
                                                                                    anion concentrations may
                                                                                    affect regeneration
                                                                                    frequency.
11. Enhanced coagulation/filtration....          (<SUP>i</SUP>)   Advanced..................  Can treat a wide range of
                                                                                    water qualities.
----------------------------------------------------------------------------------------------------------------
\1\ National Research Council (NRC). Safe Water from Every Tap: Improving Water Service to Small Communities.
  National Academy Press. Washington, D.C. 1997.
\2\ A POU, or "point-of-use" technology is a treatment device installed at a single tap used for the purpose
  of reducing contaminants in drinking water at that one tap. POU devices are typically installed at the kitchen
  tap. See the April 21, 2000 NODA for more details.
 
  Limitations Footnotes: Technologies for Radionuclides:
<SUP>a</SUP> The regeneration solution contains high concentrations of the contaminant ions. Disposal options should be
  carefully considered before choosing this technology.
<SUP>b</SUP> When POU devices are used for compliance, programs for long-term operation, maintenance, and monitoring must
  be provided by water utility to ensure proper performance.
<SUP>c</SUP> Reject water disposal options should be carefully considered before choosing this technology. See other RO
  limitations described in the SWTR Compliance Technologies Table.
<SUP>d</SUP> The combination of variable source water quality and the complexity of the water chemistry involved may make
  this technology too complex for small surface water systems.
<SUP>e</SUP> Removal efficiencies can vary depending on water quality.
<SUP>f</SUP> This technology may be very limited in application to small systems. Since the process requires static mixing,
  detention basins, and filtration, it is most applicable to systems with sufficiently high sulfate levels that
  already have a suitable filtration treatment train in place.
<SUP>g</SUP> This technology is most applicable to small systems that already have filtration in place.
<SUP>h</SUP> Handling of chemicals required during regeneration and pH adjustment may be too difficult for small systems
  without an adequately trained operator.
<SUP>i</SUP> Assumes modification to a coagulation/filtration process already in place.
 
 
               Table D.--Compliance Technologies by System Size Category for Radionuclide NPDWR's
----------------------------------------------------------------------------------------------------------------
                                          Compliance technologies \1\ for system size
                                                categories (population served)
             Contaminant              --------------------------------------------------       3,300-10,000
                                                25-500                 501-3,300
----------------------------------------------------------------------------------------------------------------
1. Combined radium-226 and radium-228  1, 2, 3, 4, 5, 6, 7, 8,  1, 2, 3, 4, 5, 6, 7, 8,  1, 2, 3, 4, 5, 6, 7. 8,
                                        9.                       9.                       9.
2. Gross alpha particle activity.....  3, 4...................  3, 4...................  3, 4.
3. Beta particle activity and photon   1, 2, 3, 4.............  1, 2, 3, 4.............  1, 2, 3, 4.
 activity.
4. Uranium...........................  1, 2, 4, 10, 11........  1, 2, 3, 4, 5, 10, 11..  1, 2, 3, 4, 5, 10, 11.
----------------------------------------------------------------------------------------------------------------
Note: <SUP>1</SUP> Numbers correspond to those tegies found listed in the table C of 141.66(h).
 
 
[[Page 438]]
 
[65 FR 76748, Dec. 7, 2000]
 
    Effective Date Note: At 65 FR 76748, Dec. 7, 2000, Sec. 141.66 was 
added, effective Dec. 8, 2003.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.70]
 
[Page 438]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart H--Filtration and Disinfection
 
Sec. 141.70  General requirements.
 
    Source: 54 FR 27527, June 29, 1989, unless otherwise noted.
 
 
    (a) The requirements of this subpart H constitute national primary 
drinking water regulations. These regulations establish criteria under 
which filtration is required as a treatment technique for public water 
systems supplied by a surface water source and public water systems 
supplied by a ground water source under the direct influence of surface 
water. In addition, these regulations establish treatment technique 
requirements in lieu of maximum contaminant levels for the following 
contaminants: Giardia lamblia, viruses, heterotrophic plate count 
bacteria, Legionella, and turbidity. Each public water system with a 
surface water source or a ground water source under the direct influence 
of surface water must provide treatment of that source water that 
complies with these treatment technique requirements. The treatment 
technique requirements consist of installing and properly operating 
water treatment processes which reliably achieve:
    (1) At least 99.9 percent (3-log) removal and/or inactivation of 
Giardia lamblia cysts between a point where the raw water is not subject 
to recontamination by surface water runoff and a point downstream before 
or at the first customer; and
    (2) At least 99.99 percent (4-log) removal and/or inactivation of 
viruses between a point where the raw water is not subject to 
recontamination by surface water runoff and a point downstream before or 
at the first customer.
    (b) A public water system using a surface water source or a ground 
water source under the direct influence of surface water is considered 
to be in compliance with the requirements of paragraph (a) of this 
section if:
    (1) It meets the requirements for avoiding filtration in Sec. 141.71 
and the disinfection requirements in Sec. 141.72(a); or
    (2) It meets the filtration requirements in Sec. 141.73 and the 
disinfection requirements in Sec. 141.72(b).
    (c) Each public water system using a surface water source or a 
ground water source under the direct influence of surface water must be 
operated by qualified personnel who meet the requirements specified by 
the State.
    (d) Additional requirements for systems serving at least 10,000 
people. In addition to complying with requirements in this subpart, 
systems serving at least 10,000 people must also comply with the 
requirements in subpart P of this part.
 
[54 FR 27527, June 29, 1989, as amended at 63 FR 69516, Dec. 16, 1998]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.71]
 
[Page 438-440]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart H--Filtration and Disinfection
 
Sec. 141.71  Criteria for avoiding filtration.
 
    A public water system that uses a surface water source must meet all 
of the conditions of paragraphs (a) and (b) of this section, and is 
subject to paragraph (c) of this section, beginning December 30, 1991, 
unless the State has determined, in writing pursuant to 
Sec. 1412(b)(7)(C)(iii), that filtration is required. A public water 
system that uses a ground water source under the direct influence of 
surface water must meet all of the conditions of paragraphs (a) and (b) 
of this section and is subject to paragraph (c) of this section, 
beginning 18 months after the State determines that it is under the 
direct influence of surface water, or December 30, 1991, whichever is 
later, unless the State has determined, in writing pursuant to 
Sec. 1412(b)(7)(C)(iii), that filtration is required. If the State 
determines in writing pursuant to Sec. 1412(b)(7)(C)(iii) before 
December 30, 1991, that filtration is required, the system must have 
installed filtration and meet the criteria for filtered systems 
specified in Secs. 141.72(b) and 141.73 by June 29, 1993. Within 18 
months of the failure of a system using surface water or a ground water 
source under the direct influence of surface water to meet any one of 
the requirements of paragraphs (a) and (b) of this section or after June 
29, 1993,
 
[[Page 439]]
 
whichever is later, the system must have installed filtration and meet 
the criteria for filtered systems specified in Secs. 141.72(b) and 
141.73.
    (a) Source water quality conditions. (1) The fecal coliform 
concentration must be equal to or less than 20/100 ml, or the total 
coliform concentration must be equal to or less than 100/100 ml 
(measured as specified in Sec. 141.74 (a) (1) and (2) and (b)(1)), in 
representative samples of the source water immediately prior to the 
first or only point of disinfectant application in at least 90 percent 
of the measurements made for the 6 previous months that the system 
served water to the public on an ongoing basis. If a system measures 
both fecal and total coliforms, the fecal coliform criterion, but not 
the total coliform criterion, in this paragraph must be met.
    (2) The turbidity level cannot exceed 5 NTU (measured as specified 
in Sec. 141.74 (a)(4) and (b)(2)) in representative samples of the 
source water immediately prior to the first or only point of 
disinfectant application unless: (i) the State determines that any such 
event was caused by circumstances that were unusual and unpredictable; 
and (ii) as a result of any such event, there have not been more than 
two events in the past 12 months the system served water to the public, 
or more than five events in the past 120 months the system served water 
to the public, in which the turbidity level exceeded 5 NTU. An "event" 
is a series of consecutive days during which at least one turbidity 
measurement each day exceeds 5 NTU.
    (b) Site-specific conditions. (1)(i) The public water system must 
meet the requirements of Sec. 141.72(a)(1) at least 11 of the 12 
previous months that the system served water to the public, on an 
ongoing basis, unless the system fails to meet the requirements during 2 
of the 12 previous months that the system served water to the public, 
and the State determines that at least one of these failures was caused 
by circumstances that were unusual and unpredictable.
    (ii) The public water system must meet the requirements of 
Sec. 141.72(a)(2) at all times the system serves water to the public.
    (iii) The public water system must meet the requirements of 
Sec. 141.72(a)(3) at all times the system serves water to the public 
unless the State determines that any such failure was caused by 
circumstances that were unusual and unpredictable.
    (iv) The public water system must meet the requirements of 
Sec. 141.72(a)(4) on an ongoing basis unless the State determines that 
failure to meet these requirements was not caused by a deficiency in 
treatment of the source water.
    (2) The public water system must maintain a watershed control 
program which minimizes the potential for contamination by Giardia 
lamblia cysts and viruses in the source water. The State must determine 
whether the watershed control program is adequate to meet this goal. The 
adequacy of a program to limit potential contamination by Giardia 
lamblia cysts and viruses must be based on: the comprehensiveness of the 
watershed review; the effectiveness of the system's program to monitor 
and control detrimental activities occurring in the watershed; and the 
extent to which the water system has maximized land ownership and/or 
controlled land use within the watershed. At a minimum, the watershed 
control program must:
    (i) Characterize the watershed hydrology and land ownership;
    (ii) Identify watershed characteristics and activities which may 
have an adverse effect on source water quality; and
    (iii) Monitor the occurrence of activities which may have an adverse 
effect on source water quality.
    The public water system must demonstrate through ownership and/or 
written agreements with landowners within the watershed that it can 
control all human activities which may have an adverse impact on the 
microbiological quality of the source water. The public water system 
must submit an annual report to the State that identifies any special 
concerns about the watershed and how they are being handled; describes 
activities in the watershed that affect water quality; and projects what 
adverse activities are expected to occur in the future and describes how 
the public water system
 
[[Page 440]]
 
expects to address them. For systems using a ground water source under 
the direct influence of surface water, an approved wellhead protection 
program developed under section 1428 of the Safe Drinking Water Act may 
be used, if the State deems it appropriate, to meet these requirements.
    (3) The public water system must be subject to an annual on-site 
inspection to assess the watershed control program and disinfection 
treatment process. Either the State or a party approved by the State 
must conduct the on-site inspection. The inspection must be conducted by 
competent individuals such as sanitary and civil engineers, sanitarians, 
or technicians who have experience and knowledge about the operation and 
maintenance of a public water system, and who have a sound understanding 
of public health principles and waterborne diseases. A report of the on-
site inspection summarizing all findings must be prepared every year. 
The on-site inspection must indicate to the State's satisfaction that 
the watershed control program and disinfection treatment process are 
adequately designed and maintained. The on-site inspection must include:
    (i) A review of the effectiveness of the watershed control program;
    (ii) A review of the physical condition of the source intake and how 
well it is protected;
    (iii) A review of the system's equipment maintenance program to 
ensure there is low probability for failure of the disinfection process;
    (iv) An inspection of the disinfection equipment for physical 
deterioration;
    (v) A review of operating procedures;
    (vi) A review of data records to ensure that all required tests are 
being conducted and recorded and disinfection is effectively practiced; 
and
    (vii) Identification of any improvements which are needed in the 
equipment, system maintenance and operation, or data collection.
    (4) The public water system must not have been identified as a 
source of a waterborne disease outbreak, or if it has been so 
identified, the system must have been modified sufficiently to prevent 
another such occurrence, as determined by the State.
    (5) The public water system must comply with the maximum contaminant 
level (MCL) for total coliforms in Sec. 141.63 at least 11 months of the 
12 previous months that the system served water to the public, on an 
ongoing basis, unless the State determines that failure to meet this 
requirement was not caused by a deficiency in treatment of the source 
water.
    (6) The public water system must comply with the requirements for 
trihalomethanes in Secs. 141.12 and 141.30 until December 31, 2001. 
After December 31, 2001, the system must comply with the requirements 
for total trihalomethanes, haloacetic acids (five), bromate, chlorite, 
chlorine, chloramines, and chlorine dioxide in subpart L of this part.
    (c) Treatment technique violations. (1) A system that (i) fails to 
meet any one of the criteria in paragraphs (a) and (b) of this section 
and/or which the State has determined that filtration is required, in 
writing pursuant to Sec. 1412(b)(7)(C)(iii), and (ii) fails to install 
filtration by the date specified in the introductory paragraph of this 
section is in violation of a treatment technique requirement.
    (2) A system that has not installed filtration is in violation of a 
treatment technique requirement if:
    (i) The turbidity level (measured as specified in Sec. 141.74(a)(4) 
and (b)(2)) in a representative sample of the source water immediately 
prior to the first or only point of disinfection application exceeds 5 
NTU; or
    (ii) The system is identified as a source of a waterborne disease 
outbreak.
 
[54 FR 27527, June 29, 1989, as amended at 63 FR 69516, Dec. 16, 1998; 
66 FR 3776, Jan. 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.72]
 
[Page 440-442]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart H--Filtration and Disinfection
 
Sec. 141.72  Disinfection.
 
    A public water system that uses a surface water source and does not 
provide filtration treatment must provide the disinfection treatment 
specified in paragraph (a) of this section beginning December 30, 1991, 
unless the State determines that filtration is required in writing 
pursuant to Sec. 1412 (b)(7)(C)(iii). A public water system that uses a 
ground water source under the direct influence of surface water and does 
not
 
[[Page 441]]
 
provide filtration treatment must provide disinfection treatment 
specified in paragraph (a) of this section beginning December 30, 1991, 
or 18 months after the State determines that the ground water source is 
under the influence of surface water, whichever is later, unless the 
State has determined that filtration is required in writing pursuant to 
Sec. 1412(b)(7)(C)(iii). If the State has determined that filtration is 
required, the system must comply with any interim disinfection 
requirements the State deems necessary before filtration is installed. A 
system that uses a surface water source that provides filtration 
treatment must provide the disinfection treatment specified in paragraph 
(b) of this section beginnng June 29, 1993, or beginning when filtration 
is installed, whichever is later. A system that uses a ground water 
source under the direct influence of surface water and provides 
filtration treatment must provide disinfection treatment as specified in 
paragraph (b) of this section by June 29, 1993, or beginning when 
filtration is installed, whichever is later. Failure to meet any 
requirement of this section after the applicable date specified in this 
introductory paragraph is a treatment technique violation.
    (a) Disinfection requirements for public water systems that do not 
provide filtration. Each public water system that does not provide 
filtration treatment must provide disinfection treatment as follows:
    (1) The disinfection treatment must be sufficient to ensure at least 
99.9 percent (3-log) inactivation of Giardia lamblia cysts and 99.99 
percent (4-log) inactivation of viruses, every day the system serves 
water to the public, except any one day each month. Each day a system 
serves water to the public, the public water system must calculate the 
CT value(s) from the system's treatment parameters, using the procedure 
specified in Sec. 141.74(b)(3), and determine whether this value(s) is 
sufficient to achieve the specified inactivation rates for Giardia 
lamblia cysts and viruses. If a system uses a disinfectant other than 
chlorine, the system may demonstrate to the State, through the use of a 
State-approved protocol for on-site disinfection challenge studies or 
other information satisfactory to the State, that CT<INF>99.9</INF> 
values other than those specified in tables 2.1 and 3.1 in 
Sec. 141.74(b)(3) or other operational parameters are adequate to 
demonstrate that the system is achieving minimum inactivation rates 
required by paragraph (a)(1) of this section.
    (2) The disinfection system must have either (i) redundant 
components, including an auxiliary power supply with automatic start-up 
and alarm to ensure that disinfectant application is maintained 
continuously while water is being delivered to the distribution system, 
or (ii) automatic shut-off of delivery of water to the distribution 
system whenever there is less than 0.2 mg/l of residual disinfectant 
concentration in the water. If the State determines that automatic shut-
off would cause unreasonable risk to health or interfere with fire 
protection, the system must comply with paragraph (a)(2)(i) of this 
section.
    (3) The residual disinfectant concentration in the water entering 
the distribution system, measured as specified in Sec. 141.74 (a)(5) and 
(b)(5), cannot be less than 0.2 mg/l for more than 4 hours.
    (4)(i) The residual disinfectant concentration in the distribution 
system, measured as total chlorine, combined chlorine, or chlorine 
dioxide, as specified in Sec. 141.74 (a)(5) and (b)(6), cannot be 
undetectable in more than 5 percent of the samples each month, for any 
two consecutive months that the system serves water to the public. Water 
in the distribution system with a heterotrophic bacteria concentration 
less than or equal to 500/ml, measured as heterotrophic plate count 
(HPC) as specified in Sec. 141.74(a)(3), is deemed to have a detectable 
disinfectant residual for purposes of determining compliance with this 
requirement. Thus, the value "V" in the following formula cannot 
exceed 5 percent in one month, for any two consecutive months.
[GRAPHIC] [TIFF OMITTED] TC15NO91.131
 
where:
a=number of instances where the residual disinfectant concentration is 
measured;
b=number of instances where the residual disinfectant concentration is 
not measured
 
[[Page 442]]
 
but heterotrophic bacteria plate count (HPC) is measured;
c=number of instances where the residual disinfectant concentration is 
measured but not detected and no HPC is measured;
d=number of instances where the residual disinfectant concentration is 
measured but not detected and where the HPC is >500/ml; and
e=number of instances where the residual disinfectant concentration is 
not measured and HPC is >500/ml.
 
    (ii) If the State determines, based on site-specific considerations, 
that a system has no means for having a sample transported and analyzed 
for HPC by a certified laboratory under the requisite time and 
temperature conditions specified by Sec. 141.74(a)(3) and that the 
system is providing adequate disinfection in the distribution system, 
the requirements of paragraph (a)(4)(i) of this section do not apply to 
that system.
    (b) Disinfection requirements for public water systems which provide 
filtration. Each public water system that provides filtration treatment 
must provide disinfection treatment as follows.
    (1) The disinfection treatment must be sufficient to ensure that the 
total treatment processes of that system achieve at least 99.9 percent 
(3-log) inactivation and/or removal of Giardia lamblia cysts and at 
least 99.99 percent (4-log) inactivation and/or removal of viruses, as 
determined by the State.
    (2) The residual disinfectant concentration in the water entering 
the distribution system, measured as specified in Sec. 141.74 (a)(5) and 
(c)(2), cannot be less than 0.2 mg/l for more than 4 hours.
    (3)(i) The residual disinfectant concentration in the distribution 
system, measured as total chlorine, combined chlorine, or chlorine 
dioxide, as specified in Sec. 141.74 (a)(5) and (c)(3), cannot be 
undetectable in more than 5 percent of the samples each month, for any 
two consecutive months that the system serves water to the public. Water 
in the distribution system with a heterotrophic bacteria concentration 
less than or equal to 500/ml, measured as heterotrophic plate count 
(HPC) as specified in Sec. 141.74(a)(3), is deemed to have a detectable 
disinfectant residual for purposes of determining compliance with this 
requirement. Thus, the value "V" in the following formula cannot 
exceed 5 percent in one month, for any two consecutive months.
[GRAPHIC] [TIFF OMITTED] TC15NO91.132
 
where:
a=number of instances where the residual disinfectant concentration is 
measured;
b=number of instances where the residual disinfectant concentration is 
not measured but heterotrophic bacteria plate count (HPC) is measured;
c=number of instances where the residual disinfectant concentration is 
measured but not detected and no HPC is measured;
d=number of instances where no residual disinfectant concentration is 
detected and where the HPC is >500/ml; and
e=number of instances where the residual disinfectant concentration is 
not measured and HPC is >500/ml.
 
    (ii) If the State determines, based on site-specific considerations, 
that a system has no means for having a sample transported and analyzed 
for HPC by a certified laboratory under the requisite time and 
temperature conditions specified in Sec. 141.74(a)(3) and that the 
system is providing adequate disinfection in the distribution system, 
the requirements of paragraph (b)(3)(i) of this section do not apply.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.73]
 
[Page 442-443]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart H--Filtration and Disinfection
 
Sec. 141.73  Filtration.
 
    A public water system that uses a surface water source or a ground 
water source under the direct influence of surface water, and does not 
meet all of the criteria in Sec. 141.71 (a) and (b) for avoiding 
filtration, must provide treatment consisting of both disinfection, as 
specified in Sec. 141.72(b), and filtration treatment which complies 
with the requirements of paragraph (a), (b), (c), (d), or (e) of this 
section by June 29, 1993, or within 18 months of the failure to meet any 
one of the criteria for avoiding filtration in Sec. 141.71 (a) and (b), 
whichever is later. Failure to meet any requirement of this section 
after the date specified in this introductory paragraph is a treatment 
technique violation.
    (a) Conventional filtration treatment or direct filtration. (1) For 
systems using conventional filtration or direct filtration, the 
turbidity level of representative samples of a system's filtered water 
must be less than or equal to 0.5
 
[[Page 443]]
 
NTU in at least 95 percent of the measurements taken each month, 
measured as specified in Sec. 141.74 (a)(4) and (c)(1), except that if 
the State determines that the system is capable of achieving at least 
99.9 percent removal and/or inactivation of Giardia lamblia cysts at 
some turbidity level higher than 0.5 NTU in at least 95 percent of the 
measurements taken each month, the State may substitute this higher 
turbidity limit for that system. However, in no case may the State 
approve a turbidity limit that allows more than 1 NTU in more than 5 
percent of the samples taken each month, measured as specified in 
Sec. 141.74 (a)(4) and (c)(1).
    (2) The turbidity level of representative samples of a system's 
filtered water must at no time exceed 5 NTU, measured as specified in 
Sec. 141.74 (a)(4) and (c)(1).
    (3) Beginning January 1, 2002, systems serving at least 10,000 
people must meet the turbidity requirements in Sec. 141.173(a).
    (b) Slow sand filtration. (1) For systems using slow sand 
filtration, the turbidity level of representative samples of a system's 
filtered water must be less than or equal to 1 NTU in at least 95 
percent of the measurements taken each month, measured as specified in 
Sec. 141.74 (a)(4) and (c)(1), except that if the State determines there 
is no significant interference with disinfection at a higher turbidity 
level, the State may substitute this higher turbidity limit for that 
system.
    (2) The turbidity level of representative samples of a system's 
filtered water must at no time exceed 5 NTU, measured as specified in 
Sec. 141.74 (a)(4) and (c)(1).
    (c) Diatomaceous earth filtration. (1) For systems using 
diatomaceous earth filtration, the turbidity level of representative 
samples of a system's filtered water must be less than or equal to 1 NTU 
in at least 95 percent of the measurements taken each month, measured as 
specified in Sec. 141.74 (a)(4) and (c)(1).
    (2) The turbidity level of representative samples of a system's 
filtered water must at no time exceed 5 NTU, measured as specified in 
Sec. 141.74 (a)(4) and (c)(1).
    (d) Other filtration technologies. A public water system may use a 
filtration technology not listed in paragraphs (a) through (c) of this 
section if it demonstrates to the State, using pilot plant studies or 
other means, that the alternative filtration technology, in combination 
with disinfection treatment that meets the requirements of 
Sec. 141.72(b), consistently achieves 99.9 percent removal and/or 
inactivation of Giardia lamblia cysts and 99.99 percent removal and/or 
inactivation of viruses. For a system that makes this demonstration, the 
requirements of paragraph (b) of this section apply. Beginning January 
1, 2002, systems serving at least 10,000 people must meet the 
requirements for other filtration technologies in Sec. 141.173(b).
 
[54 FR 27527, June 29, 1989, as amended at 63 FR 69516, Dec. 16, 1998; 
66 FR 3776, Jan. 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.74]
 
[Page 443-450]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart H--Filtration and Disinfection
 
Sec. 141.74  Analytical and monitoring requirements.
 
    (a) Analytical requirements. Only the analytical method(s) specified 
in this paragraph, or otherwise approved by EPA, may be used to 
demonstrate compliance with Secs. 141.71, 141.72 and 141.73. 
Measurements for pH, turbidity, temperature and residual disinfectant 
concentrations must be conducted by a person approved by the State. 
Measurement for total coliforms, fecal coliforms and HPC must be 
conducted by a laboratory certified by the State or EPA to do such 
analysis. Until laboratory certification criteria are developed for the 
analysis of fecal coliforms and HPC, any laboratory certified for total 
coliforms analysis by the State or EPA is deemed certified for fecal 
coliforms and HPC analysis. The following procedures shall be conducted 
in accordance with the publications listed in the following section. 
This incorporation by reference was approved by the Director of the 
Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. 
Copies of the methods published in Standard Methods for the Examination 
of Water and Wastewater may be obtained from the American Public Health 
Association et al., 1015 Fifteenth Street, NW., Washington, DC 20005; 
copies of the Minimal Medium ONPG-MUG Method as set forth in the
 
[[Page 444]]
 
article "National Field Evaluation of a Defined Substrate Method for 
the Simultaneous Enumeration of Total Coliforms and Esherichia coli from 
Drinking Water: Comparison with the Standard Multiple Tube Fermentation 
Method" (Edberg et al.), Applied and Environmental Microbiology, Volume 
54, pp. 1595-1601, June 1988 (as amended under Erratum, Applied and 
Environmental Microbiology, Volume 54, p. 3197, December, 1988), may be 
obtained from the American Water Works Association Research Foundation, 
6666 West Quincy Avenue, Denver, Colorado, 80235; and copies of the 
Indigo Method as set forth in the article "Determination of Ozone in 
Water by the Indigo Method" (Bader and Hoigne), may be obtained from 
Ozone Science & Engineering, Pergamon Press Ltd., Fairview Park, 
Elmsford, New York 10523. Copies may be inspected at the U.S. 
Environmental Protection Agency, Room EB15, 401 M St., SW., Washington, 
DC 20460 or at the Office of the Federal Register, 800 North Capitol 
Street, NW., suite 700, Washington, DC.
    (1) Public water systems must conduct analysis of pH and temperature 
in accordance with one of the methods listed at Sec. 141.23(k)(1). 
Public water systems must conduct analysis of total coliforms, fecal 
coliforms, heterotrophic bacteria, and turbidity in accordance with one 
of the following analytical methods and by using analytical test 
procedures contained in Technical Notes on Drinking Water Methods, EPA-
600/R-94-173, October 1994, which is available at NTIS PB95-104766.
 
------------------------------------------------------------------------
            Organism                 Methodology         Citation \1\
------------------------------------------------------------------------
Total Coliform \2\.............  Total Coliform      9221 A, B, C
                                  Fermentation
                                  Technique \3,4,5\.
                                 Total Coliform      9222 A, B, C
                                  Membrane Filter
                                  Technique \6\.
                                 ONPG-MUG Test \7\.  9223
Fecal Coliforms \2\............  Fecal Coliform      9221 E
                                  Procedure \8\.
                                 Fecal Coliform      9222 D
                                  Filter Procedure.
Heterotrophic bacteria \2\.....  Pour Plate Method.  9215 B
Turbidity......................  Nephelometric       2130 B
                                  Method.
                                 Nephelometric       180.1 \9\
                                  Method.
                                 Great Lakes         Method 2 \10\
                                  Instruments.
------------------------------------------------------------------------
 The procedures shall be done in accordance with the documents listed
  below. The incorporation by reference of the following documents
  listed in footnotes 1, 6, 7, 9 and 10 was approved by the Director of
  the Federal Register in accordance with 5 U.S.C. 552(a) and 1 CFR part
  51. Copies of the documents may be obtained from the sources listed
  below. Information regarding obtaining these documents can be obtained
  from the Safe Drinking Water Hotline at 800-426-4791. Documents may be
  inspected at EPA's Drinking Water Docket, 1200 Pennsylvania Ave., NW.,
  Washington, DC 20460 (Telephone: 202-260-3027); or at the Office of
  the Federal Register, 800 North Capitol Street, NW, Suite 700,
  Washington, D.C. 20408.
\1\ Except where noted, all methods refer to Standard Methods for the
  Examination of Water and Wastewater, 18th edition, 1992 and 19th
  edition, 1995, American Public Health Association, 1015 Fifteenth
  Street NW, Washington, D.C. 20005; either edition may be used.
\2\ The time from sample collection to initiation of analysis may not
  exceed 8 hours. Systems must hold samples below 10 deg.C during
  transit.
\3\ Lactose broth, as commercially available, may be used in lieu of
  lauryl tryptose broth, if the system conducts at least 25 parallel
  tests between this medium and lauryl tryptose broth using the water
  normally tested, and this comparison demonstrates that the false-
  positive rate and false-negative rate for total coliform, using
  lactose broth, is less than 10 percent.
\4\ Media should cover inverted tubes at least one-half to two-thirds
  after the sample is added.
\5\ No requirement exists to run the completed phase on 10 percent of
  all total coliform-positive confirmed tubes.
\6\ MI agar also may be used. Preparation and use of MI agar is set
  forth in the article, "New medium for the simultaneous detection of
  total coliform and Escherichia coli in water" by Brenner, K.P., et
  al., 1993, Appl. Environ. Microbiol. 59:3534-3544. Also available from
  the Office of Water Resource Center (RC-4100), 1200 Pennsylvania Ave.,
  NW., Washington, DC 20460, EPA 600/J-99/225.
\7\ The ONPG-MUG Test is also known as the Autoanalysis Colilert System.
\8\ A-1 Broth may be held up to three months in a tightly closed screw
  cap tube at 4  deg.C.
\9\ "Methods for the Determination of Inorganic Substances in
  Environmental Samples", EPA/600/R-93/100, August 1993. Available at
  NTIS, PB94-121811.
\10\ GLI Method 2, "Turbidity", November 2, 1992, Great Lakes
  Instruments, Inc., 8855 North 55th Street, Milwaukee, Wisconsin 53223.
 
    (2) Public water systems must measure residual disinfectant 
concentrations with one of the analytical methods in the following 
table. The methods are contained in both the 18th and 19th editions of 
Standard Methods for the Examination of Water and Wastewater, 1992 and 
1995; either edition may be used. Other analytical test procedures are 
contained in Technical Notes on Drinking Water Methods, EPA-600/R-94-
173, October 1994, which is available at NTIS PB95-104766. If approved 
by the State, residual disinfectant concentrations for free chlorine and 
combined chlorine also may be measured by using DPD colorimetric test 
kits. Free and total chlorine residuals may be measured continuously by 
adapting a specified chlorine residual method for
 
[[Page 445]]
 
use with a continuous monitoring instrument provided the chemistry, 
accuracy, and precision remain same. Instruments used for continuous 
monitoring must be calibrated with a grab sample measurement at least 
every five days, or with a protocol approved by the State.
 
------------------------------------------------------------------------
           Residual                Methodology            Methods
------------------------------------------------------------------------
Free Chlorine.................  Amperometric       4500-Cl D
                                 Titration.
                                DPD Ferrous        4500-Cl F
                                 Titrimetric.
                                DPD Colorimetric.  4500-Cl G
                                Syringaldazine     4500-Cl H
                                 (FACTS).
Total Chlorine................  Amperometric       4500-Cl D
                                 Titration.
                                Amperometric       4500-Cl E
                                 Titration (low
                                 level
                                 measurement).
                                DPD Ferrous        4500-Cl F
                                 Titrimetric.
                                DPD Colorimetric.  4500-Cl G
                                Iodometric         4500-Cl I
                                 Electrode.
Chlorine Dioxide..............  Amperometric       4500-ClO<INF>2</INF> C
                                 Titration.
                                DPD Method.......  4500-ClO<INF>2</INF> D
                                Amperometric       4500-ClO<INF>2</INF> E
                                 Titration.
Ozone.........................  Indigo Method....  4500-O<INF>3</INF> B
------------------------------------------------------------------------
 
    (b) Monitoring requirements for systems that do not provide 
filtration. A public water system that uses a surface water source and 
does not provide filtration treatment must begin monitoring, as 
specified in this paragraph (b), beginning December 31, 1990, unless the 
State has determined that filtration is required in writing pursuant to 
Sec. 1412(b)(7)(C)(iii), in which case the State may specify alternative 
monitoring requirements, as appropriate, until filtration is in place. A 
public water system that uses a ground water source under the direct 
influence of surface water and does not provide filtration treatment 
must begin monitoring as specified in this paragraph (b) beginning 
December 31, 1990, or 6 months after the State determines that the 
ground water source is under the direct influence of surface water, 
whichever is later, unless the State has determined that filtration is 
required in writing pursuant to Sec. 1412(b)(7)(C)(iii), in which case 
the State may specify alternative monitoring requirements, as 
appropriate, until filtration is in place.
    (1) Fecal coliform or total coliform density measurements as 
required by Sec. 141.71(a)(1) must be performed on representative source 
water samples immediately prior to the first or only point of 
disinfectant application. The system must sample for fecal or total 
coliforms at the following minimum frequency each week the system serves 
water to the public:
 
------------------------------------------------------------------------
                                                                Samples/
                 System size (persons served)                   week\1\
------------------------------------------------------------------------
:500.........................................................          1
501 to 3,300.................................................          2
3,301 to 10,000..............................................          3
10,001 to 25,000.............................................          4
>25,000......................................................          5
------------------------------------------------------------------------
\1\ Must be taken on separate days.
 
    Also, one fecal or total coliform density measurement must be made 
every day the system serves water to the public and the turbidity of the 
source water exceeds 1 NTU (these samples count towards the weekly 
coliform sampling requirement) unless the State determines that the 
system, for logistical reasons outside the system's control, cannot have 
the sample analyzed within 30 hours of collection.
    (2) Turbidity measurements as required by Sec. 141.71(a)(2) must be 
performed on representative grab samples of source water immediately 
prior to the first or only point of disinfectant application every four 
hours (or more frequently) that the system serves water to the public. A 
public water system may substitute continuous turbidity monitoring for 
grab sample monitoring if it validates the continuous measurement for 
accuracy on a regular basis using a protocol approved by the State.
    (3) The total inactivation ratio for each day that the system is in 
operation must be determined based on the CT<INF>99.9</INF> values in 
tables 1.1-1.6, 2.1, and 3.1 of this section, as appropriate. The 
parameters necessary to determine the total inactivation ratio must be 
monitored as follows:
    (i) The temperature of the disinfected water must be measured at 
least once per day at each residual disinfectant concentration sampling 
point.
    (ii) If the system uses chlorine, the pH of the disinfected water 
must be measured at least once per day at each chlorine residual 
disinfectant concentration sampling point.
 
[[Page 446]]
 
    (iii) The disinfectant contact time(s) ("T") must be determined 
for each day during peak hourly flow.
    (iv) The residual disinfectant concentration(s) ("C") of the water 
before or at the first customer must be measured each day during peak 
hourly flow.
    (v) If a system uses a disinfectant other than chlorine, the system 
may demonstrate to the State, through the use of a State-approved 
protocol for on-site disinfection challenge studies or other information 
satisfactory to the State, that CT<INF>99.9</INF> values other than 
those specified in tables 2.1 and 3.1 in this section other operational 
parameters are adequate to demonstrate that the system is achieving the 
minimum inactivation rates required by Sec. 141.72(a)(1).
 
  Table 1.1--CT Values (CT<INF>99.9</INF>) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at 0.5
                                               deg.C or Lower \1\
----------------------------------------------------------------------------------------------------------------
                                                                                       pH
                       Residual (mg/l)                        --------------------------------------------------
                                                                :6.0    6.5    7.0    7.5    8.0    8.5    :9.0
----------------------------------------------------------------------------------------------------------------
:0.4.........................................................     137    163    195    237    277    329     390
0.6..........................................................     141    168    200    239    286    342     407
0.8..........................................................     145    172    205    246    295    354     422
1.0..........................................................     148    176    210    253    304    365     437
1.2..........................................................     152    180    215    259    313    376     451
1.4..........................................................     155    184    221    266    321    387     464
1.6..........................................................     157    189    226    273    329    397     477
1.8..........................................................     162    193    231    279    338    407     489
2.0..........................................................     165    197    236    286    346    417     500
2.2..........................................................     169    201    242    297    353    426     511
2.4..........................................................     172    205    247    298    361    435     522
2.6..........................................................     175    209    252    304    368    444     533
2.8..........................................................     178    213    257    310    375    452     543
3.0..........................................................     181    217    261    316    382    460     552
----------------------------------------------------------------------------------------------------------------
\1\ These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the
  indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of
  different tables may be determined by linear interpolation. If no interpolation is used, use the CT<INF>99.9</INF> value
  at the lower temperature and at the higher pH.
 
 
  Table 1.2--CT Values (CT <INF>99.9</INF>) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at 5.0
                                                    deg.C\1\
----------------------------------------------------------------------------------------------------------------
                                                                                       pH
                     Free residual (mg/l)                     --------------------------------------------------
                                                                :6.0    6.5    7.0    7.5    8.0    8.5    :9.0
----------------------------------------------------------------------------------------------------------------
:0.4.........................................................      97    117    139    166    198    236     279
  0.6........................................................     100    120    143    171    204    244     291
  0.8........................................................     103    122    146    175    210    252     301
  1.0........................................................     105    125    149    179    216    260     312
  1.2........................................................     107    127    152    183    221    267     320
  1.4........................................................     109    130    155    187    227    274     329
  1.6........................................................     111    132    158    192    232    281     337
  1.8........................................................     114    135    162    196    238    287     345
  2.0........................................................     116    138    165    200    243    294     353
  2.2........................................................     118    140    169    204    248    300     361
  2.4........................................................     120    143    172    209    253    306     368
  2.6........................................................     122    146    175    213    258    312     375
  2.8........................................................     124    148    178    217    263    318     382
  3.0........................................................     126    151    182    221    268    324     389
----------------------------------------------------------------------------------------------------------------
\1\ These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the
  indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of
  different tables may be determined by linear interpolation. If no interpolation is used, use the CT<INF>99.9</INF> value
  at the lower temperature, and at the higher pH.
 
 
 Table 1.3--CT Values (CT <INF>99.9</INF>) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at 10.0
                                                    deg.C\1\
----------------------------------------------------------------------------------------------------------------
                                                                                       pH
                     Free residual (mg/l)                     --------------------------------------------------
                                                                :6.0    6.5    7.0    7.5    8.0    8.5    :9.0
----------------------------------------------------------------------------------------------------------------
:0.4.........................................................      73     88    104    125    149    177     209
  0.6........................................................      75     90    107    128    153    183     218
  0.8........................................................      78     92    110    131    158    189     226
  1.0........................................................      79     94    112    134    162    195     234
  1.2........................................................      80     95    114    137    166    200     240
  1.4........................................................      82     98    116    140    170    206     247
  1.6........................................................      83     99    119    144    174    211     253
  1.8........................................................      86    101    122    147    179    215     259
  2.0........................................................      87    104    124    150    182    221     265
  2.2........................................................      89    105    127    153    186    225     271
  2.4........................................................      90    107    129    157    190    230     276
  2.6........................................................      92    110    131    160    194    234     281
  2.8........................................................      93    111    134    163    197    239     287
  3.0........................................................      95    113    137    166    201    243     292
----------------------------------------------------------------------------------------------------------------
\1\ These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the
  indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of
  different tables may be determined by linear interpolation. If no interpolation is used, use the CT<INF>99.9</INF> value
  at the lower temperature, and at the higher pH.
 
 
 Table 1.4--CT Values (CT <INF>99.9</INF>) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at 15.0
                                                    deg.C\1\
----------------------------------------------------------------------------------------------------------------
                                                                                       pH
                     Free residual (mg/l)                     --------------------------------------------------
                                                                :6.0    6.5    7.0    7.5    8.0    8.5    :9.0
----------------------------------------------------------------------------------------------------------------
:0.4.........................................................      49     59     70     83     99    118     140
  0.6........................................................      50     60     72     86    102    122     146
  0.8........................................................      52     61     73     88    105    126     151
  1.0........................................................      53     63     75     90    108    130     156
  1.2........................................................      54     64     76     92    111    134     160
  1.4........................................................      55     65     78     94    114    137     165
  1.6........................................................      56     66     79     96    116    141     169
  1.8........................................................      57     68     81     98    119    144     173
  2.0........................................................      58     69     83    100    122    147     177
  2.2........................................................      59     70     85    102    124    150     181
  2.4........................................................      60     72     86    105    127    153     184
  2.6........................................................      61     73     88    107    129    156     188
 
[[Page 447]]
 
 
  2.8........................................................      62     74     89    109    132    159     191
  3.0........................................................      63     76     91    111    134    162     195
----------------------------------------------------------------------------------------------------------------
\1\ These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the
  indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of
  different tables may be determined by linear interpolation. If no interpolation is used, use the CT<INF>99.9</INF> value
  at the lower temperature, and at the higher pH.
 
 
   Table 1.5--CT Values (CT<INF>99.9</INF>) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at 20
                                                    deg.C\1\
----------------------------------------------------------------------------------------------------------------
                                                                                       pH
                     Free residual (mg/l)                     --------------------------------------------------
                                                                : 6.0   6.5    7.0    7.5    8.0    8.5    : 9.0
----------------------------------------------------------------------------------------------------------------
: 0.4........................................................      36     44     52     62     74     89     105
0.6..........................................................      38     45     54     64     77     92     109
0.8..........................................................      39     46     55     66     79     95     113
1.0..........................................................      39     47     56     67     81     98     117
1.2..........................................................      40     48     57     69     83    100     120
1.4..........................................................      41     49     58     70     85    103     123
1.6..........................................................      42     50     59     72     87    105     126
1.8..........................................................      43     51     61     74     89    108     129
2.0..........................................................      44     52     62     75     91    110     132
2.2..........................................................      44     53     63     77     93    113     135
2.4..........................................................      45     54     65     78     95    115     138
2.6..........................................................      46     55     66     80     97    117     141
2.8..........................................................      47     56     67     81     99    119     143
3.0..........................................................      47     57     68     83    101    122     146
----------------------------------------------------------------------------------------------------------------
\1\ These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the
  indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of
  different tables may be determined by linear interpolation. If no interpolation is used, use the CT<INF>99.9</INF> value
  at the lower temperature, and at the higher pH.
 
 
   Table 1.6--CT Values (CT<INF>99.9</INF>) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Free Chlorine at 25
                                               deg.C\1\ and Higher
----------------------------------------------------------------------------------------------------------------
                                                                                       pH
                     Free residual (mg/l)                     --------------------------------------------------
                                                                : 6.0   6.5    7.0    7.5    8.0    8.5    : 9.0
----------------------------------------------------------------------------------------------------------------
: 0.4........................................................      24     29     35     42     50     59      70
0.6..........................................................      25     30     36     43     51     61      73
0.8..........................................................      26     31     37     44     53     63      75
1.0..........................................................      26     31     37     45     54     65      78
1.2..........................................................      27     32     38     46     55     67      80
1.4..........................................................      27     33     39     47     57     69      82
1.6..........................................................      28     33     40     48     58     70      84
1.8..........................................................      29     34     41     49     60     72      86
2.0..........................................................      29     35     41     50     61     74      88
2.2..........................................................      30     35     42     51     62     75      90
2.4..........................................................      30     36     43     52     63     77      92
2.6..........................................................      31     37     44     53     65     78      94
2.8..........................................................      31     37     45     54     66     80      96
3.0..........................................................      32     38     46     55     67     81     97
----------------------------------------------------------------------------------------------------------------
\1\ These CT values achieve greater than a 99.99 percent inactivation of viruses. CT values between the
  indicated pH values may be determined by linear interpolation. CT values between the indicated temperatures of
  different tables may be determined by linear interpolation. If no interpolation is used, use the CT<INF>99.9</INF> value
  at the lower temperature, and at the higher pH.
 
 
  Table 2.1--CT Values (CT<INF>99.9</INF>) for 99.9 Percent Inactivation of Giardia Lamblia Cysts by Chlorine Dioxide and
                                                    Ozone\1\
----------------------------------------------------------------------------------------------------------------
                                                                            Temperature
                                                 ---------------------------------------------------------------
                                                      1                                                   ; 25
                                                    deg.C   5  deg.C  10  deg.C  15  deg.C  20  deg.C    deg.C
----------------------------------------------------------------------------------------------------------------
Chlorine dioxide................................      63        26         23        19         15         11
Ozone...........................................       2.9       1.9        1.4       0.95       0.72       0.48 
----------------------------------------------------------------------------------------------------------------
\1\ These CT values achieve greater than 99.99 percent inactivation of viruses. CT values between the indicated
  temperatures may be determined by linear interpolation. If no interpolation is used, use the CT<INF>99.9</INF> value at
  the lower temperature for determining CT<INF>99.9</INF> values between indicated temperatures.
 
 
[[Page 448]]
 
 
 Table 3.1--CT Values (CT <INF>99.9</INF>) for 99.9 Percent Inactivation of Giardia
                     Lamblia Cysts By Chloramines\1\
------------------------------------------------------------------------
                               Temperature
-------------------------------------------------------------------------
  1  deg.C     5  deg.C    10  deg.C   15  deg.C  20  deg.C    25  deg.C
------------------------------------------------------------------------
3,800            2,200       1,850       1,500       1,100         750
------------------------------------------------------------------------
\1\ These values are for pH values of 6 to 9. These CT values may be
  assumed to achieve greater than 99.99 percent inactivation of viruses
  only if chlorine is added and mixed in the water prior to the addition
  of ammonia. If this condition is not met, the system must demonstrate,
  based on on-site studies or other information, as approved by the
  State, that the system is achieving at least 99.99 percent
  inactivation of viruses. CT values between the indicated temperatures
  may be determined by linear interpolation. If no interpolation is
  used, use the CT<INF>99.9</INF> value at the lower temperature for determining
  CT<INF>99.9</INF> values between indicated temperatures.
 
    (4) The total inactivation ratio must be calculated as follows:
    (i) If the system uses only one point of disinfectant application, 
the system may determine the total inactivation ratio based on either of 
the following two methods:
    (A) One inactivation ratio (CTcalc/CT<INF>99.9</INF>) is determined 
before or at the first customer during peak hourly flow and if the 
CTcalc/CT<INF>99.9</INF> ; 1.0, the 99.9 percent Giardia lamblia 
inactivation requirement has been achieved; or
    (B) Successive CTcalc/CT<INF>99.9</INF> values, representing 
sequential inactivation ratios, are determined between the point of 
disinfectant application and a point before or at the first customer 
during peak hourly flow. Under this alternative, the following method 
must be used to calculate the total inactivation ratio:
 
[GRAPHIC] [TIFF OMITTED] TC15NO91.133
 
 
lamblia inactivation requirement has been achieved.
    (ii) If the system uses more than one point of disinfectant 
application before or at the first customer, the system must determine 
the CT value of each disinfection sequence immediately prior to the next 
point of disinfectant application during peak hourly flow. The CTcalc/
CT<INF>99.9</INF> value of each sequence and
[GRAPHIC] [TIFF OMITTED] TC15NO91.134
 
    must be calculated using the method in paragraph (b)(4)(i)(B) of 
this section to determine if the system is in compliance with 
Sec. 142.72(a).
    (iii) Although not required, the total percent inactivation for a 
system with one or more points of residual disinfectant concentration 
monitoring may be calculated by solving the following equation:
[GRAPHIC] [TIFF OMITTED] TC15NO91.135
 
    (5) The residual disinfectant concentration of the water entering 
the distribution system must be monitored continuously, and the lowest 
value must be recorded each day, except that if there is a failure in 
the continuous monitoring equipment, grab sampling every 4 hours may be 
conducted in lieu of continuous monitoring, but for no more than 5 
working days following the failure of the equipment, and systems serving 
3,300 or fewer persons may take grab samples in lieu of providing 
continuous monitoring on an ongoing
 
[[Page 449]]
 
basis at the frequencies prescribed below:
 
------------------------------------------------------------------------
                                                                Samples/
                  System size by population                      day\1\
------------------------------------------------------------------------
500..........................................................          1
501 to 1,000.................................................          2
1,001 to 2,500...............................................          3
2,501 to 3,300...............................................          4
------------------------------------------------------------------------
\1\ The day's samples cannot be taken at the same time. The sampling
  intervals are subject to State review and approval.
 
 
If at any time the residual disinfectant concentration falls below 0.2 
mg/l in a system using grab sampling in lieu of continuous monitoring, 
the system must take a grab sample every 4 hours until the residual 
concentration is equal to or greater than 0.2 mg/l.
    (6)(i) The residual disinfectant concentration must be measured at 
least at the same points in the distribution system and at the same time 
as total coliforms are sampled, as specified in Sec. 141.21, except that 
the State may allow a public water system which uses both a surface 
water source or a ground water source under direct influence of surface 
water, and a ground water source, to take disinfectant residual samples 
at points other than the total coliform sampling points if the State 
determines that such points are more representative of treated 
(disinfected) water quality within the distribution system. 
Heterotrophic bacteria, measured as heterotrophic plate count (HPC) as 
specified in paragraph (a)(3) of this section, may be measured in lieu 
of residual disinfectant concentration.
    (ii) If the State determines, based on site-specific considerations, 
that a system has no means for having a sample transported and analyzed 
for HPC by a certified laboratory under the requisite time and 
temperature conditions specified by paragraph (a)(3) of this section and 
that the system is providing adequate disinfection in the distribution 
system, the requirements of paragraph (b)(6)(i) of this section do not 
apply to that system.
    (c) Monitoring requirements for systems using filtration treatment. 
A public water system that uses a surface water source or a ground water 
source under the influence of surface water and provides filtration 
treatment must monitor in accordance with this paragraph (c) beginning 
June 29, 1993, or when filtration is installed, whichever is later.
    (1) Turbidity measurements as required by Sec. 141.73 must be 
performed on representative samples of the system's filtered water every 
four hours (or more frequently) that the system serves water to the 
public. A public water system may substitute continuous turbidity 
monitoring for grab sample monitoring if it validates the continuous 
measurement for accuracy on a regular basis using a protocol approved by 
the State. For any systems using slow sand filtration or filtration 
treatment other than conventional treatment, direct filtration, or 
diatomaceous earth filtration, the State may reduce the sampling 
frequency to once per day if it determines that less frequent monitoring 
is sufficient to indicate effective filtration performance. For systems 
serving 500 or fewer persons, the State may reduce the turbidity 
sampling frequency to once per day, regardless of the type of filtration 
treatment used, if the State determines that less frequent monitoring is 
sufficient to indicate effective filtration performance.
    (2) The residual disinfectant concentration of the water entering 
the distribution system must be monitored continuously, and the lowest 
value must be recorded each day, except that if there is a failure in 
the continuous monitoring equipment, grab sampling every 4 hours may be 
conducted in lieu of continuous monitoring, but for no more than 5 
working days following the failure of the equipment, and systems serving 
3,300 or fewer persons may take grab samples in lieu of providing 
continuous monitoring on an ongoing basis at the frequencies each day 
prescribed below:
 
------------------------------------------------------------------------
                                                                Samples/
                  System size by population                     day \1\
------------------------------------------------------------------------
<plus-minus>500..............................................          1
501 to 1,000.................................................          2
1,001 to 2,500...............................................          3
2,501 to 3,300...............................................         4
------------------------------------------------------------------------
\1\ The day's samples cannot be taken at the same time. The sampling
  intervals are subject to State review and approval.
 
 
If at any time the residual disinfectant concentration falls below 0.2 
mg/l in a system using grab sampling in lieu of continuous monitoring, 
the system must take a grab sample every 4 hours
 
[[Page 450]]
 
until the residual disinfectant concentration is equal to or greater 
than 0.2 mg/l.
    (3)(i) The residual disinfectant concentration must be measured at 
least at the same points in the distribution system and at the same time 
as total coliforms are sampled, as specified in Sec. 141.21, except that 
the State may allow a public water system which uses both a surface 
water source or a ground water source under direct influence of surface 
water, and a ground water source to take disinfectant residual samples 
at points other than the total coliform sampling points if the State 
determines that such points are more representative of treated 
(disinfected) water quality within the distribution system. 
Heterotrophic bacteria, measured as heterotrophic plate count (HPC) as 
specified in paragraph (a)(3) of this section, may be measured in lieu 
of residual disinfectant concentration.
    (ii) If the State determines, based on site-specific considerations, 
that a system has no means for having a sample transported and analyzed 
for HPC by a certified laboratory under the requisite time and 
temperature conditions specified by paragraph (a)(3) of this section and 
that the system is providing adequate disinfection in the distribution 
system, the requirements of paragraph (c)(3)(i) of this section do not 
apply to that system.
 
[54 FR 27527, June 29, 1989, as amended at 59 FR 62470, Dec. 5, 1994; 60 
FR 34086, June 29, 1995; 64 FR 67465, Dec. 1, 1999]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.75]
 
[Page 450-453]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart H--Filtration and Disinfection
 
Sec. 141.75  Reporting and recordkeeping requirements.
 
    (a) A public water system that uses a surface water source and does 
not provide filtration treatment must report monthly to the State the 
information specified in this paragraph (a) beginning December 31, 1990, 
unless the State has determined that filtration is required in writing 
pursuant to section 1412(b)(7)(C)(iii), in which case the State may 
specify alternative reporting requirements, as appropriate, until 
filtration is in place. A public water system that uses a ground water 
source under the direct influence of surface water and does not provide 
filtration treatment must report monthly to the State the information 
specified in this paragraph (a) beginning December 31, 1990, or 6 months 
after the State determines that the ground water source is under the 
direct influence of surface water, whichever is later, unless the State 
has determined that filtration is required in writing pursuant to 
Sec. 1412(b)(7)(C)(iii), in which case the State may specify alternative 
reporting requirements, as appropriate, until filtration is in place.
    (1) Source water quality information must be reported to the State 
within 10 days after the end of each month the system serves water to 
the public. Information that must be reported includes:
    (i) The cumulative number of months for which results are reported.
    (ii) The number of fecal and/or total coliform samples, whichever 
are analyzed during the month (if a system monitors for both, only fecal 
coliforms must be reported), the dates of sample collection, and the 
dates when the turbidity level exceeded 1 NTU.
    (iii) The number of samples during the month that had equal to or 
less than 20/100 ml fecal coliforms and/or equal to or less than 100/100 
ml total coliforms, whichever are analyzed.
    (iv) The cumulative number of fecal or total coliform samples, 
whichever are analyzed, during the previous six months the system served 
water to the public.
    (v) The cumulative number of samples that had equal to or less than 
20/100 ml fecal coliforms or equal to or less than 100/100 ml total 
coliforms, whichever are analyzed, during the previous six months the 
system served water to the public.
    (vi) The percentage of samples that had equal to or less than 20/100 
ml fecal coliforms or equal to or less than 100/100 ml total coliforms, 
whichever are analyzed, during the previous six months the system served 
water to the public.
    (vii) The maximum turbidity level measured during the month, the 
date(s) of occurrence for any measurement(s) which exceeded 5 NTU, and 
the date(s) the occurrence(s) was reported to the State.
    (viii) For the first 12 months of recordkeeping, the dates and 
cumulative
 
[[Page 451]]
 
number of events during which the turbidity exceeded 5 NTU, and after 
one year of recordkeeping for turbidity measurements, the dates and 
cumulative number of events during which the turbidity exceeded 5 NTU in 
the previous 12 months the system served water to the public.
    (ix) For the first 120 months of recordkeeping, the dates and 
cumulative number of events during which the turbidity exceeded 5 NTU, 
and after 10 years of recordkeeping for turbidity measurements, the 
dates and cumulative number of events during which the turbidity 
exceeded 5 NTU in the previous 120 months the system served water to the 
public.
    (2) Disinfection information specified in Sec. 141.74(b) must be 
reported to the State within 10 days after the end of each month the 
system serves water to the public. Information that must be reported 
includes:
    (i) For each day, the lowest measurement of residual disinfectant 
concentration in mg/l in water entering the distribution system.
    (ii) The date and duration of each period when the residual 
disinfectant concentration in water entering the distribution system 
fell below 0.2 mg/l and when the State was notified of the occurrence.
    (iii) The daily residual disinfectant concentration(s) (in mg/l) and 
disinfectant contact time(s) (in minutes) used for calculating the CT 
value(s).
    (iv) If chlorine is used, the daily measurement(s) of pH of 
disinfected water following each point of chlorine disinfection.
    (v) The daily measurement(s) of water temperature in  deg.C 
following each point of disinfection.
    (vi) The daily CTcalc and CTcalc/CT<INF>99.9</INF> values for each 
disinfectant measurement or sequence and the sum of all CTcalc/
CT<INF>99.9</INF> values ((CTcalc/CT<INF>99.9</INF>)) before or at the 
first customer.
    (vii) The daily determination of whether disinfection achieves 
adequate Giardia cyst and virus inactivation, i.e., whether (CTcalc/
CT<INF>99.9</INF>) is at least 1.0 or, where disinfectants other than 
chlorine are used, other indicator conditions that the State determines 
are appropriate, are met.
    (viii) The following information on the samples taken in the 
distribution system in conjunction with total coliform monitoring 
pursuant to Sec. 141.72:
    (A) Number of instances where the residual disinfectant 
concentration is measured;
    (B) Number of instances where the residual disinfectant 
concentration is not measured but heterotrophic bacteria plate count 
(HPC) is measured;
    (C) Number of instances where the residual disinfectant 
concentration is measured but not detected and no HPC is measured;
    (D) Number of instances where the residual disinfectant 
concentration is detected and where HPC is >500/ml;
    (E) Number of instances where the residual disinfectant 
concentration is not measured and HPC is >500/ml;
    (F) For the current and previous month the system served water to 
the public, the value of "V" in the following formula:
[GRAPHIC] [TIFF OMITTED] TC15NO91.136
 
where:
a=the value in paragraph (a)(2)(viii)(A) of this section,
b=the value in paragraph (a)(2)(viii)(B) of this section,
c=the value in paragraph (a)(2)(viii)(C) of this section,
d=the value in paragraph (a)(2)(viii)(D) of this section, and
e=the value in paragraph (a)(2)(viii)(E) of this section.
 
    (G) If the State determines, based on site-specific considerations, 
that a system has no means for having a sample transported and analyzed 
for HPC by a certified laboratory under the requisite time and 
temperature conditions specified by Sec. 141.74(a)(3) and that the 
system is providing adequate disinfection in the distribution system, 
the requirements of paragraph (a)(2)(viii) (A)-(F) of this section do 
not apply to that system.
    (ix) A system need not report the data listed in paragraphs (a)(2) 
(i), and (iii)-(vi) of this section if all data listed in paragraphs 
(a)(2) (i)-(viii) of this section remain on file at the system, and the 
State determines that:
    (A) The system has submitted to the State all the information 
required by
 
[[Page 452]]
 
paragraphs (a)(2) (i)-(viii) of this section for at least 12 months; and
    (B) The State has determined that the system is not required to 
provide filtration treatment.
    (3) No later than ten days after the end of each Federal fiscal year 
(September 30), each system must provide to the State a report which 
summarizes its compliance with all watershed control program 
requirements specified in Sec. 141.71(b)(2).
    (4) No later than ten days after the end of each Federal fiscal year 
(September 30), each system must provide to the State a report on the 
on-site inspection conducted during that year pursuant to 
Sec. 141.71(b)(3), unless the on-site inspection was conducted by the 
State. If the inspection was conducted by the State, the State must 
provide a copy of its report to the public water system.
    (5)(i) Each system, upon discovering that a waterborne disease 
outbreak potentially attributable to that water system has occurred, 
must report that occurrence to the State as soon as possible, but no 
later than by the end of the next business day.
    (ii) If at any time the turbidity exceeds 5 NTU, the system must 
consult with the primacy agency as soon as practical, but no later than 
24 hours after the exceedance is known, in accordance with the public 
notification requirements under Sec. 141.203(b)(3).
    (iii) If at any time the residual falls below 0.2 mg/l in the water 
entering the distribution system, the system must notify the State as 
soon as possible, but no later than by the end of the next business day. 
The system also must notify the State by the end of the next business 
day whether or not the residual was restored to at least 0.2 mg/l within 
4 hours.
    (b) A public water system that uses a surface water source or a 
ground water source under the direct influence of surface water and 
provides filtration treatment must report monthly to the State the 
information specified in this paragraph (b) beginning June 29, 1993, or 
when filtration is installed, whichever is later.
    (1) Turbidity measurements as required by Sec. 141.74(c)(1) must be 
reported within 10 days after the end of each month the system serves 
water to the public. Information that must be reported includes:
    (i) The total number of filtered water turbidity measurements taken 
during the month.
    (ii) The number and percentage of filtered water turbidity 
measurements taken during the month which are less than or equal to the 
turbidity limits specified in Sec. 141.73 for the filtration technology 
being used.
    (iii) The date and value of any turbidity measurements taken during 
the month which exceed 5 NTU.
    (2) Disinfection information specified in Sec. 141.74(c) must be 
reported to the State within 10 days after the end of each month the 
system serves water to the public. Information that must be reported 
includes:
    (i) For each day, the lowest measurement of residual disinfectant 
concentration in mg/l in water entering the distribution system.
    (ii) The date and duration of each period when the residual 
disinfectant concentration in water entering the distribution system 
fell below 0.2 mg/l and when the State was notified of the occurrence.
    (iii) The following information on the samples taken in the 
distribution system in conjunction with total coliform monitoring 
pursuant to Sec. 141.72:
    (A) Number of instances where the residual disinfectant 
concentration is measured;
    (B) Number of instances where the residual disinfectant 
concentration is not measured but heterotrophic bacteria plate count 
(HPC) is measured;
    (C) Number of instances where the residual disinfectant 
concentration is measured but not detected and no HPC is measured;
    (D) Number of instances where no residual disinfectant concentration 
is detected and where HPC is >500/ml;
    (E) Number of instances where the residual disinfectant 
concentration is not measured and HPC is >500/ml;
    (F) For the current and previous month the system serves water to 
the public, the value of "V" in the following formula:
[GRAPHIC] [TIFF OMITTED] TC15NO91.137
 
 
[[Page 453]]
 
 
where:
a=the value in paragraph (b)(2)(iii)(A) of this section,
b=the value in paragraph (b)(2)(iii)(B) of this section,
c=the value in paragraph (b)(2)(iii)(C) of this section,
d=the value in paragraph (b)(2)(iii)(D) of this section, and
e=the value in paragraph (b)(2)(iii)(E) of this section.
 
    (G) If the State determines, based on site-specific considerations, 
that a system has no means for having a sample transported and analyzed 
for HPC by a certified laboratory within the requisite time and 
temperature conditions specified by Sec. 141.74(a)(3) and that the 
system is providing adequate disinfection in the distribution system, 
the requirements of paragraph (b)(2)(iii) (A)-(F) of this section do not 
apply.
    (iv) A system need not report the data listed in paragraph (b)(2)(i) 
of this section if all data listed in paragraphs (b)(2) (i)-(iii) of 
this section remain on file at the system and the State determines that 
the system has submitted all the information required by paragraphs 
(b)(2) (i)-(iii) of this section for at least 12 months.
    (3)(i) Each system, upon discovering that a waterborne disease 
outbreak potentially attributable to that water system has occurred, 
must report that occurrence to the State as soon as possible, but no 
later than by the end of the next business day.
    (ii) If at any time the turbidity exceeds 5 NTU, the system must 
consult with the primacy agency as soon as practical, but no later than 
24 hours after the exceedance is known, in accordance with the public 
notification requirements under Sec. 141.203(b)(3).
    (iii) If at any time the residual falls below 0.2 mg/l in the water 
entering the distribution system, the system must notify the State as 
soon as possible, but no later than by the end of the next business day. 
The system also must notify the State by the end of the next business 
day whether or not the residual was restored to at least 0.2 mg/l within 
4 hours.
 
[54 FR 27527, June 29, 1989, as amended at 65 FR 26022, May 4, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.76]
 
[Page 453-454]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart H--Filtration and Disinfection
 
Sec. 141.76  Recycle provisions.
 
    (a) Applicability. All subpart H systems that employ conventional 
filtration or direct filtration treatment and that recycle spent filter 
backwash water, thickener supernatant, or liquids from dewatering 
processes must meet the requirements in paragraphs (b) through (d) of 
this section.
    (b) Reporting. A system must notify the State in writing by 
Decemeber 8, 2003, if the system recycles spent filter backwash water, 
thickener supernatant, or liquids from dewatering processes. This 
notification must include, at a minimum, the information specified in 
paragraphs (b)(1) and (2) of this section.
    (1) A plant schematic showing the origin of all flows which are 
recycled (including, but not limited to, spent filter backwash water, 
thickener supernatant, and liquids from dewatering processes), the 
hydraulic conveyance used to transport them, and the location where they 
are re-introduced back into the treatment plant.
    (2) Typical recycle flow in gallons per minute (gpm), the highest 
observed plant flow experienced in the previous year (gpm), design flow 
for the treatment plant (gpm), and State-approved operating capacity for 
the plant where the State has made such determinations.
    (c) Treatment technique requirement. Any system that recycles spent 
filter backwash water, thickener supernatant, or liquids from dewatering 
processes must return these flows through the processes of a system's 
existing conventional or direct filtration system as defined in 
Sec. 141.2 or at an alternate location approved by the State by June 8, 
2004. If capital improvements are required to modify the recycle 
location to meet this requirement, all capital improvements must be 
completed no later than June 8, 2006.
    (d) Recordkeeping. The system must collect and retain on file 
recycle flow information specified in paragraphs (d)(1) through (6) of 
this section for review and evaluation by the State beginning June 8, 
2004.
    (1) Copy of the recycle notification and information submitted to 
the State under paragraph (b) of this section.
 
[[Page 454]]
 
    (2) List of all recycle flows and the frequency with which they are 
returned.
    (3) Average and maximum backwash flow rate through the filters and 
the average and maximum duration of the filter backwash process in 
minutes.
    (4) Typical filter run length and a written summary of how filter 
run length is determined.
    (5) The type of treatment provided for the recycle flow.
    (6) Data on the physical dimensions of the equalization and/or 
treatment units, typical and maximum hydraulic loading rates, type of 
treatment chemicals used and average dose and frequency of use, and 
frequency at which solids are removed, if applicable.
 
[66 FR 31103, June 8, 2001]
 
    Effective Date Note: At 66 FR 31103, June 8, 2001, Sec. 141.76 was 
added to subpart H of part 141, effective Aug. 7, 2001.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.80]
 
[Page 454-455]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart I--Control of Lead and Copper
 
Sec. 141.80  General requirements.
 
    Source: 56 FR 26548, June 7, 1991, unless otherwise noted.
 
 
    (a) Applicability and effective dates. (1) The requirements of this 
subpart I constitute the national primary drinking water regulations for 
lead and copper. Unless otherwise indicated, each of the provisions of 
this subpart applies to community water systems and non-transient, non-
community water systems (hereinafter referred to as "water systems" or 
"systems").
    (2) The requirements set forth in Secs. 141.86 to 141.91 shall take 
effect on July 7, 1991. The requirements set forth in Secs. 141.80 to 
141.85 shall take effect on December 7, 1992.
    (b) Scope. These regulations establish a treatment technique that 
includes requirements for corrosion control treatment, source water 
treatment, lead service line replacement, and public education. These 
requirements are triggered, in some cases, by lead and copper action 
levels measured in samples collected at consumers' taps.
    (c) Lead and copper action levels. (1) The lead action level is 
exceeded if the concentration of lead in more than 10 percent of tap 
water samples collected during any monitoring period conducted in 
accordance with Sec. 141.86 is greater than 0.015 mg/L (i.e., if the 
"90th percentile" lead level is greater than 0.015 mg/L).
    (2) The copper action level is exceeded if the concentration of 
copper in more than 10 percent of tap water samples collected during any 
monitoring period conducted in accordance with Sec. 141.86 is greater 
than 1.3 mg/L (i.e., if the "90th percentile" copper level is greater 
than 1.3 mg/L).
    (3) The 90th percentile lead and copper levels shall be computed as 
follows:
    (i) The results of all lead or copper samples taken during a 
monitoring period shall be placed in ascending order from the sample 
with the lowest concentration to the sample with the highest 
concentration. Each sampling result shall be assigned a number, 
ascending by single integers beginning with the number 1 for the sample 
with the lowest contaminant level. The number assigned to the sample 
with the highest contaminant level shall be equal to the total number of 
samples taken.
    (ii) The number of samples taken during the monitoring period shall 
be multiplied by 0.9.
    (iii) The contaminant concentration in the numbered sample yielded 
by the calculation in paragraph (c)(3)(ii) is the 90th percentile 
contaminant level.
    (iv) For water systems serving fewer than 100 people that collect 5 
samples per monitoring period, the 90th percentile is computed by taking 
the average of the highest and second highest concentrations.
    (d) Corrosion control treatment requirements. (1) All water systems 
shall install and operate optimal corrosion control treatment as defined 
in Sec. 141.2.
    (2) Any water system that complies with the applicable corrosion 
control treatment requirements specified by the State under Secs. 141.81 
and 141.82 shall be deemed in compliance with the treatment requirement 
contained in paragraph (d)(1) of this section.
    (e) Source water treatment requirements. Any system exceeding the 
lead or copper action level shall implement all applicable source water 
treatment
 
[[Page 455]]
 
requirements specified by the State under Sec. 141.83.
    (f) Lead service line replacement requirements. Any system exceeding 
the lead action level after implementation of applicable corrosion 
control and source water treatment requirements shall complete the lead 
service line replacement requirements contained in Sec. 141.84.
    (g) Public education requirements. Any system exceeding the lead 
action level shall implement the public education requirements contained 
in Sec. 141.85.
    (h) Monitoring and analytical requirements. Tap water monitoring for 
lead and copper, monitoring for water quality parameters, source water 
monitoring for lead and copper, and analyses of the monitoring results 
under this subpart shall be completed in compliance with Secs. 141.86, 
141.87, 141.88, and 141.89.
    (i) Reporting requirements. Systems shall report to the State any 
information required by the treatment provisions of this subpart and 
Sec. 141.90.
    (j) Recordkeeping requirements. Systems shall maintain records in 
accordance with Sec. 141.91.
    (k) Violation of national primary drinking water regulations. 
Failure to comply with the applicable requirements of Secs. 141.80-
141.91, including requirements established by the State pursuant to 
these provisions, shall constitute a violation of the national primary 
drinking water regulations for lead and/or copper.
 
[56 FR 26548, June 7, 1991; 57 FR 28788, June 29, 1992]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.81]
 
[Page 455-457]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart I--Control of Lead and Copper
 
Sec. 141.81  Applicability of corrosion control treatment steps to small, medium-size and large water systems.
 
    (a) Systems shall complete the applicable corrosion control 
treatment requirements described in Sec. 141.82 by the deadlines 
established in this section.
    (1) A large system (serving >50,000 persons) shall complete the 
corrosion control treatment steps specified in paragraph (d) of this 
section, unless it is deemed to have optimized corrosion control under 
paragraph (b)(2) or (b)(3) of this section.
    (2) A small system (serving <ls-thn-eq>3300 persons) and a medium-
size system (serving >3,300 and <ls-thn-eq>50,000 persons) shall 
complete the corrosion control treatment steps specified in paragraph 
(e) of this section, unless it is deemed to have optimized corrosion 
control under paragraph (b)(1), (b)(2), or (b)(3) of this section.
    (b) A system is deemed to have optimized corrosion control and is 
not required to complete the applicable corrosion control treatment 
steps identified in this section if the system satisfies one of the 
criteria specified in paragraphs (b)(1) through (b)(3) of this section. 
Any such system deemed to have optimized corrosion control under this 
paragraph, and which has treatment in place, shall continue to operate 
and maintain optimal corrosion control treatment and meet any 
requirements that the State determines appropriate to ensure optimal 
corrosion control treatment is maintained.
    (1) A small or medium-size water system is deemed to have optimized 
corrosion control if the system meets the lead and copper action levels 
during each of two consecutive six-month monitoring periods conducted in 
accordance with Sec. 141.86.
    (2) Any water system may be deemed by the State to have optimized 
corrosion control treatment if the system demonstrates to the 
satisfaction of the State that it has conducted activities equivalent to 
the corrosion control steps applicable to such system under this 
section. If the State makes this determination, it shall provide the 
system with written notice explaining the basis for its decision and 
shall specify the water quality control parameters representing optimal 
corrosion control in accordance with Sec. 141.82(f). Water systems 
deemed to have optimized corrosion control under this paragraph shall 
operate in compliance with the State-designated optimal water quality 
control parameters in accordance with Sec. 141.82(g) and continue to 
conduct lead and copper tap and water quality parameter sampling in 
accordance with Sec. 141.86(d)(3) and Sec. 141.87(d), respectively. A 
system shall provide the State with the following information in order 
to support a determination under this paragraph:
    (i) The results of all test samples collected for each of the water 
quality parameters in Sec. 141.82(c)(3).
 
[[Page 456]]
 
    (ii) A report explaining the test methods used by the water system 
to evaluate the corrosion control treatments listed in 
Sec. 141.82(c)(1), the results of all tests conducted, and the basis for 
the system's selection of optimal corrosion control treatment;
    (iii) A report explaining how corrosion control has been installed 
and how it is being maintained to insure minimal lead and copper 
concentrations at consumers' taps; and
    (iv) The results of tap water samples collected in accordance with 
Sec. 141.86 at least once every six months for one year after corrosion 
control has been installed.
    (3) Any water system is deemed to have optimized corrosion control 
if it submits results of tap water monitoring conducted in accordance 
with Sec. 141.86 and source water monitoring conducted in accordance 
with Sec. 141.88 that demonstrates for two consecutive 6-month 
monitoring periods that the difference between the 90th percentile tap 
water lead level computed under Sec. 141.80(c)(3), and the highest 
source water lead concentration is less than the Practical Quantitation 
Level for lead specified in Sec. 141.89(a)(1)(ii).
    (i) Those systems whose highest source water lead level is below the 
Method Detection Limit may also be deemed to have optimized corrosion 
control under this paragraph if the 90th percentile tap water lead level 
is less than or equal to the Practical Quantitation Level for lead for 
two consecutive 6-month monitoring periods.
    (ii) Any water system deemed to have optimized corrosion control in 
accordance with this paragraph shall continue monitoring for lead and 
copper at the tap no less frequently than once every three calendar 
years using the reduced number of sites specified in Sec. 141.86(c) and 
collecting the samples at times and locations specified in 
Sec. 141.86(d)(4)(iv). Any such system that has not conducted a round of 
monitoring pursuant to Sec. 141.86(d) since September 30, 1997, shall 
complete a round of monitoring pursuant to this paragraph no later than 
September 30, 2000.
    (iii) Any water system deemed to have optimized corrosion control 
pursuant to this paragraph shall notify the State in writing pursuant to 
Sec. 141.90(a)(3) of any change in treatment or the addition of a new 
source. The State may require any such system to conduct additional 
monitoring or to take other action the State deems appropriate to ensure 
that such systems maintain minimal levels of corrosion in the 
distribution system.
    (iv) As of July 12, 2001, a system is not deemed to have optimized 
corrosion control under this paragraph, and shall implement corrosion 
control treatment pursuant to paragraph (b)(3)(v) of this section unless 
it meets the copper action level.
    (v) Any system triggered into corrosion control because it is no 
longer deemed to have optimized corrosion control under this paragraph 
shall implement corrosion control treatment in accordance with the 
deadlines in paragraph (e) of this section. Any such large system shall 
adhere to the schedule specified in that paragraph for medium-size 
systems, with the time periods for completing each step being triggered 
by the date the system is no longer deemed to have optimized corrosion 
control under this paragraph.
    (c) Any small or medium-size water system that is required to 
complete the corrosion control steps due to its exceedance of the lead 
or copper action level may cease completing the treatment steps whenever 
the system meets both action levels during each of two consecutive 
monitoring periods conducted pursuant to Sec. 141.86 and submits the 
results to the State. If any such water system thereafter exceeds the 
lead or copper action level during any monitoring period, the system (or 
the State, as the case may be) shall recommence completion of the 
applicable treatment steps, beginning with the first treatment step 
which was not previously completed in its entirety. The State may 
require a system to repeat treatment steps previously completed by the 
system where the State determines that this is necessary to implement 
properly the treatment requirements of this section. The State shall 
notify the system in writing of such a determination and explain the 
basis for its decision. The requirement for any small- or medium-size 
system to implement corrosion control treatment steps in accordance with 
paragraph (e) of
 
[[Page 457]]
 
this section (including systems deemed to have optimized corrosion 
control under paragraph (b)(1) of this section) is triggered whenever 
any small- or medium-size system exceeds the lead or copper action 
level.
    (d) Treatment steps and deadlines for large systems. Except as 
provided in paragraph (b) (2) and (3) of this section, large systems 
shall complete the following corrosion control treatment steps 
(described in the referenced portions of Secs. 141.82, 141.86, and 
141.87) by the indicated dates.
    (1) Step 1: The system shall conduct initial monitoring 
(Sec. 141.86(d)(1) and Sec. 141.87(b)) during two consecutive six-month 
monitoring periods by January 1, 1993.
    (2) Step 2: The system shall complete corrosion control studies 
(Sec. 141.82(c)) by July 1, 1994.
    (3) Step 3: The State shall designate optimal corrosion control 
treatment (Sec. 141.82(d)) by January 1, 1995.
    (4) Step 4: The system shall install optimal corrosion control 
treatment (Sec. 141.82(e)) by January 1, 1997.
    (5) Step 5: The system shall complete follow-up sampling 
(Sec. 141.86(d)(2) and Sec. 141.87(c)) by January 1, l998.
    (6) Step 6: The State shall review installation of treatment and 
designate optimal water quality control parameters (Sec. 141.82(f)) by 
July 1, 1998.
    (7) Step 7: The system shall operate in compliance with the State-
specified optimal water quality control parameters (Sec. 141.82(g)) and 
continue to conduct tap sampling (Sec. 141.86(d)(3) and Sec. 141.87(d)).
    (e) Treatment Steps and deadlines for small and medium-size systems. 
Except as provided in paragraph (b) of this section, small and medium-
size systems shall complete the following corrosion control treatment 
steps (described in the referenced portions of Secs. 141.82, 141.86 and 
141.87) by the indicated time periods.
    (1) Step 1: The system shall conduct initial tap sampling 
(Sec. 141.86(d)(1) and Sec. 141.87(b)) until the system either exceeds 
the lead or copper action level or becomes eligible for reduced 
monitoring under Sec. 141.86(d)(4). A system exceeding the lead or 
copper action level shall recommend optimal corrosion control treatment 
(Sec. 141.82(a)) within six months after it exceeds one of the action 
levels.
    (2) Step 2: Within 12 months after a system exceeds the lead or 
copper action level, the State may require the system to perform 
corrosion control studies (Sec. 141.82(b)). If the State does not 
require the system to perform such studies, the State shall specify 
optimal corrosion control treatment (Sec. 141.82(d)) within the 
following timeframes:
    (i) For medium-size systems, within 18 months after such system 
exceeds the lead or copper action level,
    (ii) For small systems, within 24 months after such system exceeds 
the lead or copper action level.
    (3) Step 3: If the State requires a system to perform corrosion 
control studies under step 2, the system shall complete the studies 
(Sec. 141.82(c)) within 18 months after the State requires that such 
studies be conducted.
    (4) Step 4: If the system has performed corrosion control studies 
under step 2, the State shall designate optimal corrosion control 
treatment (Sec. 141.82(d)) within 6 months after completion of step 3.
    (5) Step 5: The system shall install optimal corrosion control 
treatment (Sec. 141.82(e)) within 24 months after the State designates 
such treatment.
    (6) Step 6: The system shall complete follow-up sampling 
(Sec. 141.86(d)(2) and Sec. 141.87(c)) within 36 months after the State 
designates optimal corrosion control treatment.
    (7) Step 7: The State shall review the system's installation of 
treatment and designate optimal water quality control parameters 
(Sec. 141.82(f)) within 6 months after completion of step 6.
    (8) Step 8: The system shall operate in compliance with the State-
designated optimal water quality control parameters (Sec. 141.82(g)) and 
continue to conduct tap sampling (Sec. 141.86(d)(3) and Sec. 141.87(d)).
 
[56 FR 26548, June 7, 1991, as amended at 59 FR 33862, June 30, 1994; 65 
FR 2004, Jan. 12, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.82]
 
[Page 457-460]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart I--Control of Lead and Copper
 
Sec. 141.82  Description of corrosion control treatment requirements.
 
    Each system shall complete the corrosion control treatment 
requirements described below which are applicable to such system under 
Sec. 141.81.
 
[[Page 458]]
 
    (a) System recommendation regarding corrosion control treatment. 
Based upon the results of lead and copper tap monitoring and water 
quality parameter monitoring, small and medium-size water systems 
exceeding the lead or copper action level shall recommend installation 
of one or more of the corrosion control treatments listed in paragraph 
(c)(1) of this section which the system believes constitutes optimal 
corrosion control for that system. The State may require the system to 
conduct additional water quality parameter monitoring in accordance with 
Sec. 141.87(b) to assist the State in reviewing the system's 
recommendation.
    (b) State decision to require studies of corrosion control treatment 
(applicable to small and medium-size systems). The State may require any 
small or medium-size system that exceeds the lead or copper action level 
to perform corrosion control studies under paragraph (c) of this section 
to identify optimal corrosion control treatment for the system.
    (c) Performance of corrosion control studies. (1) Any public water 
system performing corrosion control studies shall evaluate the 
effectiveness of each of the following treatments, and, if appropriate, 
combinations of the following treatments to identify the optimal 
corrosion control treatment for that system:
    (i) Alkalinity and pH adjustment;
    (ii) Calcium hardness adjustment; and
    (iii) The addition of a phosphate or silicate based corrosion 
inhibitor at a concentration sufficient to maintain an effective 
residual concentration in all test tap samples.
    (2) The water system shall evaluate each of the corrosion control 
treatments using either pipe rig/loop tests, metal coupon tests, 
partial-system tests, or analyses based on documented analogous 
treatments with other systems of similar size, water chemistry and 
distribution system configuration.
    (3) The water system shall measure the following water quality 
parameters in any tests conducted under this paragraph before and after 
evaluating the corrosion control treatments listed above:
    (i) Lead;
    (ii) Copper;
    (iii) pH;
    (iv) Alkalinity;
    (v) Calcium;
    (vi) Conductivity;
    (vii) Orthophosphate (when an inhibitor containing a phosphate 
compound is used);
    (viii) Silicate (when an inhibitor containing a silicate compound is 
used);
    (ix) Water temperature.
    (4) The water system shall identify all chemical or physical 
constraints that limit or prohibit the use of a particular corrosion 
control treatment and document such constraints with at least one of the 
following:
    (i) Data and documentation showing that a particular corrosion 
control treatment has adversely affected other water treatment processes 
when used by another water system with comparable water quality 
characteristics; and/or
    (ii) Data and documentation demonstrating that the water system has 
previously attempted to evaluate a particular corrosion control 
treatment and has found that the treatment is ineffective or adversely 
affects other water quality treatment processes.
    (5) The water system shall evaluate the effect of the chemicals used 
for corrosion control treatment on other water quality treatment 
processes.
    (6) On the basis of an analysis of the data generated during each 
evaluation, the water system shall recommend to the State in writing the 
treatment option that the corrosion control studies indicate constitutes 
optimal corrosion control treatment for that system. The water system 
shall provide a rationale for its recommendation along with all 
supporting documentation specified in paragraphs (c) (1) through (5) of 
this section.
    (d) State designation of optimal corrosion control treatment. (1) 
Based upon consideration of available information including, where 
applicable, studies performed under paragraph (c) of this section and a 
system's recommended treatment alternative, the State shall either 
approve the corrosion control treatment option recommended by the 
system, or designate alternative corrosion control treatment(s) from 
among those listed in paragraph (c)(1) of this
 
[[Page 459]]
 
section. When designating optimal treatment the State shall consider the 
effects that additional corrosion control treatment will have on water 
quality parameters and on other water quality treatment processes.
    (2) The State shall notify the system of its decision on optimal 
corrosion control treatment in writing and explain the basis for this 
determination. If the State requests additional information to aid its 
review, the water system shall provide the information.
    (e) Installation of optimal corrosion control. Each system shall 
properly install and operate throughout its distribution system the 
optimal corrosion control treatment designated by the State under 
paragraph (d) of this section.
    (f) State review of treatment and specification of optimal water 
quality control parameters. The State shall evaluate the results of all 
lead and copper tap samples and water quality parameter samples 
submitted by the water system and determine whether the system has 
properly installed and operated the optimal corrosion control treatment 
designated by the State in paragraph (d) of this section. Upon reviewing 
the results of tap water and water quality parameter monitoring by the 
system, both before and after the system installs optimal corrosion 
control treatment, the State shall designate:
    (1) A minimum value or a range of values for pH measured at each 
entry point to the distribution system;
    (2) A minimum pH value, measured in all tap samples. Such value 
shall be equal to or greater than 7.0, unless the State determines that 
meeting a pH level of 7.0 is not technologically feasible or is not 
necessary for the system to optimize corrosion control;
    (3) If a corrosion inhibitor is used, a minimum concentration or a 
range of concentrations for the inhibitor, measured at each entry point 
to the distribution system and in all tap samples, that the State 
determines is necessary to form a passivating film on the interior walls 
of the pipes of the distribution system;
    (4) If alkalinity is adjusted as part of optimal corrosion control 
treatment, a minimum concentration or a range of concentrations for 
alkalinity, measured at each entry point to the distribution system and 
in all tap samples;
    (5) If calcium carbonate stabilization is used as part of corrosion 
control, a minimum concentration or a range of concentrations for 
calcium, measured in all tap samples.
 
The values for the applicable water quality control parameters listed 
above shall be those that the State determines to reflect optimal 
corrosion control treatment for the system. The State may designate 
values for additional water quality control parameters determined by the 
State to reflect optimal corrosion control for the system. The State 
shall notify the system in writing of these determinations and explain 
the basis for its decisions.
    (g) Continued operation and monitoring. All systems optimizing 
corrosion control shall continue to operate and maintain optimal 
corrosion control treatment, including maintaining water quality 
parameters at or above minimum values or within ranges designated by the 
State under paragraph (f) of this section, in accordance with this 
paragraph for all samples collected under Sec. 141.87(d) through (f). 
Compliance with the requirements of this paragraph shall be determined 
every six months, as specified under Sec. 141.87(d). A water system is 
out of compliance with the requirements of this paragraph for a six-
month period if it has excursions for any State-specified parameter on 
more than nine days during the period. An excursion occurs whenever the 
daily value for one or more of the water quality parameters measured at 
a sampling location is below the minimum value or outside the range 
designated by the State. Daily values are calculated as follows. States 
have discretion to delete results of obvious sampling errors from this 
calculation.
    (1) On days when more than one measurement for the water quality 
parameter is collected at the sampling location, the daily value shall 
be the average of all results collected during the day regardless of 
whether they are collected through continuous monitoring, grab sampling, 
or a combination of both. If EPA has approved an alternative formula 
under Sec. 142.16 of this
 
[[Page 460]]
 
chapter in the State's application for a program revision submitted 
pursuant to Sec. 142.12 of this chapter, the State's formula shall be 
used to aggregate multiple measurements taken at a sampling point for 
the water quality parameter in lieu of the formula in this paragraph.
    (2) On days when only one measurement for the water quality 
parameter is collected at the sampling location, the daily value shall 
be the result of that measurement.
    (3) On days when no measurement is collected for the water quality 
parameter at the sampling location, the daily value shall be the daily 
value calculated on the most recent day on which the water quality 
parameter was measured at the sample site.
    (h) Modification of State treatment decisions. Upon its own 
initiative or in response to a request by a water system or other 
interested party, a State may modify its determination of the optimal 
corrosion control treatment under paragraph (d) of this section or 
optimal water quality control parameters under paragraph (f) of this 
section. A request for modification by a system or other interested 
party shall be in writing, explain why the modification is appropriate, 
and provide supporting documentation. The State may modify its 
determination where it concludes that such change is necessary to ensure 
that the system continues to optimize corrosion control treatment. A 
revised determination shall be made in writing, set forth the new 
treatment requirements, explain the basis for the State's decision, and 
provide an implementation schedule for completing the treatment 
modifications.
    (i) Treatment decisions by EPA in lieu of the State. Pursuant to the 
procedures in Sec. 142.19, the EPA Regional Administrator may review 
treatment determinations made by a State under paragraphs (d), (f), or 
(h) of this section and issue federal treatment determinations 
consistent with the requirements of those paragraphs where the Regional 
Administrator finds that:
    (1) A State has failed to issue a treatment determination by the 
applicable deadlines contained in Sec. 141.81,
    (2) A State has abused its discretion in a substantial number of 
cases or in cases affecting a substantial population, or
    (3) The technical aspects of a State's determination would be 
indefensible in an expected Federal enforcement action taken against a 
system.
 
[56 FR 26548, June 7, 1991, as amended at 65 FR 2004, Jan. 12, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.83]
 
[Page 460-461]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart I--Control of Lead and Copper
 
Sec. 141.83  Source water treatment requirements.
 
    Systems shall complete the applicable source water monitoring and 
treatment requirements (described in the referenced portions of 
paragraph (b) of this section, and in Secs. 141.86, and 141.88) by the 
following deadlines.
    (a) Deadlines for completing source water treatment steps--(1) Step 
1: A system exceeding the lead or copper action level shall complete 
lead and copper source water monitoring (Sec. 141.88(b)) and make a 
treatment recommendation to the State (Sec. 141.83(b)(1)) within 6 
months after exceeding the lead or copper action level.
    (2) Step 2: The State shall make a determination regarding source 
water treatment (Sec. 141.83(b)(2)) within 6 months after submission of 
monitoring results under step 1.
    (3) Step 3: If the State requires installation of source water 
treatment, the system shall install the treatment (Sec. 141.83(b)(3)) 
within 24 months after completion of step 2.
    (4) Step 4: The system shall complete follow-up tap water monitoring 
(Sec. 141.86(d)(2) and source water monitoring (Sec. 141.88(c)) within 
36 months after completion of step 2.
    (5) Step 5: The State shall review the system's installation and 
operation of source water treatment and specify maximum permissible 
source water levels (Sec. 141.83(b)(4)) within 6 months after completion 
of step 4.
    (6) Step 6: The system shall operate in compliance with the State-
specified maximum permissible lead and copper source water levels 
(Sec. 141.83(b)(4)) and continue source water monitoring 
(Sec. 141.88(d)).
    (b) Description of source water treatment requirements--(1) System 
treatment recommendation. Any system which exceeds the lead or copper 
action level shall recommend in writing to the State the installation 
and operation of
 
[[Page 461]]
 
one of the source water treatments listed in paragraph (b)(2) of this 
section. A system may recommend that no treatment be installed based 
upon a demonstration that source water treatment is not necessary to 
minimize lead and copper levels at users' taps.
    (2) State determination regarding source water treatment. The State 
shall complete an evaluation of the results of all source water samples 
submitted by the water system to determine whether source water 
treatment is necessary to minimize lead or copper levels in water 
delivered to users' taps. If the State determines that treatment is 
needed, the State shall either require installation and operation of the 
source water treatment recommended by the system (if any) or require the 
installation and operation of another source water treatment from among 
the following: Ion exchange, reverse osmosis, lime softening or 
coagulation/filtration. If the State requests additional information to 
aid in its review, the water system shall provide the information by the 
date specified by the State in its request. The State shall notify the 
system in writing of its determination and set forth the basis for its 
decision.
    (3) Installation of source water treatment. Each system shall 
properly install and operate the source water treatment designated by 
the State under paragraph (b)(2) of this section.
    (4) State review of source water treatment and specification of 
maximum permissible source water levels. The State shall review the 
source water samples taken by the water system both before and after the 
system installs source water treatment, and determine whether the system 
has properly installed and operated the source water treatment 
designated by the State. Based upon its review, the State shall 
designate the maximum permissible lead and copper concentrations for 
finished water entering the distribution system. Such levels shall 
reflect the contaminant removal capability of the treatment properly 
operated and maintained. The State shall notify the system in writing 
and explain the basis for its decision.
    (5) Continued operation and maintenance. Each water system shall 
maintain lead and copper levels below the maximum permissible 
concentrations designated by the State at each sampling point monitored 
in accordance with Sec. 141.88. The system is out of compliance with 
this paragraph if the level of lead or copper at any sampling point is 
greater than the maximum permissible concentration designated by the 
State.
    (6) Modification of State treatment decisions. Upon its own 
initiative or in response to a request by a water system or other 
interested party, a State may modify its determination of the source 
water treatment under paragraph (b)(2) of this section, or maximum 
permissible lead and copper concentrations for finished water entering 
the distribution system under paragraph (b)(4) of this section. A 
request for modification by a system or other interested party shall be 
in writing, explain why the modification is appropriate, and provide 
supporting documentation. The State may modify its determination where 
it concludes that such change is necessary to ensure that the system 
continues to minimize lead and copper concentrations in source water. A 
revised determination shall be made in writing, set forth the new 
treatment requirements, explain the basis for the State's decision, and 
provide an implementation schedule for completing the treatment 
modifications.
    (7) Treatment decisions by EPA in lieu of the State. Pursuant to the 
procedures in Sec. 142.19, the EPA Regional Administrator may review 
treatment determinations made by a State under paragraphs (b) (2), (4), 
or (6) of this section and issue Federal treatment determinations 
consistent with the requirements of those paragraphs where the 
Administrator finds that:
    (i) A State has failed to issue a treatment determination by the 
applicable deadlines contained in Sec. 141.83(a),
    (ii) A state has abused its discretion in a substantial number of 
cases or in cases affecting a substantial population, or
    (iii) The technical aspects of a State's determination would be 
indefensible in an expected Federal enforcement action taken against a 
system.
 
[[Page 462]]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.84]
 
[Page 462-463]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart I--Control of Lead and Copper
 
Sec. 141.84  Lead service line replacement requirements.
 
    (a) Systems that fail to meet the lead action level in tap samples 
taken pursuant to Sec. 141.86(d)(2), after installing corrosion control 
and/or source water treatment (whichever sampling occurs later), shall 
replace lead service lines in accordance with the requirements of this 
section. If a system is in violation of Sec. 141.81 or Sec. 141.83 for 
failure to install source water or corrosion control treatment, the 
State may require the system to commence lead service line replacement 
under this section after the date by which the system was required to 
conduct monitoring under Sec. 141.86(d)(2) has passed.
    (b) A water system shall replace annually at least 7 percent of the 
initial number of lead service lines in its distribution system. The 
initial number of lead service lines is the number of lead lines in 
place at the time the replacement program begins. The system shall 
identify the initial number of lead service lines in its distribution 
system, including an identification of the portion(s) owned by the 
system, based on a materials evaluation, including the evaluation 
required under Sec. 141.86(a) and relevant legal authorities (e.g., 
contracts, local ordinances) regarding the portion owned by the system. 
The first year of lead service line replacement shall begin on the date 
the action level was exceeded in tap sampling referenced in paragraph 
(a) of this section.
    (c) A system is not required to replace an individual lead service 
line if the lead concentration in all service line samples from that 
line, taken pursuant to Sec. 141.86(b)(3), is less than or equal to 
0.015 mg/L.
    (d) A water system shall replace that portion of the lead service 
line that it owns. In cases where the system does not own the entire 
lead service line, the system shall notify the owner of the line, or the 
owner's authorized agent, that the system will replace the portion of 
the service line that it owns and shall offer to replace the owner's 
portion of the line. A system is not required to bear the cost of 
replacing the privately-owned portion of the line, nor is it required to 
replace the privately-owned portion where the owner chooses not to pay 
the cost of replacing the privately-owned portion of the line, or where 
replacing the privately-owned portion would be precluded by State, local 
or common law. A water system that does not replace the entire length of 
the service line also shall complete the following tasks.
    (1) At least 45 days prior to commencing with the partial 
replacement of a lead service line, the water system shall provide 
notice to the resident(s) of all buildings served by the line explaining 
that they may experience a temporary increase of lead levels in their 
drinking water, along with guidance on measures consumers can take to 
minimize their exposure to lead. The State may allow the water system to 
provide notice under the previous sentence less than 45 days prior to 
commencing partial lead service line replacement where such replacement 
is in conjunction with emergency repairs. In addition, the water system 
shall inform the resident(s) served by the line that the system will, at 
the system's expense, collect a sample from each partially-replaced lead 
service line that is representative of the water in the service line for 
analysis of lead content, as prescribed under Sec. 141.86(b)(3), within 
72 hours after the completion of the partial replacement of the service 
line. The system shall collect the sample and report the results of the 
analysis to the owner and the resident(s) served by the line within 
three business days of receiving the results. Mailed notices post-marked 
within three business days of receiving the results shall be considered 
"on time."
    (2) The water system shall provide the information required by 
paragraph (d)(1) of this section to the residents of individual 
dwellings by mail or by other methods approved by the State. In 
instances where multi-family dwellings are served by the line, the water 
system shall have the option to post the information at a conspicuous 
location.
    (e) The State shall require a system to replace lead service lines 
on a shorter schedule than that required by this section, taking into 
account the number of lead service lines in the system, where such a 
shorter replacement
 
[[Page 463]]
 
schedule is feasible. The State shall make this determination in writing 
and notify the system of its finding within 6 months after the system is 
triggered into lead service line replacement based on monitoring 
referenced in paragraph (a) of this section.
    (f) Any system may cease replacing lead service lines whenever first 
draw samples collected pursuant to Sec. 141.86(b)(2) meet the lead 
action level during each of two consecutive monitoring periods and the 
system submits the results to the State. If first draw tap samples 
collected in any such system thereafter exceeds the lead action level, 
the system shall recommence replacing lead service lines pursuant to 
paragraph (b) of this section.
    (g) To demonstrate compliance with paragraphs (a) through (d) of 
this section, a system shall report to the State the information 
specified in Sec. 141.90(e).
 
[56 FR 26548, June 7, 1991; 57 FR 28788, June 29, 1992, as amended at 65 
FR 2005, Jan. 12, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.85]
 
[Page 463-469]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart I--Control of Lead and Copper
 
Sec. 141.85  Public education and supplemental monitoring requirements.
 
    A water system that exceeds the lead action level based on tap water 
samples collected in accordance with Sec. 141.86 shall deliver the 
public education materials contained in paragraphs (a) and (b) of this 
section in accordance with the requirements in paragraph (c) of this 
section.
    (a) Content of written public education materials. (1) Community 
water systems. A community water system shall include the following text 
in all of the printed materials it distributes through its lead public 
education program. Systems may delete information pertaining to lead 
service lines, upon approval by the State, if no lead service lines 
exist anywhere in the water system service area. Public education 
language at paragraphs (a)(1)(iv)(B)(5) and (a)(1)(iv)(D)(2) of this 
section may be modified regarding building permit record availability 
and consumer access to these records, if approved by the State. Systems 
may also continue to utilize pre-printed materials that meet the public 
education language requirements in 40 CFR 141.85, effective November 6, 
1991, and contained in the 40 CFR, parts 100 to 149, edition revised as 
of July 1, 1991. Any additional information presented by a system shall 
be consistent with the information below and be in plain English that 
can be understood by lay people.
    (i) Introduction. The United States Environmental Protection Agency 
(EPA) and [insert name of water supplier] are concerned about lead in 
your drinking water. Although most homes have very low levels of lead in 
their drinking water, some homes in the community have lead levels above 
the EPA action level of 15 parts per billion (ppb), or 0.015 milligrams 
of lead per liter of water (mg/L). Under Federal law we are required to 
have a program in place to minimize lead in your drinking water by 
[insert date when corrosion control will be completed for your system]. 
This program includes corrosion control treatment, source water 
treatment, and public education. We are also required to replace the 
portion of each lead service line that we own if the line contributes 
lead concentrations of more than 15 ppb after we have completed the 
comprehensive treatment program. If you have any questions about how we 
are carrying out the requirements of the lead regulation please give us 
a call at [insert water system's phone number]. This brochure explains 
the simple steps you can take to protect you and your family by reducing 
your exposure to lead in drinking water.
    (ii) Health effects of lead. Lead is a common metal found throughout 
the environment in lead-based paint, air, soil, household dust, food, 
certain types of pottery porcelain and pewter, and water. Lead can pose 
a significant risk to your health if too much of it enters your body. 
Lead builds up in the body over many years and can cause damage to the 
brain, red blood cells and kidneys. The greatest risk is to young 
children and pregnant women. Amounts of lead that won't hurt adults can 
slow down normal mental and physical development of growing bodies. In 
addition, a child at play often comes into contact with sources of lead 
contamination--like dirt and dust--that rarely affect an adult. It is 
important to wash children's hands and toys often, and to try to make 
sure they only put food in their mouths.
 
[[Page 464]]
 
    (iii) Lead in drinking water. (A) Lead in drinking water, although 
rarely the sole cause of lead poisoning, can significantly increase a 
person's total lead exposure, particularly the exposure of infants who 
drink baby formulas and concentrated juices that are mixed with water. 
The EPA estimates that drinking water can make up 20 percent or more of 
a person's total exposure to lead.
    (B) Lead is unusual among drinking water contaminants in that it 
seldom occurs naturally in water supplies like rivers and lakes. Lead 
enters drinking water primarily as a result of the corrosion, or wearing 
away, of materials containing lead in the water distribution system and 
household plumbing. These materials include lead-based solder used to 
join copper pipe, brass and chrome plated brass faucets, and in some 
cases, pipes made of lead that connect your house to the water main 
(service lines). In 1986, Congress banned the use of lead solder 
containing greater than 0.2% lead, and restricted the lead content of 
faucets, pipes and other plumbing materials to 8.0%.
    (C) When water stands in lead pipes or plumbing systems containing 
lead for several hours or more, the lead may dissolve into your drinking 
water. This means the first water drawn from the tap in the morning, or 
later in the afternoon after returning from work or school, can contain 
fairly high levels of lead.
    (iv) Steps you can take in the home to reduce exposure to lead in 
drinking water. (A) Despite our best efforts mentioned earlier to 
control water corrosivity and remove lead from the water supply, lead 
levels in some homes or buildings can be high. To find out whether you 
need to take action in your own home, have your drinking water tested to 
determine if it contains excessive concentrations of lead. Testing the 
water is essential because you cannot see, taste, or smell lead in 
drinking water. Some local laboratories that can provide this service 
are listed at the end of this booklet. For more information on having 
your water tested, please call [insert phone number of water system].
    (B) If a water test indicates that the drinking water drawn from a 
tap in your home contains lead above 15 ppb, then you should take the 
following precautions:
    (1) Let the water run from the tap before using it for drinking or 
cooking any time the water in a faucet has gone unused for more than six 
hours. The longer water resides in your home's plumbing the more lead it 
may contain. Flushing the tap means running the cold water faucet until 
the water gets noticeably colder, usually about 15-30 seconds. If your 
house has a lead service line to the water main, you may have to flush 
the water for a longer time, perhaps one minute, before drinking. 
Although toilet flushing or showering flushes water through a portion of 
your home's plumbing system, you still need to flush the water in each 
faucet before using it for drinking or cooking. Flushing tap water is a 
simple and inexpensive measure you can take to protect your family's 
health. It usually uses less than one or two gallons of water and costs 
less than [insert a cost estimate based on flushing two times a day for 
30 days] per month. To conserve water, fill a couple of bottles for 
drinking water after flushing the tap, and whenever possible use the 
first flush water to wash the dishes or water the plants. If you live in 
a high-rise building, letting the water flow before using it may not 
work to lessen your risk from lead. The plumbing systems have more, and 
sometimes larger pipes than smaller buildings. Ask your landlord for 
help in locating the source of the lead and for advice on reducing the 
lead level.
    (2) Try not to cook with, or drink water from the hot water tap. Hot 
water can dissolve more lead more quickly than cold water. If you need 
hot water, draw water from the cold tap and heat it on the stove.
    (3) Remove loose lead solder and debris from the plumbing materials 
installed in newly constructed homes, or homes in which the plumbing has 
recently been replaced, by removing the faucet strainers from all taps 
and running the water from 3 to 5 minutes. Thereafter, periodically 
remove the strainers and flush out any debris that has accumulated over 
time.
    (4) If your copper pipes are joined with lead solder that has been 
installed illegally since it was banned in 1986,
 
[[Page 465]]
 
notify the plumber who did the work and request that he or she replace 
the lead solder with lead-free solder. Lead solder looks dull gray, and 
when scratched with a key looks shiny. In addition, notify your State 
[insert name of department responsible for enforcing the Safe Drinking 
Water Act in your State] about the violation.
    (5) Determine whether or not the service line that connects your 
home or apartment to the water main is made of lead. The best way to 
determine if your service line is made of lead is by either hiring a 
licensed plumber to inspect the line or by contacting the plumbing 
contractor who installed the line. You can identify the plumbing 
contractor by checking the city's record of building permits which 
should be maintained in the files of the [insert name of department that 
issues building permits]. A licensed plumber can at the same time check 
to see if your home's plumbing contains lead solder, lead pipes, or pipe 
fittings that contain lead. The public water system that delivers water 
to your home should also maintain records of the materials located in 
the distribution system. If the service line that connects your dwelling 
to the water main contributes more than 15 ppb to drinking water, after 
our comprehensive treatment program is in place, we are required to 
replace the portion of the line we own. If the line is only partially 
owned by the [insert the name of the city, county, or water system that 
owns the line], we are required to provide the owner of the privately-
owned portion of the line with information on how to replace the 
privately-owned portion of the service line, and offer to replace that 
portion of the line at the owner's expense. If we replace only the 
portion of the line that we own, we also are required to notify you in 
advance and provide you with information on the steps you can take to 
minimize exposure to any temporary increase in lead levels that may 
result from the partial replacement, to take a follow-up sample at our 
expense from the line within 72 hours after the partial replacement, and 
to mail or otherwise provide you with the results of that sample within 
three business days of receiving the results. Acceptable replacement 
alternatives include copper, steel, iron, and plastic pipes.
    (6) Have an electrician check your wiring. If grounding wires from 
the electrical system are attached to your pipes, corrosion may be 
greater. Check with a licensed electrician or your local electrical code 
to determine if your wiring can be grounded elsewhere. DO NOT attempt to 
change the wiring yourself because improper grounding can cause 
electrical shock and fire hazards.
    (C) The steps described above will reduce the lead concentrations in 
your drinking water. However, if a water test indicates that the 
drinking water coming from your tap contains lead concentrations in 
excess of 15 ppb after flushing, or after we have completed our actions 
to minimize lead levels, then you may want to take the following 
additional measures:
    (1) Purchase or lease a home treatment device. Home treatment 
devices are limited in that each unit treats only the water that flows 
from the faucet to which it is connected, and all of the devices require 
periodic maintenance and replacement. Devices such as reverse osmosis 
systems or distillers can effectively remove lead from your drinking 
water. Some activated carbon filters may reduce lead levels at the tap, 
however all lead reduction claims should be investigated. Be sure to 
check the actual performance of a specific home treatment device before 
and after installing the unit.
    (2) Purchase bottled water for drinking and cooking.
    (D) You can consult a variety of sources for additional information. 
Your family doctor or pediatrician can perform a blood test for lead and 
provide you with information about the health effects of lead. State and 
local government agencies that can be contacted include:
    (1) [insert the name of city or county department of public 
utilities] at [insert phone number] can provide you with information 
about your community's water supply, and a list of local laboratories 
that have been certified by EPA for testing water quality;
 
[[Page 466]]
 
    (2) [insert the name of city or county department that issues 
building permits] at [insert phone number] can provide you with 
information about building permit records that should contain the names 
of plumbing contractors that plumbed your home; and
    (3) [insert the name of the State Department of Public Health] at 
[insert phone number] or the [insert the name of the city or county 
health department] at [insert phone number] can provide you with 
information about the health effects of lead and how you can have your 
child's blood tested.
    (E) The following is a list of some State approved laboratories in 
your area that you can call to have your water tested for lead. [Insert 
names and phone numbers of at least two laboratories].
    (2) Non-transient non-community water systems. A non-transient non-
community water system shall either include the text specified in 
paragraph (a)(1) of this section or shall include the following text in 
all of the printed materials it distributes through its lead public 
education program. Water systems may delete information pertaining to 
lead service lines upon approval by the State if no lead service lines 
exist anywhere in the water system service area. Any additional 
information presented by a system shall be consistent with the 
information below and be in plain English that can be understood by lay 
people.
    (i) Introduction. The United States Environmental Protection Agency 
(EPA) and [insert name of water supplier] are concerned about lead in 
your drinking water. Some drinking water samples taken from this 
facility have lead levels above the EPA action level of 15 parts per 
billion (ppb), or 0.015 milligrams of lead per liter of water (mg/L). 
Under Federal law we are required to have a program in place to minimize 
lead in your drinking water by [insert date when corrosion control will 
be completed for your system]. This program includes corrosion control 
treatment, source water treatment, and public education. We are also 
required to replace the portion of each lead service line that we own if 
the line contributes lead concentrations of more than 15 ppb after we 
have completed the comprehensive treatment program. If you have any 
questions about how we are carrying out the requirements of the lead 
regulation please give us a call at [insert water system's phone 
number]. This brochure explains the simple steps you can take to protect 
yourself by reducing your exposure to lead in drinking water.
    (ii) Health effects of lead. Lead is found throughout the 
environment in lead-based paint, air, soil, household dust, food, 
certain types of pottery porcelain and pewter, and water. Lead can pose 
a significant risk to your health if too much of it enters your body. 
Lead builds up in the body over many years and can cause damage to the 
brain, red blood cells and kidneys. The greatest risk is to young 
children and pregnant women. Amounts of lead that won't hurt adults can 
slow down normal mental and physical development of growing bodies. In 
addition, a child at play often comes into contact with sources of lead 
contamination--like dirt and dust--that rarely affect an adult. It is 
important to wash children's hands and toys often, and to try to make 
sure they only put food in their mouths.
    (iii) Lead in drinking water. (A) Lead in drinking water, although 
rarely the sole cause of lead poisoning, can significantly increase a 
person's total lead exposure, particularly the exposure of infants who 
drink baby formulas and concentrated juices that are mixed with water. 
The EPA estimates that drinking water can make up 20 percent or more of 
a person's total exposure to lead.
    (B) Lead is unusual among drinking water contaminants in that it 
seldom occurs naturally in water supplies like rivers and lakes. Lead 
enters drinking water primarily as a result of the corrosion, or wearing 
away, of materials containing lead in the water distribution system and 
household plumbing. These materials include lead-based solder used to 
join copper pipe, brass and chrome-plated brass faucets, and in some 
cases, pipes made of lead that connect houses and buildings to water 
mains (service lines). In 1986, Congress banned the use of lead solder 
containing greater than 0.2% lead, and restricted the lead content of 
faucets,
 
[[Page 467]]
 
pipes and other plumbing materials to 8.0%.
    (C) When water stands in lead pipes or plumbing systems containing 
lead for several hours or more, the lead may dissolve into your drinking 
water. This means the first water drawn from the tap in the morning, or 
later in the afternoon if the water has not been used all day, can 
contain fairly high levels of lead.
    (iv) Steps you can take to reduce exposure to lead in drinking 
water. (A) Let the water run from the tap before using it for drinking 
or cooking any time the water in a faucet has gone unused for more than 
six hours. The longer water resides in plumbing the more lead it may 
contain. Flushing the tap means running the cold water faucet for about 
15-30 seconds. Although toilet flushing or showering flushes water 
through a portion of the plumbing system, you still need to flush the 
water in each faucet before using it for drinking or cooking. Flushing 
tap water is a simple and inexpensive measure you can take to protect 
your health. It usually uses less than one gallon of water.
    (B) Do not cook with, or drink water from the hot water tap. Hot 
water can dissolve more lead more quickly than cold water. If you need 
hot water, draw water from the cold tap and then heat it.
    (C) The steps described above will reduce the lead concentrations in 
your drinking water. However, if you are still concerned, you may wish 
to use bottled water for drinking and cooking.
    (D) You can consult a variety of sources for additional information. 
Your family doctor or pediatrician can perform a blood test for lead and 
provide you with information about the health effects of lead. State and 
local government agencies that can be contacted include:
    (1) [insert the name or title of facility official if appropriate] 
at [insert phone number] can provide you with information about your 
facility's water supply; and
    (2) [insert the name or title of the State Department of Public 
Health] at [insert phone number] or the [insert the name of the city or 
county health department] at [insert phone number] can provide you with 
information about the health effects of lead.
    (b) Content of broadcast materials. A water system shall include the 
following information in all public service announcements submitted 
under its lead public education program to television and radio stations 
for broadcasting:
    (1) Why should everyone want to know the facts about lead and 
drinking water? Because unhealthy amounts of lead can enter drinking 
water through the plumbing in your home. That's why I urge you to do 
what I did. I had my water tested for [insert free or $ per sample]. You 
can contact the [insert the name of the city or water system] for 
information on testing and on simple ways to reduce your exposure to 
lead in drinking water.
    (2) To have your water tested for lead, or to get more information 
about this public health concern, please call [insert the phone number 
of the city or water system].
    (c) Delivery of a public education program. (1) In communities where 
a significant proportion of the population speaks a language other than 
English, public education materials shall be communicated in the 
appropriate language(s).
    (2) A community water system that exceeds the lead action level on 
the basis of tap water samples collected in accordance with Sec. 141.86, 
and that is not already repeating public education tasks pursuant to 
paragraph (c)(3), (c)(7), or (c)(8), of this section, shall, within 60 
days:
    (i) Insert notices in each customer's water utility bill containing 
the information in paragraph (a)(1) of this section, along with the 
following alert on the water bill itself in large print: "SOME HOMES IN 
THIS COMMUNITY HAVE ELEVATED LEAD LEVELS IN THEIR DRINKING WATER. LEAD 
CAN POSE A SIGNIFICANT RISK TO YOUR HEALTH. PLEASE READ THE ENCLOSED 
NOTICE FOR FURTHER INFORMATION." A community water system having a 
billing cycle that does not include a billing within 60 days of 
exceeding the action level, or that cannot insert information in the 
water utility bill without making major changes to its billing system, 
may use
 
[[Page 468]]
 
a separate mailing to deliver the information in paragraph (a)(1) of 
this section as long as the information is delivered to each customer 
within 60 days of exceeding the action level. Such water systems shall 
also include the "alert" language specified in this paragraph.
    (ii) Submit the information in paragraph (a)(1) of this section to 
the editorial departments of the major daily and weekly newspapers 
circulated throughout the community.
    (iii) Deliver pamphlets and/or brochures that contain the public 
education materials in paragraphs (a)(1)(ii) and (a)(1)(iv) of this 
section to facilities and organizations, including the following:
    (iv) Submit the public service announcement in paragraph (b) of this 
section to at least five of the radio and television stations with the 
largest audiences that broadcast to the community served by the water 
system.
    (3) A community water system shall repeat the tasks contained in 
paragraphs (c)(2) (i), (ii) and (iii) of this section every 12 months, 
and the tasks contained in paragraphs (c)(2)(iv) of this section every 6 
months for as long as the system exceeds the lead action level.
    (4) Within 60 days after it exceeds the lead action level (unless it 
already is repeating public education tasks pursuant to paragraph (c)(5) 
of this section), a non-transient non-community water system shall 
deliver the public education materials specified by paragraph (a)(1) of 
this section or the public education materials specified by paragraph 
(a)(2) of this section as follows:
    (i) Post informational posters on lead in drinking water in a public 
place or common area in each of the buildings served by the system; and
    (ii) Distribute informational pamphlets and/or brochures on lead in 
drinking water to each person served by the non-transient non-community 
water system. The State may allow the system to utilize electronic 
transmission in lieu of or combined with printed materials as long as it 
achieves at least the same coverage.
    (5) A non-transient non-community water system shall repeat the 
tasks contained in paragraph (c)(4) of this section at least once during 
each calendar year in which the system exceeds the lead action level.
    (6) A water system may discontinue delivery of public education 
materials if the system has met the lead action level during the most 
recent six-month monitoring period conducted pursuant to Sec. 141.86. 
Such a system shall recommence public education in accordance with this 
section if it subsequently exceeds the lead action level during any 
monitoring period.
    (7) A community water system may apply to the State, in writing, 
(unless the State has waived the requirement for prior State approval) 
to use the text specified in paragraph (a)(2) of this section in lieu of 
the text in paragraph (a)(1) of this section and to perform the tasks 
listed in paragraphs (c)(4) and (c)(5) of this section in lieu of the 
tasks in paragraphs (c)(2) and (c)(3) of this section if:
    (i) The system is a facility, such as a prison or a hospital, where 
the population served is not capable of or is prevented from making 
improvements to plumbing or installing point of use treatment devices; 
and
    (ii) The system provides water as part of the cost of services 
provided and does not separately charge for water consumption.
    (8)(i) A community water system serving 3,300 or fewer people may 
omit the task contained in paragraph (c)(2)(iv) of this section. As long 
as it distributes notices containing the information contained in 
paragraph (a)(1) of this section to every household served by the 
system, such systems may further limit their public education programs 
as follows:
    (A) Systems serving 500 or fewer people may forego the task 
contained in paragraph (c)(2)(ii) of this section. Such a system may 
limit the distribution of the public education materials required under 
paragraph (c)(2)(iii) of this section to facilities and organizations 
served by the system that are most likely to be visited regularly by 
pregnant women and children, unless it is notified by the State in 
writing that it must make a broader distribution.
    (B) If approved by the State in writing, a system serving 501 to 
3,300 people may omit the task in paragraph (c)(2)(ii) of this section 
and/or limit the
 
[[Page 469]]
 
distribution of the public education materials required under paragraph 
(c)(2)(iii) of this section to facilities and organizations served by 
the system that are most likely to be visited regularly by pregnant 
women and children.
    (ii) A community water system serving 3,300 or fewer people that 
delivers public education in accordance with paragraph (c)(8)(i) of this 
section shall repeat the required public education tasks at least once 
during each calendar year in which the system exceeds the lead action 
level.
    (d) Supplemental monitoring and notification of results. A water 
system that fails to meet the lead action level on the basis of tap 
samples collected in accordance with Sec. 141.86 shall offer to sample 
the tap water of any customer who requests it. The system is not 
required to pay for collecting or analyzing the sample, nor is the 
system required to collect and analyze the sample itself.
 
[56 FR 26548, June 7, 1991; 57 FR 28788, June 29, 1992; 65 FR 2005, Jan. 
12, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.86]
 
[Page 469-476]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart I--Control of Lead and Copper
 
Sec. 141.86  Monitoring requirements for lead and copper in tap water.
 
    (a) Sample site location. (1) By the applicable date for 
commencement of monitoring under paragraph (d)(1) of this section, each 
water system shall complete a materials evaluation of its distribution 
system in order to identify a pool of targeted sampling sites that meets 
the requirements of this section, and which is sufficiently large to 
ensure that the water system can collect the number of lead and copper 
tap samples required in paragraph (c) of this section. All sites from 
which first draw samples are collected shall be selected from this pool 
of targeted sampling sites. Sampling sites may not include faucets that 
have point-of-use or point-of-entry treatment devices designed to remove 
inorganic contaminants.
    (2) A water system shall use the information on lead, copper, and 
galvanized steel that it is required to collect under Sec. 141.42(d) of 
this part [special monitoring for corrosivity characteristics] when 
conducting a materials evaluation. When an evaluation of the information 
collected pursuant to Sec. 141.42(d) is insufficient to locate the 
requisite number of lead and copper sampling sites that meet the 
targeting criteria in paragraph (a) of this section, the water system 
shall review the sources of information listed below in order to 
identify a sufficient number of sampling sites. In addition, the system 
shall seek to collect such information where possible in the course of 
its normal operations (e.g., checking service line materials when 
reading water meters or performing maintenance activities):
    (i) All plumbing codes, permits, and records in the files of the 
building department(s) which indicate the plumbing materials that are 
installed within publicly and privately owned structures connected to 
the distribution system;
    (ii) All inspections and records of the distribution system that 
indicate the material composition of the service connections that 
connect a structure to the distribution system; and
    (iii) All existing water quality information, which includes the 
results of all prior analyses of the system or individual structures 
connected to the system, indicating locations that may be particularly 
susceptible to high lead or copper concentrations.
    (3) The sampling sites selected for a community water system's 
sampling pool ("tier l sampling sites") shall consist of single family 
structures that:
    (i) Contain copper pipes with lead solder installed after 1982 or 
contain lead pipes; and/or
    (ii) Are served by a lead service line. When multiple-family 
residences comprise at least 20 percent of the structures served by a 
water system, the system may include these types of structures in its 
sampling pool.
    (4) Any community water system with insufficient tier 1 sampling 
sites shall complete its sampling pool with "tier 2 sampling sites", 
consisting of buildings, including multiple-family residences that:
    (i) Contain copper pipes with lead solder installed after 1982 or 
contain lead pipes; and/or
    (ii) Are served by a lead service line.
    (5) Any community water system with insufficient tier 1 and tier 2 
sampling sites shall complete its sampling pool with "tier 3 sampling 
sites", consisting of single family structures that
 
[[Page 470]]
 
contain copper pipes with lead solder installed before 1983. A community 
water system with insufficient tier 1, tier 2, and tier 3 sampling sites 
shall complete its sampling pool with representative sites throughout 
the distribution system. For the purpose of this paragraph, a 
representative site is a site in which the plumbing materials used at 
that site would be commonly found at other sites served by the water 
system.
    (6) The sampling sites selected for a non-transient noncommunity 
water system ("tier l sampling sites") shall consist of buildings 
that:
    (i) Contain copper pipes with lead solder installed after 1982 or 
contain lead pipes; and/or
    (ii) Are served by a lead service line.
    (7) A non-transient non-community water system with insufficient 
tier 1 sites that meet the targeting criteria in paragraph (a)(6) of 
this section shall complete its sampling pool with sampling sites that 
contain copper pipes with lead solder installed before 1983. If 
additional sites are needed to complete the sampling pool, the non-
transient non-community water system shall use representative sites 
throughout the distribution system. For the purpose of this paragraph, a 
representative site is a site in which the plumbing materials used at 
that site would be commonly found at other sites served by the water 
system.
    (8) Any water system whose distribution system contains lead service 
lines shall draw 50 percent of the samples it collects during each 
monitoring period from sites that contain lead pipes, or copper pipes 
with lead solder, and 50 percent of the samples from sites served by a 
lead service line. A water system that cannot identify a sufficient 
number of sampling sites served by a lead service line shall collect 
first-draw samples from all of the sites identified as being served by 
such lines.
    (b) Sample collection methods. (1) All tap samples for lead and 
copper collected in accordance with this subpart, with the exception of 
lead service line samples collected under Sec. 141.84(c) and samples 
collected under paragraph (b)(5) of this section, shall be first-draw 
samples.
    (2) Each first-draw tap sample for lead and copper shall be one 
liter in volume and have stood motionless in the plumbing system of each 
sampling site for at least six hours. First-draw samples from 
residential housing shall be collected from the cold water kitchen tap 
or bathroom sink tap. First-draw samples from a nonresidential building 
shall be one liter in volume and shall be collected at an interior tap 
from which water is typically drawn for consumption. Non-first-draw 
samples collected in lieu of first-draw samples pursuant to paragraph 
(b)(5) of this section shall be one liter in volume and shall be 
collected at an interior tap from which water is typically drawn for 
consumption. First-draw samples may be collected by the system or the 
system may allow residents to collect first-draw samples after 
instructing the residents of the sampling procedures specified in this 
paragraph. To avoid problems of residents handling nitric acid, 
acidification of first-draw samples may be done up to 14 days after the 
sample is collected. After acidification to resolubilize the metals, the 
sample must stand in the original container for the time specified in 
the approved EPA method before the sample can be analyzed. If a system 
allows residents to perform sampling, the system may not challenge, 
based on alleged errors in sample collection, the accuracy of sampling 
results.
    (3) Each service line sample shall be one liter in volume and have 
stood motionless in the lead service line for at least six hours. Lead 
service line samples shall be collected in one of the following three 
ways:
    (i) At the tap after flushing the volume of water between the tap 
and the lead service line. The volume of water shall be calculated based 
on the interior diameter and length of the pipe between the tap and the 
lead service line;
    (ii) Tapping directly into the lead service line; or
    (iii) If the sampling site is a building constructed as a single-
family residence, allowing the water to run until there is a significant 
change in temperature which would be indicative of water that has been 
standing in the lead service line.
 
[[Page 471]]
 
    (4) A water system shall collect each first draw tap sample from the 
same sampling site from which it collected a previous sample. If, for 
any reason, the water system cannot gain entry to a sampling site in 
order to collect a follow-up tap sample, the system may collect the 
follow-up tap sample from another sampling site in its sampling pool as 
long as the new site meets the same targeting criteria, and is within 
reasonable proximity of the original site.
    (5) A non-transient non-community water system, or a community water 
system that meets the criteria of Secs. 141.85(c)(7)(i) and (ii), that 
does not have enough taps that can supply first-draw samples, as defined 
in Sec. 141.2, may apply to the State in writing to substitute non-
first-draw samples. Such systems must collect as many first-draw samples 
from appropriate taps as possible and identify sampling times and 
locations that would likely result in the longest standing time for the 
remaining sites. The State has the discretion to waive the requirement 
for prior State approval of non-first-draw sample sites selected by the 
system, either through State regulation or written notification to the 
system.
    (c) Number of samples. Water systems shall collect at least one 
sample during each monitoring period specified in paragraph (d) of this 
section from the number of sites listed in the first column ("standard 
monitoring") of the table in this paragraph. A system conducting 
reduced monitoring under paragraph (d)(4) of this section shall collect 
at least one sample from the number of sites specified in the second 
column ("reduced monitoring") of the table in this paragraph during 
each monitoring period specified in paragraph (d)(4) of this section. 
Such reduced monitoring sites shall be representative of the sites 
required for standard monitoring. States may specify sampling locations 
when a system is conducting reduced monitoring. The table is as follows:
 
------------------------------------------------------------------------
                                                 Number of    Number of
                                                   sites        sites
     System size (number of people served)       (standard     (reduced
                                                monitoring)  monitoring)
------------------------------------------------------------------------
>100,000......................................        100           50
10,001 to 100,000.............................         60           30
3,301 to 10,000...............................         40           20
501 to 3,300..................................         20           10
101 to 500....................................         10            5
<ls-thn-eq>100................................          5            5
------------------------------------------------------------------------
 
    (d) Timing of monitoring--(1) Initial tap sampling.
    The first six-month monitoring period for small, medium-size and 
large systems shall begin on the following dates:
 
------------------------------------------------------------------------
                                           First six-month monitoring
    System size (No. people served)             period begins on
------------------------------------------------------------------------
>50,000...............................  January 1, 1992.
3,301 to 50,000.......................  July 1, 1992.
<ls-thn-eq>3,300......................  July 1, 1993.
------------------------------------------------------------------------
 
    (i) All large systems shall monitor during two consecutive six-month 
periods.
    (ii) All small and medium-size systems shall monitor during each 
six-month monitoring period until:
    (A) The system exceeds the lead or copper action level and is 
therefore required to implement the corrosion control treatment 
requirements under Sec. 141.81, in which case the system shall continue 
monitoring in accordance with paragraph (d)(2) of this section, or
    (B) The system meets the lead and copper action levels during two 
consecutive six-month monitoring periods, in which case the system may 
reduce monitoring in accordance with paragraph (d)(4) of this section.
    (2) Monitoring after installation of corrosion control and source 
water treatment. (i) Any large system which installs optimal corrosion 
control treatment pursuant to Sec. 141.81(d)(4) shall monitor during two 
consecutive six-month monitoring periods by the date specified in 
Sec. 141.81(d)(5).
    (ii) Any small or medium-size system which installs optimal 
corrosion control treatment pursuant to Sec. 141.81(e)(5) shall monitor 
during two consecutive six-month monitoring periods by the date 
specified in Sec. 141.81(e)(6).
    (iii) Any system which installs source water treatment pursuant to 
Sec. 141.83(a)(3) shall monitor during two
 
[[Page 472]]
 
consecutive six-month monitoring periods by the date specified in 
Sec. 141.83(a)(4).
    (3) Monitoring after State specifies water quality parameter values 
for optimal corrosion control. After the State specifies the values for 
water quality control parameters under Sec. 141.82(f), the system shall 
monitor during each subsequent six-month monitoring period, with the 
first monitoring period to begin on the date the State specifies the 
optimal values under Sec. 141.82(f).
    (4) Reduced monitoring. (i) A small or medium-size water system that 
meets the lead and copper action levels during each of two consecutive 
six-month monitoring periods may reduce the number of samples in 
accordance with paragraph (c) of this section, and reduce the frequency 
of sampling to once per year.
    (ii) Any water system that maintains the range of values for the 
water quality control parameters reflecting optimal corrosion control 
treatment specified by the State under Sec. 141.82(f) during each of two 
consecutive six-month monitoring periods may reduce the frequency of 
monitoring to once per year and reduce the number of lead and copper 
samples in accordance with paragraph (c) of this section if it receives 
written approval from the State. The State shall review monitoring, 
treatment, and other relevant information submitted by the water system 
in accordance with Sec. 141.90, and shall notify the system in writing 
when it determines the system is eligible to commence reduced monitoring 
pursuant to this paragraph. The State shall review, and where 
appropriate, revise its determination when the system submits new 
monitoring or treatment data, or when other data relevant to the number 
and frequency of tap sampling becomes available.
    (iii) A small or medium-size water system that meets the lead and 
copper action levels during three consecutive years of monitoring may 
reduce the frequency of monitoring for lead and copper from annually to 
once every three years. Any water system that maintains the range of 
values for the water quality control parameters reflecting optimal 
corrosion control treatment specified by the State under Sec. 141.82(f) 
during three consecutive years of monitoring may reduce the frequency of 
monitoring from annually to once every three years if it receives 
written approval from the State. The State shall review monitoring, 
treatment, and other relevant information submitted by the water system 
in accordance with Sec. 141.90, and shall notify the system in writing 
when it determines the system is eligible to reduce the frequency of 
monitoring to once every three years. The State shall review, and where 
appropriate, revise its determination when the system submits new 
monitoring or treatment data, or when other data relevant to the number 
and frequency of tap sampling becomes available.
    (iv) A water system that reduces the number and frequency of 
sampling shall collect these samples from representative sites included 
in the pool of targeted sampling sites identified in paragraph (a) of 
this section. Systems sampling annually or less frequently shall conduct 
the lead and copper tap sampling during the months of June, July, 
August, or September unless the State has approved a different sampling 
period in accordance with paragraph (d)(4)(iv)(A) of this section.
    (A) The State, at its discretion, may approve a different period for 
conducting the lead and copper tap sampling for systems collecting a 
reduced number of samples. Such a period shall be no longer than four 
consecutive months and must represent a time of normal operation where 
the highest levels of lead are most likely to occur. For a non-transient 
non-community water system that does not operate during the months of 
June through September, and for which the period of normal operation 
where the highest levels of lead are most likely to occur is not known, 
the State shall designate a period that represents a time of normal 
operation for the system.
    (B) Systems monitoring annually, that have been collecting samples 
during the months of June through September and that receive State 
approval to alter their sample collection period under paragraph 
(d)(4)(iv)(A) of this section, must collect their next round of samples 
during a time period that ends no later than 21 months after the
 
[[Page 473]]
 
previous round of sampling. Systems monitoring triennially that have 
been collecting samples during the months of June through September, and 
receive State approval to alter the sampling collection period as per 
paragraph (d)(4)(iv)(A) of this section, must collect their next round 
of samples during a time period that ends no later than 45 months after 
the previous round of sampling. Subsequent rounds of sampling must be 
collected annually or triennially, as required by this section. Small 
systems with waivers, granted pursuant to paragraph (g) of this section, 
that have been collecting samples during the months of June through 
September and receive State approval to alter their sample collection 
period under paragraph (d)(4)(iv)(A) of this section must collect their 
next round of samples before the end of the 9-year period.
    (v) Any water system that demonstrates for two consecutive 6-month 
monitoring periods that the tap water lead level computed under 
Sec. 141.80(c)(3) is less than or equal to 0.005 mg/L and the tap water 
copper level computed under Sec. 141.80(c)(3) is less than or equal to 
0.65 mg/L may reduce the number of samples in accordance with paragraph 
(c) of this section and reduce the frequency of sampling to once every 
three calendar years.
    (vi)(A) A small or medium-size water system subject to reduced 
monitoring that exceeds the lead or copper action level shall resume 
sampling in accordance with paragraph (d)(3) of this section and collect 
the number of samples specified for standard monitoring under paragraph 
(c) of this section. Such a system shall also conduct water quality 
parameter monitoring in accordance with Sec. 141.87(b), (c) or (d) (as 
appropriate) during the monitoring period in which it exceeded the 
action level. Any such system may resume annual monitoring for lead and 
copper at the tap at the reduced number of sites specified in paragraph 
(c) of this section after it has completed two subsequent consecutive 
six-month rounds of monitoring that meet the criteria of paragraph 
(d)(4)(i) of this section and/or may resume triennial monitoring for 
lead and copper at the reduced number of sites after it demonstrates 
through subsequent rounds of monitoring that it meets the criteria of 
either paragraph (d)(4)(iii) or (d)(4)(v) of this section.
    (B) Any water system subject to the reduced monitoring frequency 
that fails to operate at or above the minimum value or within the range 
of values for the water quality parameters specified by the State under 
Sec. 141.82(f) for more than nine days in any six-month period specified 
in Sec. 141.87(d) shall conduct tap water sampling for lead and copper 
at the frequency specified in paragraph (d)(3) of this section, collect 
the number of samples specified for standard monitoring under paragraph 
(c) of this section, and shall resume monitoring for water quality 
parameters within the distribution system in accordance with 
Sec. 141.87(d). Such a system may resume reduced monitoring for lead and 
copper at the tap and for water quality parameters within the 
distribution system under the following conditions:
    (1) The system may resume annual monitoring for lead and copper at 
the tap at the reduced number of sites specified in paragraph (c) of 
this section after it has completed two subsequent six-month rounds of 
monitoring that meet the criteria of paragraph (d)(4)(ii) of this 
section and the system has received written approval from the State that 
it is appropriate to resume reduced monitoring on an annual frequency.
    (2) The system may resume triennial monitoring for lead and copper 
at the tap at the reduced number of sites after it demonstrates through 
subsequent rounds of monitoring that it meets the criteria of either 
paragraph (d)(4)(iii) or (d)(4)(v) of this section and the system has 
received written approval from the State that it is appropriate to 
resume triennial monitoring.
    (3) The system may reduce the number of water quality parameter tap 
water samples required in accordance with Sec. 141.87(e)(1) and the 
frequency with which it collects such samples in accordance with 
Sec. 141.87(e)(2). Such a system may not resume triennial monitoring for 
water quality parameters at the tap until it demonstrates, in accordance 
with the requirements of
 
[[Page 474]]
 
Sec. 141.87(e)(2), that it has re-qualified for triennial monitoring.
    (vii) Any water system subject to a reduced monitoring frequency 
under paragraph (d)(4) of this section that either adds a new source of 
water or changes any water treatment shall inform the State in writing 
in accordance with Sec. 141.90(a)(3). The State may require the system 
to resume sampling in accordance with paragraph (d)(3) of this section 
and collect the number of samples specified for standard monitoring 
under paragraph (c) of this section or take other appropriate steps such 
as increased water quality parameter monitoring or re-evaluation of its 
corrosion control treatment given the potentially different water 
quality considerations.
    (e) Additional monitoring by systems. The results of any monitoring 
conducted in addition to the minimum requirements of this section shall 
be considered by the system and the State in making any determinations 
(i.e., calculating the 90th percentile lead or copper level) under this 
subpart.
    (f) Invalidation of lead or copper tap water samples. A sample 
invalidated under this paragraph does not count toward determining lead 
or copper 90th percentile levels under Sec. 141.80(c)(3) or toward 
meeting the minimum monitoring requirements of paragraph (c) of this 
section.
    (1) The State may invalidate a lead or copper tap water sample at 
least if one of the following conditions is met.
    (i) The laboratory establishes that improper sample analysis caused 
erroneous results.
    (ii) The State determines that the sample was taken from a site that 
did not meet the site selection criteria of this section.
    (iii) The sample container was damaged in transit.
    (iv) There is substantial reason to believe that the sample was 
subject to tampering.
    (2) The system must report the results of all samples to the State 
and all supporting documentation for samples the system believes should 
be invalidated.
    (3) To invalidate a sample under paragraph (f)(1) of this section, 
the decision and the rationale for the decision must be documented in 
writing. States may not invalidate a sample solely on the grounds that a 
follow-up sample result is higher or lower than that of the original 
sample.
    (4) The water system must collect replacement samples for any 
samples invalidated under this section if, after the invalidation of one 
or more samples, the system has too few samples to meet the minimum 
requirements of paragraph (c) of this section. Any such replacement 
samples must be taken as soon as possible, but no later than 20 days 
after the date the State invalidates the sample or by the end of the 
applicable monitoring period, whichever occurs later. Replacement 
samples taken after the end of the applicable monitoring period shall 
not also be used to meet the monitoring requirements of a subsequent 
monitoring period. The replacement samples shall be taken at the same 
locations as the invalidated samples or, if that is not possible, at 
locations other than those already used for sampling during the 
monitoring period.
    (g) Monitoring waivers for small systems. Any small system that 
meets the criteria of this paragraph may apply to the State to reduce 
the frequency of monitoring for lead and copper under this section to 
once every nine years (i.e., a "full waiver") if it meets all of the 
materials criteria specified in paragraph (g)(1) of this section and all 
of the monitoring criteria specified in paragraph (g)(2) of this 
section. If State regulations permit, any small system that meets the 
criteria in paragraphs (g)(1) and (2) of this section only for lead, or 
only for copper, may apply to the State for a waiver to reduce the 
frequency of tap water monitoring to once every nine years for that 
contaminant only (i.e., a "partial waiver").
    (1) Materials criteria. The system must demonstrate that its 
distribution system and service lines and all drinking water supply 
plumbing, including plumbing conveying drinking water within all 
residences and buildings connected to the system, are free of lead-
containing materials and/or copper-containing materials, as those terms 
are defined in this paragraph, as follows:
 
[[Page 475]]
 
    (i) Lead. To qualify for a full waiver, or a waiver of the tap water 
monitoring requirements for lead (i.e., a "lead waiver"), the water 
system must provide certification and supporting documentation to the 
State that the system is free of all lead-containing materials, as 
follows:
    (A) It contains no plastic pipes which contain lead plasticizers, or 
plastic service lines which contain lead plasticizers; and
    (B) It is free of lead service lines, lead pipes, lead soldered pipe 
joints, and leaded brass or bronze alloy fittings and fixtures, unless 
such fittings and fixtures meet the specifications of any standard 
established pursuant to 42 U.S.C. 300g-6(e) (SDWA section 1417(e)).
    (ii) Copper. To qualify for a full waiver, or a waiver of the tap 
water monitoring requirements for copper (i.e., a "copper waiver"), 
the water system must provide certification and supporting documentation 
to the State that the system contains no copper pipes or copper service 
lines.
    (2) Monitoring criteria for waiver issuance. The system must have 
completed at least one 6-month round of standard tap water monitoring 
for lead and copper at sites approved by the State and from the number 
of sites required by paragraph (c) of this section and demonstrate that 
the 90th percentile levels for any and all rounds of monitoring 
conducted since the system became free of all lead-containing and/or 
copper-containing materials, as appropriate, meet the following 
criteria.
    (i) Lead levels. To qualify for a full waiver, or a lead waiver, the 
system must demonstrate that the 90th percentile lead level does not 
exceed 0.005 mg/L.
    (ii) Copper levels. To qualify for a full waiver, or a copper 
waiver, the system must demonstrate that the 90th percentile copper 
level does not exceed 0.65 mg/L.
    (3) State approval of waiver application. The State shall notify the 
system of its waiver determination, in writing, setting forth the basis 
of its decision and any condition of the waiver. As a condition of the 
waiver, the State may require the system to perform specific activities 
(e.g., limited monitoring, periodic outreach to customers to remind them 
to avoid installation of materials that might void the waiver) to avoid 
the risk of lead or copper concentration of concern in tap water. The 
small system must continue monitoring for lead and copper at the tap as 
required by paragraphs (d)(1) through (d)(4) of this section, as 
appropriate, until it receives written notification from the State that 
the waiver has been approved.
    (4) Monitoring frequency for systems with waivers. (i) A system with 
a full waiver must conduct tap water monitoring for lead and copper in 
accordance with paragraph (d)(4)(iv) of this section at the reduced 
number of sampling sites identified in paragraph (c) of this section at 
least once every nine years and provide the materials certification 
specified in paragraph (g)(1) of this section for both lead and copper 
to the State along with the monitoring results.
    (ii) A system with a partial waiver must conduct tap water 
monitoring for the waived contaminant in accordance with paragraph 
(d)(4)(iv) of this section at the reduced number of sampling sites 
specified in paragraph (c) of this section at least once every nine 
years and provide the materials certification specified in paragraph 
(g)(1) of this section pertaining to the waived contaminant along with 
the monitoring results. Such a system also must continue to monitor for 
the non-waived contaminant in accordance with requirements of paragraph 
(d)(1) through (d)(4) of this section, as appropriate.
    (iii) If a system with a full or partial waiver adds a new source of 
water or changes any water treatment, the system must notify the State 
in writing in accordance with Sec. 141.90(a)(3). The State has the 
authority to require the system to add or modify waiver conditions 
(e.g., require recertification that the system is free of lead-
containing and/or copper-containing materials, require additional 
round(s) of monitoring), if it deems such modifications are necessary to 
address treatment or source water changes at the system.
    (iv) If a system with a full or partial waiver becomes aware that it 
is no
 
[[Page 476]]
 
longer free of lead-containing or copper-containing materials, as 
appropriate, (e.g., as a result of new construction or repairs), the 
system shall notify the State in writing no later than 60 days after 
becoming aware of such a change.
    (5) Continued eligibility. If the system continues to satisfy the 
requirements of paragraph (g)(4) of this section, the waiver will be 
renewed automatically, unless any of the conditions listed in paragraph 
(g)(5)(i) through (g)(5)(iii) of this section occurs. A system whose 
waiver has been revoked may re-apply for a waiver at such time as it 
again meets the appropriate materials and monitoring criteria of 
paragraphs (g)(1) and (g)(2) of this section.
    (i) A system with a full waiver or a lead waiver no longer satisfies 
the materials criteria of paragraph (g)(1)(i) of this section or has a 
90th percentile lead level greater than 0.005 mg/L.
    (ii) A system with a full waiver or a copper waiver no longer 
satisfies the materials criteria of paragraph (g)(1)(ii) of this section 
or has a 90th percentile copper level greater than 0.65 mg/L.
    (iii) The State notifies the system, in writing, that the waiver has 
been revoked, setting forth the basis of its decision.
    (6) Requirements following waiver revocation. A system whose full or 
partial waiver has been revoked by the State is subject to the corrosion 
control treatment and lead and copper tap water monitoring requirements, 
as follows:
    (i) If the system exceeds the lead and/or copper action level, the 
system must implement corrosion control treatment in accordance with the 
deadlines specified in Sec. 141.81(e), and any other applicable 
requirements of this subpart.
    (ii) If the system meets both the lead and the copper action level, 
the system must monitor for lead and copper at the tap no less 
frequently than once every three years using the reduced number of 
sample sites specified in paragraph (c) of this section.
    (7) Pre-existing waivers. Small system waivers approved by the State 
in writing prior to April 11, 2000 shall remain in effect under the 
following conditions:
    (i) If the system has demonstrated that it is both free of lead-
containing and copper-containing materials, as required by paragraph 
(g)(1) of this section and that its 90th percentile lead levels and 90th 
percentile copper levels meet the criteria of paragraph (g)(2) of this 
section, the waiver remains in effect so long as the system continues to 
meet the waiver eligibility criteria of paragraph (g)(5) of this 
section. The first round of tap water monitoring conducted pursuant to 
paragraph (g)(4) of this section shall be completed no later than nine 
years after the last time the system has monitored for lead and copper 
at the tap.
    (ii) If the system has met the materials criteria of paragraph 
(g)(1) of this section but has not met the monitoring criteria of 
paragraph (g)(2) of this section, the system shall conduct a round of 
monitoring for lead and copper at the tap demonstrating that it meets 
the criteria of paragraph (g)(2) of this section no later than September 
30, 2000. Thereafter, the waiver shall remain in effect as long as the 
system meets the continued eligibility criteria of paragraph (g)(5) of 
this section. The first round of tap water monitoring conducted pursuant 
to paragraph (g)(4) of this section shall be completed no later than 
nine years after the round of monitoring conducted pursuant to paragraph 
(g)(2) of this section.
 
[56 FR 26548, June 7, 1991; 56 FR 32113, July 15, 1991; 57 FR 28788, 
June 29, 1992; as amended at 65 FR 2007, Jan. 12, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.87]
 
[Page 476-481]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart I--Control of Lead and Copper
 
Sec. 141.87  Monitoring requirements for water quality parameters.
 
    All large water systems, and all small- and medium-size systems that 
exceed the lead or copper action level shall monitor water quality 
parameters in addition to lead and copper in accordance with this 
section. The requirements of this section are summarized in the table at 
the end of this section.
    (a) General requirements--(1) Sample collection methods. (i) Tap 
samples shall be representative of water quality throughout the 
distribution system taking into account the number of persons served, 
the different sources of water, the different treatment methods employed 
by the system, and seasonal
 
[[Page 477]]
 
variability. Tap sampling under this section is not required to be 
conducted at taps targeted for lead and copper sampling under 
Sec. 141.86(a). [Note: Systems may find it convenient to conduct tap 
sampling for water quality parameters at sites used for coliform 
sampling under 40 CFR 141.21.]
    (ii) Samples collected at the entry point(s) to the distribution 
system shall be from locations representative of each source after 
treatment. If a system draws water from more than one source and the 
sources are combined before distribution, the system must sample at an 
entry point to the distribution system during periods of normal 
operating conditions (i.e., when water is representative of all sources 
being used).
    (2) Number of samples. (i) Systems shall collect two tap samples for 
applicable water quality parameters during each monitoring period 
specified under paragraphs (b) through (e) of this section from the 
following number of sites.
 
------------------------------------------------------------------------
                                                           No. of sites
                                                             for water
             System size (No. people served)                  quality
                                                            parameters
------------------------------------------------------------------------
>100,000................................................              25
10,001-100,000..........................................              10
3,301 to 10,000.........................................               3
501 to 3,300............................................               2
101 to 500..............................................               1
:100....................................................               1
------------------------------------------------------------------------
 
    (ii) Except as provided in paragraph (c)(3) of this section, systems 
shall collect two samples for each applicable water quality parameter at 
each entry point to the distribution system during each monitoring 
period specified in paragraph (b) of this section. During each 
monitoring period specified in paragraphs (c)-(e) of this section, 
systems shall collect one sample for each applicable water quality 
parameter at each entry point to the distribution system.
    (b) Initial sampling All large water systems shall measure the 
applicable water quality parameters as specified below at taps and at 
each entry point to the distribution system during each six-month 
monitoring period specified in Sec. 141.86(d)(1). All small and medium-
size systems shall measure the applicable water quality parameters at 
the locations specified below during each six-month monitoring period 
specified in Sec. 141.86(d)(1) during which the system exceeds the lead 
or copper action level.
    (1) At taps:
    (i) pH;
    (ii) Alkalinity;
    (iii) Orthophosphate, when an inhibitor containing a phosphate 
compound is used;
    (iv) Silica, when an inhibitor containing a silicate compound is 
used;
    (v) Calcium;
    (vi) Conductivity; and
    (vii) Water temperature.
    (2) At each entry point to the distribution system: all of the 
applicable parameters listed in paragraph (b)(1) of this section.
    (c) Monitoring after installation of corrosion control. Any large 
system which installs optimal corrosion control treatment pursuant to 
Sec. 141.81(d)(4) shall measure the water quality parameters at the 
locations and frequencies specified below during each six-month 
monitoring period specified in Sec. 141.86(d)(2)(i). Any small or 
medium-size system which installs optimal corrosion control treatment 
shall conduct such monitoring during each six-month monitoring period 
specified in Sec. 141.86(d)(2)(ii) in which the system exceeds the lead 
or copper action level.
    (1) At taps, two samples for:
    (i) pH;
    (ii) Alkalinity;
    (iii) Orthophosphate, when an inhibitor containing a phosphate 
compound is used;
    (iv) Silica, when an inhibitor containing a silicate compound is 
used;
    (v) Calcium, when calcium carbonate stabilization is used as part of 
corrosion control.
    (2) Except as provided in paragraph (c)(3) of this section, at each 
entry point to the distribution system, at least one sample no less 
frequently than every two weeks (biweekly) for:
    (i) pH;
    (ii) When alkalinity is adjusted as part of optimal corrosion 
control, a reading of the dosage rate of the chemical used to adjust 
alkalinity, and the alkalinity concentration; and
    (iii) When a corrosion inhibitor is used as part of optimal 
corrosion control, a reading of the dosage rate of the inhibitor used, 
and the concentration
 
[[Page 478]]
 
of orthophosphate or silica (whichever is applicable).
    (3) Any ground water system can limit entry point sampling described 
in paragraph (c)(2) of this section to those entry points that are 
representative of water quality and treatment conditions throughout the 
system. If water from untreated ground water sources mixes with water 
from treated ground water sources, the system must monitor for water 
quality parameters both at representative entry points receiving 
treatment and representative entry points receiving no treatment. Prior 
to the start of any monitoring under this paragraph, the system shall 
provide to the State written information identifying the selected entry 
points and documentation, including information on seasonal variability, 
sufficient to demonstrate that the sites are representative of water 
quality and treatment conditions throughout the system.
    (d) Monitoring after State specifies water quality parameter values 
for optimal corrosion control. After the State specifies the values for 
applicable water quality control parameters reflecting optimal corrosion 
control treatment under Sec. 141.82(f), all large systems shall measure 
the applicable water quality parameters in accordance with paragraph (c) 
of this section and determine compliance with the requirements of 
Sec. 141.82(g) every six months with the first six-month period to begin 
on the date the State specifies the optimal values under Sec. 141.82(f). 
Any small or medium-size system shall conduct such monitoring during 
each six-month period specified in this paragraph in which the system 
exceeds the lead or copper action level. For any such small and medium-
size system that is subject to a reduced monitoring frequency pursuant 
to Sec. 141.86(d)(4) at the time of the action level exceedance, the end 
of the applicable six-month period under this paragraph shall coincide 
with the end of the applicable monitoring period under 
Sec. 141.86(d)(4). Compliance with State-designated optimal water 
quality parameter values shall be determined as specified under 
Sec. 141.82(g).
    (e) Reduced monitoring. (1) Any water system that maintains the 
range of values for the water quality parameters reflecting optimal 
corrosion control treatment during each of two consecutive six-month 
monitoring periods under paragraph (d) of this section shall continue 
monitoring at the entry point(s) to the distribution system as specified 
in paragraph (c)(2) of this section. Such system may collect two tap 
samples for applicable water quality parameters from the following 
reduced number of sites during each six-month monitoring period.
 
------------------------------------------------------------------------
                                                          Reduced No. of
                                                             sites for
           System size (No. of people served)              water quality
                                                            parameters
------------------------------------------------------------------------
>100,000................................................              10
10,001 to 100,000.......................................               7
3,301 to 10,000.........................................               3
501 to 3,300............................................               2
101 to 500..............................................               1
:100....................................................               1
------------------------------------------------------------------------
 
    (2)(i) Any water system that maintains the range of values for the 
water quality parameters reflecting optimal corrosion control treatment 
specified by the State under Sec. 141.82(f) during three consecutive 
years of monitoring may reduce the frequency with which it collects the 
number of tap samples for applicable water quality parameters specified 
in this paragraph (e)(1) of this section from every six months to 
annually. Any water system that maintains the range of values for the 
water quality parameters reflecting optimal corrosion control treatment 
specified by the State under Sec. 141.82(f) during three consecutive 
years of annual monitoring under this paragraph may reduce the frequency 
with which it collects the number of tap samples for applicable water 
quality parameters specified in paragraph (e)(1) from annually to every 
three years.
    (ii) A water system may reduce the frequency with which it collects 
tap samples for applicable water quality parameters specified in 
paragraph (e)(1) of this section to every three years if it demonstrates 
during two consecutive monitoring periods that its tap water lead level 
at the 90th percentile is less than or equal to the PQL for lead 
specified in Sec. 141.89 (a)(1)(ii), that its tap water copper level at 
the 90th percentile is less than or equal to 0.65 mg/L for copper in 
Sec. 141.80(c)(2), and that it also has maintained the range of values
 
[[Page 479]]
 
for the water quality parameters reflecting optimal corrosion control 
treatment specified by the State under Sec. 141.82(f).
    (3) A water system that conducts sampling annually shall collect 
these samples evenly throughout the year so as to reflect seasonal 
variability.
    (4) Any water system subject to the reduced monitoring frequency 
that fails to operate at or above the minimum value or within the range 
of values for the water quality parameters specified by the State in 
Sec. 141.82(f) for more than nine days in any six-month period specified 
in Sec. 141.82(g) shall resume distribution system tap water sampling in 
accordance with the number and frequency requirements in paragraph (d) 
of this section. Such a system may resume annual monitoring for water 
quality parameters at the tap at the reduced number of sites specified 
in paragraph (e)(1) of this section after it has completed two 
subsequent consecutive six-month rounds of monitoring that meet the 
criteria of that paragraph and/or may resume triennial monitoring for 
water quality parameters at the tap at the reduced number of sites after 
it demonstrates through subsequent rounds of monitoring that it meets 
the criteria of either paragraph (e)(2)(i) or (e)(2)(ii) of this 
section.
    (f) Additional monitoring by systems. The results of any monitoring 
conducted in addition to the minimum requirements of this section shall 
be considered by the system and the State in making any determinations 
(i.e., determining concentrations of water quality parameters) under 
this section or Sec. 141.82.
 
[[Page 480]]
 
 
 
                       Summary of Monitoring Requirements for Water Quality Parameters \1\
----------------------------------------------------------------------------------------------------------------
         Monitoring period                Parameters \2\                 Location                 Frequency
----------------------------------------------------------------------------------------------------------------
Initial monitoring................  pH, alkalinity,             Taps and at entry point(s)  Every 6 months.
                                     orthophosphate or silica    to distribution system.
                                     \3\, calcium,
                                     conductivity, temperature.
After installation of corrosion     pH, alkalinity,             Taps......................  Every 6 months.
 control.                            orthophosphate or silica
                                     \3\, calcium \4\.
                                    pH, alkalinity, dosage      Entry point(s) to           No less frequently
                                     rate and concentration      distribution system \6\.    than every two
                                     (if alkalinity adjusted                                 weeks.
                                     as part of corrosion
                                     control), inhibitor
                                     dosage rate and inhibitor
                                     residual \5\.
After State specifies parameter     pH, alkalinity,             Taps......................  Every 6 months.
 values for optimal corrosion        orthophosphate or silica
 control.                            \3\, calcium \4\.
                                    pH, alkalinity dosage rate  Entry point(s) to           No less frequently
                                     and concentration (if       distribution system \6\.    than every two
                                     alkalinity adjusted as                                  weeks.
                                     part of corrosion
                                     control), inhibitor
                                     dosage rate and inhibitor
                                     residual \5\.
Reduced monitoring................  pH, alkalinity,             Taps......................  Every 6 months,
                                     orthophosphate or silica                                annually \7\ or
                                     \3\, calcium \4\.                                       every 3 years \8\;
                                                                                             reduced number of
                                                                                             sites.
                                    pH, alkalinity dosage rate  Entry point(s) to           No less frequently
                                     and concentration (if       distribution system \6\.    than every two
                                     alkalinity adjusted as                                  weeks.
                                     part of corrosion
                                     control), inhibitor
                                     dosage rate and inhibitor
                                     residual \5\.
----------------------------------------------------------------------------------------------------------------
\1\ Table is for illustrative purposes; consult the text of this section for precise regulatory requirements.
\2\ Small and medium-size systems have to monitor for water quality parameters only during monitoring periods in
  which the system exceeds the lead or copper action level.
\3\ Orthophosphate must be measured only when an inhibitor containing a phosphate compound is used. Silica must
  be measured only when an inhibitor containing silicate compound is used.
\4\ Calcium must be measured only when calcium carbonate stabilization is used as part of corrosion control.
\5\ Inhibitor dosage rates and inhibitor residual concentrations (orthophosphate or silica) must be measured
  only when an inhibitor is used.
\6\ Ground water systems may limit monitoring to representative locations throughout the system.
\7\ Water systems may reduce frequency of monitoring for water quality parameters at the tap from every six
  months to annually if they have maintained the range of values for water quality parameters reflecting optimal
  corrosion control during 3 consecutive years of monitoring.
\8\ Water systems may further reduce the frequency of monitoring for water quality parameters at the tap from
  annually to once every 3 years if they have maintained the range of values for water quality parameters
  reflecting optimal corrosion control during 3 consecutive years of annual monitoring. Water systems may
  accelerate to triennial monitoring for water quality parameters at the tap if they have maintained 90th
  percentile lead levels less than or equal to 0.005 mg/L, 90th percentile copper levels less than or equal to
  0.65 mg/L, and the range of water quality parameters designated by the State under Sec.  141.82(f) as
  representing optimal corrosion control during two consecutive six-month monitoring periods.
 
 
[[Page 481]]
 
[56 FR 26548, June 7, 1991; 57 FR 28788, June 29, 1992, as amended at 59 
FR 33862, June 30, 1994; 65 FR 2010, Jan. 12, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.88]
 
[Page 481-482]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart I--Control of Lead and Copper
 
Sec. 141.88  Monitoring requirements for lead and copper in source water.
 
    (a) Sample location, collection methods, and number of samples. (1) 
A water system that fails to meet the lead or copper action level on the 
basis of tap samples collected in accordance with Sec. 141.86 shall 
collect lead and copper source water samples in accordance with the 
following requirements regarding sample location, number of samples, and 
collection methods:
    (i) Groundwater systems shall take a minimum of one sample at every 
entry point to the distribution system which is representative of each 
well after treatment (hereafter called a sampling point). The system 
shall take one sample at the same sampling point unless conditions make 
another sampling point more representative of each source or treatment 
plant.
    (ii) Surface water systems shall take a minimum of one sample at 
every entry point to the distribution system after any application of 
treatment or in the distribution system at a point which is 
representative of each source after treatment (hereafter called a 
sampling point). The system shall take each sample at the same sampling 
point unless conditions make another sampling point more representative 
of each source or treatment plant.
 
    Note to paragraph (a)(1)(ii): For the purposes of this paragraph, 
surface water systems include systems with a combination of surface and 
ground sources.
 
    (iii) If a system draws water from more than one source and the 
sources are combined before distribution, the system must sample at an 
entry point to the distribution system during periods of normal 
operating conditions (i.e., when water is representative of all sources 
being used).
    (iv) The State may reduce the total number of samples which must be 
analyzed by allowing the use of compositing. Compositing of samples must 
be done by certified laboratory personnel. Composite samples from a 
maximum of five samples are allowed, provided that if the lead 
concentration in the composite sample is greater than or equal to 0.001 
mg/L or the copper concentration is greater than or equal to 0.160 mg/L, 
then either:
    (A) A follow-up sample shall be taken and analyzed within 14 days at 
each sampling point included in the composite; or
    (B) If duplicates of or sufficient quantities from the original 
samples from each sampling point used in the composite are available, 
the system may use these instead of resampling.
    (2) Where the results of sampling indicate an exceedance of maximum 
permissible source water levels established under Sec. 141.83(b)(4), the 
State may require that one additional sample be collected as soon as 
possible after the initial sample was taken (but not to exceed two 
weeks) at the same sampling point. If a State-required confirmation 
sample is taken for lead or copper, then the results of the initial and 
confirmation sample shall be averaged in determining compliance with the 
State-specified maximum permissible levels. Any sample value below the 
detection limit shall be considered to be zero. Any value above the 
detection limit but below the PQL shall either be considered as the 
measured value or be considered one-half the PQL.
    (b) Monitoring frequency after system exceeds tap water action 
level. Any system which exceeds the lead or copper action level at the 
tap shall collect one source water sample from each entry point to the 
distribution system within six months after the exceedance.
    (c) Monitoring frequency after installation of source water 
treatment. Any system which installs source water treatment pursuant to 
Sec. 141.83(a)(3) shall collect an additional source water sample from 
each entry point to the distribution system during two consecutive six-
month monitoring periods by the deadline specified in Sec. 141.83(a)(4).
    (d) Monitoring frequency after State specifies maximum permissible 
source water levels or determines that source water treatment is not 
needed. (1) A system shall monitor at the frequency specified below in 
cases where the State specifies maximum permissible
 
[[Page 482]]
 
source water levels under Sec. 141.83(b)(4) or determines that the 
system is not required to install source water treatment under 
Sec. 141.83(b)(2).
    (i) A water system using only groundwater shall collect samples once 
during the three-year compliance period (as that term is defined in 
Sec. 141.2) in effect when the applicable State determination under 
paragraph (d)(1) of this section is made. Such systems shall collect 
samples once during each subsequent compliance period.
    (ii) A water system using surface water (or a combination of surface 
and groundwater) shall collect samples once during each year, the first 
annual monitoring period to begin on the date on which the applicable 
State determination is made under paragraph (d)(1) of this section.
    (2) A system is not required to conduct source water sampling for 
lead and/or copper if the system meets the action level for the specific 
contaminant in tap water samples during the entire source water sampling 
period applicable to the system under paragraph (d)(1) (i) or (ii) of 
this section.
    (e) Reduced monitoring frequency. (1) A water system using only 
ground water may reduce the monitoring frequency for lead and copper in 
source water to once during each nine-year compliance cycle (as that 
term is defined in Sec. 141.2) if the system meets one of the following 
criteria:
    (i) The system demonstrates that finished drinking water entering 
the distribution system has been maintained below the maximum 
permissible lead and copper concentrations specified by the State in 
Sec. 141.83(b)(4) during at least three consecutive compliance periods 
under paragraph (d)(1) of this section; or
    (ii) The State has determined that source water treatment is not 
needed and the system demonstrates that, during at least three 
consecutive compliance periods in which sampling was conducted under 
paragraph (d)(1) of this section, the concentration of lead in source 
water was less than or equal to 0.005 mg/L and the concentration of 
copper in source water was less than or equal to 0.65 mg/L.
    (2) A water system using surface water (or a combination of surface 
water and ground water) may reduce the monitoring frequency in paragraph 
(d)(1) of this section to once during each nine-year compliance cycle 
(as that term is defined in Sec. 141.2) if the system meets one of the 
following criteria:
    (i) The system demonstrates that finished drinking water entering 
the distribution system has been maintained below the maximum 
permissible lead and copper concentrations specified by the State in 
Sec. 141.83(b)(4) for at least three consecutive years; or
    (ii) The State has determined that source water treatment is not 
needed and the system demonstrates that, during at least three 
consecutive years, the concentration of lead in source water was less 
than or equal to 0.005 mg/L and the concentration of copper in source 
water was less than or equal to 0.65 mg/L.
    (3) A water system that uses a new source of water is not eligible 
for reduced monitoring for lead and/or copper until concentrations in 
samples collected from the new source during three consecutive 
monitoring periods are below the maximum permissible lead and copper 
concentrations specified by the State in Sec. 141.83(a)(5).
 
[56 FR 26548, June 7, 1991; 57 FR 28788 and 28789, June 29, 1992, as 
amended at 65 FR 2012, Jan. 12, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.89]
 
[Page 482-483]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart I--Control of Lead and Copper
 
Sec. 141.89  Analytical methods.
 
    (a) Analyses for lead, copper, pH, conductivity, calcium, 
alkalinity, orthophosphate, silica, and temperature shall be conducted 
with the methods in Sec. 141.23(k)(1).
    (1) Analyses for alkalinity, calcium, conductivity, orthophosphate, 
pH, silica, and temperature may be performed by any person acceptable to 
the State. Analyses under this section for lead and copper shall only be 
conducted by laboratories that have been certified by EPA or the State. 
To obtain certification to conduct analyses for lead and copper, 
laboratories must:
    (i) Analyze Performance Evaluation samples, which include lead and 
copper, provided by or acceptable to EPA or the State at least once a 
year by each method for which the laboratory desires certification; and
 
[[Page 483]]
 
    (ii) Achieve quantitative acceptance limits as follows:
    (A) For lead: <plus-minus>30 percent of the actual amount in the 
Performance Evaluation sample when the actual amount is greater than or 
equal to 0.005 mg/L. The Practical Quantitation Level, or PQL for lead 
is 0.005 mg/L.
    (B) For Copper: <plus-minus>10 percent of the actual amount in the 
Performance Evaluation sample when the actual amount is greater than or 
equal to 0.050 mg/L. The Practical Quantitation Level, or PQL for copper 
is 0.050 mg/L.
    (iii) Achieve the method detection limit for lead of 0.001 mg/L 
according to the procedures in appendix B of part 136 of this title. 
This need only be accomplished if the laboratory will be processing 
source water composite samples under Sec. 141.88(a)(1)(iii).
    (iv) Be currently certified by EPA or the State to perform analyses 
to the specifications described in paragraph (a)(2) of this section.
    (2) States have the authority to allow the use of previously 
collected monitoring data for purposes of monitoring, if the data were 
collected and analyzed in accordance with the requirements of this 
subpart.
    (3) All lead and copper levels measured between the PQL and MDL must 
be either reported as measured or they can be reported as one-half the 
PQL specified for lead and copper in paragraph (a)(1)(ii) of this 
section. All levels below the lead and copper MDLs must be reported as 
zero.
    (4) All copper levels measured between the PQL and the MDL must be 
either reported as measured or they can be reported as one-half the PQL 
(0.025 mg/L). All levels below the copper MDL must be reported as zero.
    (b) [Reserved]
 
[56 FR 26548, June 7, 1991, as amended at 57 FR 28789, June 29, 1992; 57 
FR 31847, July 17, 1992; 59 FR 33863, June 30, 1994; 59 FR 62470, Dec. 
5, 1994; 64 FR 67466, Dec. 1, 1999; 65 FR 2012, Jan. 12, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.90]
 
[Page 483-486]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart I--Control of Lead and Copper
 
Sec. 141.90  Reporting requirements.
 
    All water systems shall report all of the following information to 
the State in accordance with this section.
    (a) Reporting requirements for tap water monitoring for lead and 
copper and for water quality parameter monitoring. (1) Except as 
provided in paragraph (a)(1)(viii) of this section, a water system shall 
report the information specified below for all tap water samples 
specified in Sec. 141.86 and for all water quality parameter samples 
specified in Sec. 141.87 within the first 10 days following the end of 
each applicable monitoring period specified in Sec. 141.86 and 
Sec. 141.87 (i.e., every six months, annually, every 3 years, or every 9 
years):
    (i) The results of all tap samples for lead and copper including the 
location of each site and the criteria under Sec. 141.86(a) (3), (4), 
(5), (6), and/or (7) under which the site was selected for the system's 
sampling pool;
    (ii) Documentation for each tap water lead or copper sample for 
which the water system requests invalidation pursuant to 
Sec. 141.86(f)(2);
    (iii) [Reserved]
    (iv) The 90th percentile lead and copper concentrations measured 
from among all lead and copper tap water samples collected during each 
monitoring period (calculated in accordance with Sec. 141.80(c)(3)), 
unless the State calculates the system's 90th percentile lead and copper 
levels under paragraph (h) of this section;
    (v) With the exception of initial tap sampling conducted pursuant to 
Sec. 141.86(d)(1), the system shall designate any site which was not 
sampled during previous monitoring periods, and include an explanation 
of why sampling sites have changed;
    (vi) The results of all tap samples for pH, and where applicable, 
alkalinity, calcium, conductivity, temperature, and orthophosphate or 
silica collected under Sec. 141.87 (b)-(e);
    (vii) The results of all samples collected at the entry point(s) to 
the distribution system for applicable water quality parameters under 
Sec. 141.87 (b)-(e);
    (viii) A water system shall report the results of all water quality 
parameter samples collected under Sec. 141.87(c) through (f) during each 
six-month monitoring period specified in Sec. 141.87(d) within the first 
10 days following the end of the monitoring period unless the State has 
specified a more frequent reporting requirement.
    (2) For a non-transient non-community water system, or a community
 
[[Page 484]]
 
water system meeting the criteria of Secs. 141.85(c)(7)(i) and (ii), 
that does not have enough taps that can provide first-draw samples, the 
system must either:
    (i) Provide written documentation to the State identifying standing 
times and locations for enough non-first-draw samples to make up its 
sampling pool under Sec. 141.86(b)(5) by the start of the first 
applicable monitoring period under Sec. 141.86(d) that commences after 
April 11, 2000, unless the State has waived prior State approval of non-
first-draw sample sites selected by the system pursuant to 
Sec. 141.86(b)(5); or
    (ii) If the State has waived prior approval of non-first-draw sample 
sites selected by the system, identify, in writing, each site that did 
not meet the six-hour minimum standing time and the length of standing 
time for that particular substitute sample collected pursuant to 
Sec. 141.86(b)(5) and include this information with the lead and copper 
tap sample results required to be submitted pursuant to paragraph 
(a)(1)(i) of this section.
    (3) No later than 60 days after the addition of a new source or any 
change in water treatment, unless the State requires earlier 
notification, a water system deemed to have optimized corrosion control 
under Sec. 141.81(b)(3), a water system subject to reduced monitoring 
pursuant to Sec. 141.86(d)(4), or a water system subject to a monitoring 
waiver pursuant to Sec. 141.86(g), shall send written documentation to 
the State describing the change. In those instances where prior State 
approval of the treatment change or new source is not required, water 
systems are encouraged to provide the notification to the State 
beforehand to minimize the risk the treatment change or new source will 
adversely affect optimal corrosion control.
    (4) Any small system applying for a monitoring waiver under 
Sec. 141.86(g), or subject to a waiver granted pursuant to 
Sec. 141.86(g)(3), shall provide the following information to the State 
in writing by the specified deadline:
    (i) By the start of the first applicable monitoring period in 
Sec. 141.86(d), any small water system applying for a monitoring waiver 
shall provide the documentation required to demonstrate that it meets 
the waiver criteria of Secs. 141.86(g)(1) and (2).
    (ii) No later than nine years after the monitoring previously 
conducted pursuant to Sec. 141.86(g)(2) or Sec. 141.86(g)(4)(i), each 
small system desiring to maintain its monitoring waiver shall provide 
the information required by Secs. 141.86(g)(4)(i) and (ii).
    (iii) No later than 60 days after it becomes aware that it is no 
longer free of lead-containing and/or copper-containing material, as 
appropriate, each small system with a monitoring waiver shall provide 
written notification to the State, setting forth the circumstances 
resulting in the lead-containing and/or copper-containing materials 
being introduced into the system and what corrective action, if any, the 
system plans to remove these materials.
    (iv) By October 10, 2000, any small system with a waiver granted 
prior to April 11, 2000 and that has not previously met the requirements 
of Sec. 141.86(g)(2) shall provide the information required by that 
paragraph.
    (5) Each ground water system that limits water quality parameter 
monitoring to a subset of entry points under Sec. 141.87(c)(3) shall 
provide, by the commencement of such monitoring, written correspondence 
to the State that identifies the selected entry points and includes 
information sufficient to demonstrate that the sites are representative 
of water quality and treatment conditions throughout the system.
    (b) Source water monitoring reporting requirements. (1) A water 
system shall report the sampling results for all source water samples 
collected in accordance with Sec. 141.88 within the first 10 days 
following the end of each source water monitoring period (i.e., 
annually, per compliance period, per compliance cycle) specified in 
Sec. 141.88.
    (2) With the exception of the first round of source water sampling 
conducted pursuant to Sec. 141.88(b), the system shall specify any site 
which was not sampled during previous monitoring periods, and include an 
explanation of why the sampling point has changed.
    (c) Corrosion control treatment reporting requirements. By the 
applicable
 
[[Page 485]]
 
dates under Sec. 141.81, systems shall report the following information:
    (1) For systems demonstrating that they have already optimized 
corrosion control, information required in Sec. 141.81(b) (2) or (3).
    (2) For systems required to optimize corrosion control, their 
recommendation regarding optimal corrosion control treatment under 
Sec. 141.82(a).
    (3) For systems required to evaluate the effectiveness of corrosion 
control treatments under Sec. 141.82(c), the information required by 
that paragraph.
    (4) For systems required to install optimal corrosion control 
designated by the State under Sec. 141.82(d), a letter certifying that 
the system has completed installing that treatment.
    (d) Source water treatment reporting requirements. By the applicable 
dates in Sec. 141.83, systems shall provide the following information to 
the State:
    (1) If required under Sec. 141.83(b)(1), their recommendation 
regarding source water treatment;
    (2) For systems required to install source water treatment under 
Sec. 141.83(b)(2), a letter certifying that the system has completed 
installing the treatment designated by the State within 24 months after 
the State designated the treatment.
    (e) Lead service line replacement reporting requirements. Systems 
shall report the following information to the State to demonstrate 
compliance with the requirements of Sec. 141.84:
    (1) Within 12 months after a system exceeds the lead action level in 
sampling referred to in Sec. 141.84(a), the system shall demonstrate in 
writing to the State that it has conducted a material evaluation, 
including the evaluation in Sec. 141.86(a), to identify the initial 
number of lead service lines in its distribution system, and shall 
provide the State with the system's schedule for replacing annually at 
least 7 percent of the initial number of lead service lines in its 
distribution system.
    (2) Within 12 months after a system exceeds the lead action level in 
sampling referred to in Sec. 141.84(a), and every 12 months thereafter, 
the system shall demonstrate to the State in writing that the system has 
either:
    (i) Replaced in the previous 12 months at least 7 percent of the 
initial lead service lines (or a greater number of lines specified by 
the State under Sec. 141.84(e)) in its distribution system, or
    (ii) Conducted sampling which demonstrates that the lead 
concentration in all service line samples from an individual line(s), 
taken pursuant to Sec. 141.86(b)(3), is less than or equal to 0.015 mg/
L. In such cases, the total number of lines replaced and/or which meet 
the criteria in Sec. 141.84(c) shall equal at least 7 percent of the 
initial number of lead lines identified under paragraph (a) of this 
section (or the percentage specified by the State under Sec. 141.84(e)).
    (3) The annual letter submitted to the State under paragraph (e)(2) 
of this section shall contain the following information:
    (i) The number of lead service lines scheduled to be replaced during 
the previous year of the system's replacement schedule;
    (ii) The number and location of each lead service line replaced 
during the previous year of the system's replacement schedule;
    (iii) If measured, the water lead concentration and location of each 
lead service line sampled, the sampling method, and the date of 
sampling.
    (4) Any system which collects lead service line samples following 
partial lead service line replacement required by Sec. 141.84 shall 
report the results to the State within the first ten days of the month 
following the month in which the system receives the laboratory results, 
or as specified by the State. States, at their discretion may eliminate 
this requirement to report these monitoring results. Systems shall also 
report any additional information as specified by the State, and in a 
time and manner prescribed by the State, to verify that all partial lead 
service line replacement activities have taken place.
    (f) Public education program reporting requirements. (1) Any water 
system that is subject to the public education requirements in 
Sec. 141.85 shall, within ten days after the end of each period in which 
the system is required to perform public education tasks in accordance 
with Sec. 141.85(c), send written documentation to the State that 
contains:
 
[[Page 486]]
 
    (i) A demonstration that the system has delivered the public 
education materials that meet the content requirements in Sec. 141.85(a) 
and (b) and the delivery requirements in Sec. 141.85(c); and
    (ii) A list of all the newspapers, radio stations, television 
stations, and facilities and organizations to which the system delivered 
public education materials during the period in which the system was 
required to perform public education tasks.
    (2) Unless required by the State, a system that previously has 
submitted the information required by paragraph (f)(1)(ii) of this 
section need not resubmit the information required by paragraph 
(f)(1)(ii) of this section, as long as there have been no changes in the 
distribution list and the system certifies that the public education 
materials were distributed to the same list submitted previously.
    (g) Reporting of additional monitoring data. Any system which 
collects sampling data in addition to that required by this subpart 
shall report the results to the State within the first ten days 
following the end of the applicable monitoring period under 
Secs. 141.86, 141.87 and 141.88 during which the samples are collected.
    (h) Reporting of 90th percentile lead and copper concentrations 
where the State calculates a system's 90th percentile concentrations. A 
water system is not required to report the 90th percentile lead and 
copper concentrations measured from among all lead and copper tap water 
samples collected during each monitoring period, as required by 
paragraph (a)(1)(iv) of this section if:
    (1) The State has previously notified the water system that it will 
calculate the water system's 90th percentile lead and copper 
concentrations, based on the lead and copper tap results submitted 
pursuant to paragraph (h)(2)(i) of this section, and has specified a 
date before the end of the applicable monitoring period by which the 
system must provide the results of lead and copper tap water samples;
    (2) The system has provided the following information to the State 
by the date specified in paragraph (h)(1) of this section:
    (i) The results of all tap samples for lead and copper including the 
location of each site and the criteria under Sec. 141.86(a)(3), (4), 
(5), (6), and/or (7) under which the site was selected for the system's 
sampling pool, pursuant to paragraph (a)(1)(i) of this section; and
    (ii) An identification of sampling sites utilized during the current 
monitoring period that were not sampled during previous monitoring 
periods, and an explanation why sampling sites have changed; and
    (3) The State has provided the results of the 90th percentile lead 
and copper calculations, in writing, to the water system before the end 
of the monitoring period.
 
[56 FR 26548, June 7, 1991; 57 FR 28789, June 29, 1992, as amended at 59 
FR 33864, June 30, 1994; 65 FR 2012, Jan. 12, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.91]
 
[Page 486]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                  Subpart I--Control of Lead and Copper
 
Sec. 141.91  Recordkeeping requirements.
 
    Any system subject to the requirements of this subpart shall retain 
on its premises original records of all sampling data and analyses, 
reports, surveys, letters, evaluations, schedules, State determinations, 
and any other information required by Secs. 141.81 through 141.88. Each 
water system shall retain the records required by this section for no 
fewer than 12 years.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.100]
 
[Page 486-487]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
           Subpart J--Use of Non-Centralized Treatment Devices
 
Sec. 141.100  Criteria and procedures for public water systems using point-of-entry devices.
 
    Source: 52 FR 25716, July 8, 1987, unless otherwise noted.
 
 
    (a) Public water systems may use point-of-entry devices to comply 
with maximum contaminant levels only if they meet the requirements of 
this section.
    (b) It is the responsibility of the public water system to operate 
and maintain the point-of-entry treatment system.
    (c) The public water system must develop and obtain State approval 
for a monitoring plan before point-of-entry devices are installed for 
compliance. Under the plan approved by the State, point-of-entry devices 
must provide health protection equivalent to central water treatment. 
"Equivalent" means that the water would meet all national
 
[[Page 487]]
 
primary drinking water regulations and would be of acceptable quality 
similar to water distributed by a well-operated central treatment plant. 
In addition to the VOCs, monitoring must include physical measurements 
and observations such as total flow treated and mechanical condition of 
the treatment equipment.
    (d) Effective technology must be properly applied under a plan 
approved by the State and the microbiological safety of the water must 
be maintained.
    (1) The State must require adequate certification of performance, 
field testing, and, if not included in the certification process, a 
rigorous engineering design review of the point-of-entry devices.
    (2) The design and application of the point-of-entry devices must 
consider the tendency for increase in heterotrophic bacteria 
concentrations in water treated with activated carbon. It may be 
necessary to use frequent backwashing, post-contactor disinfection, and 
Heterotrophic Plate Count monitoring to ensure that the microbiological 
safety of the water is not compromised.
    (e) All consumers shall be protected. Every building connected to 
the system must have a point-of-entry device installed, maintained, and 
adequately monitored. The State must be assured that every building is 
subject to treatment and monitoring, and that the rights and 
responsibilities of the public water system customer convey with title 
upon sale of property.
 
[52 FR 25716, July 8, 1987; 53 FR 25111, July 1, 1988]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.101]
 
[Page 487]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
           Subpart J--Use of Non-Centralized Treatment Devices
 
Sec. 141.101  Use of bottled water.
 
    Public water systems shall not use bottled water to achieve 
compliance with an MCL. Bottled water may be used on a temporary basis 
to avoid unreasonable risk to health.
 
[63 FR 31934, June 11, 1998]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.110]
 
[Page 487]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                     Subpart K--Treatment Techniques
 
Sec. 141.110  General requirements.
 
    Source: 56 FR 3594, Jan. 30, 1991, unless otherwise noted.
 
 
    The requirements of subpart K of this part constitute national 
primary drinking water regulations. These regulations establish 
treatment techniques in lieu of maximum contaminant levels for specified 
contaminants.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.111]
 
[Page 487]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                     Subpart K--Treatment Techniques
 
Sec. 141.111  Treatment techniques for acrylamide and epichlorohydrin.
 
    Each public water system must certify annually in writing to the 
State (using third party or manufacturer's certification) that when 
acrylamide and epichlorohydrin are used in drinking water systems, the 
combination (or product) of dose and monomer level does not exceed the 
levels specified as follows:
 
Acrylamide=0.05% dosed at 1 ppm (or equivalent)
Epichlorohydrin=0.01% dosed at 20 ppm (or equivalent)
 
 
Certifications can rely on manufacturers or third parties, as approved 
by the State.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.130]
 
[Page 487-488]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
    Subpart L--Disinfectant Residuals, Disinfection Byproducts, and 
                    Disinfection Byproduct Precursors
 
Sec. 141.130  General requirements.
 
 
    (a) The requirements of this subpart L constitute national primary 
drinking water regulations.
    (1) The regulations in this subpart establish criteria under which 
community water systems (CWSs) and nontransient, noncommunity water 
systems (NTNCWSs) which add a chemical disinfectant to the water in any 
part of the drinking water treatment process must modify their practices 
to meet MCLs and MRDLs in Secs. 141.64 and 141.65, respectively, and 
must meet the treatment technique requirements for disinfection 
byproduct precursors in Sec. 141.135.
    (2) The regulations in this subpart establish criteria under which 
transient NCWSs that use chlorine dioxide as a disinfectant or oxidant 
must modify their practices to meet the MRDL for chlorine dioxide in 
Sec. 141.65.
 
[[Page 488]]
 
    (3) EPA has established MCLs for TTHM and HAA5 and treatment 
technique requirements for disinfection byproduct precursors to limit 
the levels of known and unknown disinfection byproducts which may have 
adverse health effects. These disinfection byproducts may include 
chloroform; bromodichloromethane; dibromochloromethane; bromoform; 
dichloroacetic acid; and trichloroacetic acid.
    (b) Compliance dates. (1) CWSs and NTNCWSs. Unless otherwise noted, 
systems must comply with the requirements of this subpart as follows. 
Subpart H systems serving 10,000 or more persons must comply with this 
subpart beginning January 1, 2002. Subpart H systems serving fewer than 
10,000 persons and systems using only ground water not under the direct 
influence of surface water must comply with this subpart beginning 
January 1, 2004.
    (2) Transient NCWSs. Subpart H systems serving 10,000 or more 
persons and using chlorine dioxide as a disinfectant or oxidant must 
comply with any requirements for chlorine dioxide in this subpart 
beginning January 1, 2002. Subpart H systems serving fewer than 10,000 
persons and using chlorine dioxide as a disinfectant or oxidant and 
systems using only ground water not under the direct influence of 
surface water and using chlorine dioxide as a disinfectant or oxidant 
must comply with any requirements for chlorine dioxide in this subpart 
beginning January 1, 2004.
    (c) Each CWS and NTNCWS regulated under paragraph (a) of this 
section must be operated by qualified personnel who meet the 
requirements specified by the State and are included in a State register 
of qualified operators.
    (d) Control of disinfectant residuals. Notwithstanding the MRDLs in 
Sec. 141.65, systems may increase residual disinfectant levels in the 
distribution system of chlorine or chloramines (but not chlorine 
dioxide) to a level and for a time necessary to protect public health, 
to address specific microbiological contamination problems caused by 
circumstances such as, but not limited to, distribution line breaks, 
storm run-off events, source water contamination events, or cross-
connection events.
 
[63 FR 69466, Dec. 16, 1998, as amended at 66 FR 3776, Jan. 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.131]
 
[Page 488-491]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
    Subpart L--Disinfectant Residuals, Disinfection Byproducts, and 
                    Disinfection Byproduct Precursors
 
Sec. 141.131  Analytical requirements.
 
    (a) General. (1) Systems must use only the analytical method(s) 
specified in this section, or otherwise approved by EPA for monitoring 
under this subpart, to demonstrate compliance with the requirements of 
this subpart. These methods are effective for compliance monitoring 
February 16, 1999.
    (2) The following documents are incorporated by reference. The 
Director of the Federal Register approves this incorporation by 
reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies 
may be inspected at EPA's Drinking Water Docket, 401 M St., SW., 
Washington, DC 20460, or at the Office of the Federal Register, 800 
North Capitol Street, NW, Suite 700, Washington DC. EPA Method 552.1 is 
in Methods for the Determination of Organic Compounds in Drinking Water-
Supplement II, USEPA, August 1992, EPA/600/R-92/129 (available through 
National Information Technical Service (NTIS), PB92-207703). EPA Methods 
502.2, 524.2, 551.1, and 552.2 are in Methods for the Determination of 
Organic Compounds in Drinking Water-Supplement III, USEPA, August 1995, 
EPA/600/R-95/131. (available through NTIS, PB95-261616). EPA Method 
300.0 is in Methods for the Determination of Inorganic Substances in 
Environmental Samples, USEPA, August 1993, EPA/600/R-93/100. (available 
through NTIS, PB94-121811). EPA Method 300.1 is titled USEPA Method 
300.1, Determination of Inorganic Anions in Drinking Water by Ion 
Chromatography, Revision 1.0, USEPA, 1997, EPA/600/R-98/118 (available 
through NTIS, PB98-169196); also available from: Chemical Exposure 
Research Branch, Microbiological & Chemical Exposure Assessment Research 
Division, National Exposure Research Laboratory, U.S. Environmental 
Protection Agency, Cincinnati, OH 45268, Fax Number: 513-569-7757, Phone 
number: 513-569-7586. Standard Methods 4500-Cl D, 4500-Cl E, 4500-Cl F, 
4500-Cl G, 4500-Cl H, 4500-Cl I, 4500-ClO<INF>2</INF> D, 4500-
ClO<INF>2</INF> E, 6251 B, and 5910 B shall be followed in accordance
 
[[Page 489]]
 
with Standard Methods for the Examination of Water and Wastewater, 19th 
Edition, American Public Health Association, 1995; copies may be 
obtained from the American Public Health Association, 1015 Fifteenth 
Street, NW, Washington, DC 20005. Standard Methods 5310 B, 5310 C, and 
5310 D shall be followed in accordance with the Supplement to the 19th 
Edition of Standard Methods for the Examination of Water and Wastewater, 
American Public Health Association, 1996; copies may be obtained from 
the American Public Health Association, 1015 Fifteenth Street, NW, 
Washington, DC 20005. ASTM Method D 1253-86 shall be followed in 
accordance with the Annual Book of ASTM Standards, Volume 11.01, 
American Society for Testing and Materials, 1996 edition; copies may be 
obtained from the American Society for Testing and Materials, 100 Barr 
Harbor Drive, West Conshohoken, PA 19428.
    (b) Disinfection byproducts. (1) Systems must measure disinfection 
byproducts by the methods (as modified by the footnotes) listed in the 
following table:
 
                                            Approved Methods for Disinfection Byproduct Compliance Monitoring
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                  Byproduct measured \1\
              Methodology \2\                EPA method              Standard method             -------------------------------------------------------
                                                                                                      TTHM          HAA5      Chlorite \4\     Bromate
--------------------------------------------------------------------------------------------------------------------------------------------------------
P&T/GC/ElCD & PID.........................     \3\502.2                                                     X
P&T/GC/MS.................................        524.2                                                     X
LLE/GC/ECD................................        551.1                                                     X
LLE/GC/ECD................................               6251 B                                                           X
SPE/GC/ECD................................        552.1                                                                   X
LLE/GC/ECD................................        552.2                                                                   X
Amperometric Titration....................               4500-ClO<INF>2</INF> E                                                                    X
IC........................................        300.0                                                                                 X
IC........................................        300.1                                                                                 X             X
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ X indicates method is approved for measuring specified disinfection byproduct.
\2\ P&T = purge and trap; GC = gas chromatography; ElCD = electrolytic conductivity detector; PID = photoionization detector; MS = mass spectrometer;
  LLE = liquid/liquid extraction; ECD = electron capture detector; SPE = solid phase extractor; IC = ion chromatography.
\3\ If TTHMs are the only analytes being measured in the sample, then a PID is not required.
\4\ Amperometric titration may be used for routine daily monitoring of chlorite at the entrance to the distribution system, as prescribed in Sec.
  141.132(b)(2)(i)(A). Ion chromatography must be used for routine monthly monitoring of chlorite and additional monitoring of chlorite in the
  distribution system, as prescribed in Sec.  141.132(b)(2)(i)(B) and (b)(2)(ii).
 
    (2) Analysis under this section for disinfection byproducts must be 
conducted by laboratories that have received certification by EPA or the 
State, except as specified under paragraph (b)(3) of this section. To 
receive certification to conduct analyses for the contaminants in 
Sec. 141.64(a), the laboratory must carry out annual analyses of 
performance evaluation (PE) samples approved by EPA or the State. In 
these analyses of PE samples, the laboratory must achieve quantitative 
results within the acceptance limit on a minimum of 80% of the analytes 
included in each PE sample. The acceptance limit is defined as the 95% 
confidence interval calculated around the mean of the PE study data 
between a maximum and minimum acceptance limit of +/-50% and +/-15% of 
the study mean.
    (3) A party approved by EPA or the State must measure daily chlorite 
samples at the entrance to the distribution system.
    (c) Disinfectant residuals. (1) Systems must measure residual 
disinfectant concentrations for free chlorine, combined chlorine 
(chloramines), and chlorine dioxide by the methods listed in the 
following table:
 
[[Page 490]]
 
 
 
                                            Approved Methods for Disinfectant Residual Compliance Monitoring
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                   Residual Measured \1\
                                                                                                 -------------------------------------------------------
             Methodology                    Standard  method                 ASTM method              Free        Combined        Total       Chlorine
                                                                                                    chlorine      chlorine      chlorine       dioxide
--------------------------------------------------------------------------------------------------------------------------------------------------------
Amperometric Titration..............  4500-Cl D                     D 1253-86                               X             X             X
Low Level Amperometric Titration....  4500-Cl E                                                                                         X
DPD Ferrous Titrimetric.............  4500-Cl F                                                             X             X             X
DPD Colorimetric....................  4500-Cl G                                                             X             X             X
Syringaldazin e (FACTS).............  4500-Cl H                                                             X
Iodometric Electrode................  4500-Cl I                                                                                         X
DPD.................................  4500-ClO<INF>2</INF> D                                                                                                     X
Amperometric Method II..............  4500-ClO<INF>2</INF> E                                                                                                     X
--------------------------------------------------------------------------------------------------------------------------------------------------------
\1\ X indicates method is approved for measuring specified disinfectant residual.
 
    (2) If approved by the State, systems may also measure residual 
disinfectant concentrations for chlorine, chloramines, and chlorine 
dioxide by using DPD colorimetric test kits.
    (3) A party approved by EPA or the State must measure residual 
disinfectant concentration.
    (d) Additional analytical methods. Systems required to analyze 
parameters not included in paragraphs (b) and (c) of this section must 
use the following methods. A party approved by EPA or the State must 
measure these parameters.
    (1) Alkalinity. All methods allowed in Sec. 141.89(a) for measuring 
alkalinity.
    (2) Bromide. EPA Method 300.0 or EPA Method 300.1.
    (3) Total Organic Carbon (TOC). Standard Method 5310 B (High-
Temperature Combustion Method) or Standard Method 5310 C (Persulfate-
Ultraviolet or Heated-Persulfate Oxidation Method) or Standard Method 
5310 D (Wet-Oxidation Method). TOC samples may not be filtered prior to 
analysis. TOC samples must either be analyzed or must be acidified to 
achieve pH less than 2.0 by minimal addition of phosphoric or sulfuric 
acid as soon as practical after sampling, not to exceed 24 hours. 
Acidified TOC samples must be analyzed within 28 days.
    (4) Specific Ultraviolet Absorbance (SUVA). SUVA is equal to the UV 
absorption at 254nm (UV<INF>254</INF>) (measured in m-\1\ divided by the 
dissolved organic carbon (DOC) concentration (measured as mg/L). In 
order to determine SUVA, it is necessary to separately measure 
UV<INF>254</INF> and DOC. When determining SUVA, systems must use the 
methods stipulated in paragraph (d)(4)(i) of this section to measure DOC 
and the method stipulated in paragraph (d)(4)(ii) of this section to 
measure UV<INF>254</INF>. SUVA must be determined on water prior to the 
addition of disinfectants/oxidants by the system. DOC and 
UV<INF>254</INF> samples used to determine a SUVA value must be taken at 
the same time and at the same location.
    (i) Dissolved Organic Carbon (DOC). Standard Method 5310 B (High-
Temperature Combustion Method) or Standard Method 5310 C (Persulfate-
Ultraviolet or Heated-Persulfate Oxidation Method) or Standard Method 
5310 D (Wet-Oxidation Method). Prior to analysis, DOC samples must be 
filtered through a 0.45 <greek-m>m pore-diameter filter. Water passed 
through the filter prior to filtration of the sample must serve as the 
filtered blank. This filtered blank must be analyzed using procedures 
identical to those used for analysis of the samples and must meet the 
following criteria: DOC  0.5 mg/L. DOC samples must be filtered through 
the 0.45 <greek-m>m pore-diameter filter prior to acidification. DOC 
samples must either be analyzed or must be acidified to achieve pH less 
than 2.0 by minimal addition of phosphoric or sulfuric acid as soon as 
practical after sampling, not to exceed 48 hours. Acidified DOC samples 
must be analyzed within 28 days.
 
[[Page 491]]
 
    (ii) Ultraviolet Absorption at 254 nm (UV<INF>254</INF>). Method 
5910 B (Ultraviolet Absorption Method). UV absorption must be measured 
at 253.7 nm (may be rounded off to 254 nm). Prior to analysis, 
UV<INF>254</INF> samples must be filtered through a 0.45 <greek-m>m 
pore-diameter filter. The pH of UV<INF>254</INF> samples may not be 
adjusted. Samples must be analyzed as soon as practical after sampling, 
not to exceed 48 hours.
    (5) pH. All methods allowed in Sec. 141.23(k)(1) for measuring pH.
 
[63 FR 69466, Dec. 16, 1998, as amended at 66 FR 3776, Jan. 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.132]
 
[Page 491-494]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
    Subpart L--Disinfectant Residuals, Disinfection Byproducts, and 
                    Disinfection Byproduct Precursors
 
Sec. 141.132  Monitoring requirements.
 
    (a) General requirements. (1) Systems must take all samples during 
normal operating conditions.
    (2) Systems may consider multiple wells drawing water from a single 
aquifer as one treatment plant for determining the minimum number of 
TTHM and HAA5 samples required, with State approval in accordance with 
criteria developed under Sec. 142.16(h)(5) of this chapter.
    (3) Failure to monitor in accordance with the monitoring plan 
required under paragraph (f) of this section is a monitoring violation.
    (4) Failure to monitor will be treated as a violation for the entire 
period covered by the annual average where compliance is based on a 
running annual average of monthly or quarterly samples or averages and 
the system's failure to monitor makes it impossible to determine 
compliance with MCLs or MRDLs.
    (5) Systems may use only data collected under the provisions of this 
subpart or subpart M of this part to qualify for reduced monitoring.
    (b) Monitoring requirements for disinfection byproducts. (1) TTHMs 
and HAA5. (i) Routine monitoring. Systems must monitor at the frequency 
indicated in the following table:
 
                                 Routine Monitoring Frequency for TTHM and HAA5
----------------------------------------------------------------------------------------------------------------
                                               Minimum monitoring         Sample location in the distribution
             Type of system                        frequency                             system
----------------------------------------------------------------------------------------------------------------
Subpart H system serving at least 10,000  Four water samples per       At least 25 percent of all samples
 persons.                                  quarter per treatment        collected each quarter at locations
                                           plant.                       representing maximum residence time.
                                                                        Remaining samples taken at locations
                                                                        representative of at least average
                                                                        residence time in the distribution
                                                                        system and representing the entire
                                                                        distribution system, taking into account
                                                                        number of persons served, different
                                                                        sources of water, and different
                                                                        treatment methods.\1\
Subpart H system serving from 500 to      One water sample per         Locations representing maximum residence
 9,999 persons.                            quarter per treatment        time.\1\
                                           plant.
Subpart H system serving fewer than 500   One sample per year per      Locations representing maximum residence
 persons.                                  treatment plant during       time.\1\ If the sample (or average of
                                           month of warmest water       annual samples, if more than one sample
                                           temperature.                 is taken) exceeds the MCL, the system
                                                                        must increase monitoring to one sample
                                                                        per treatment plant per quarter, taken
                                                                        at a point reflecting the maximum
                                                                        residence time in the distribution
                                                                        system, until the system meets criteria
                                                                        in paragraph (b)(1)(iv) of this section.
System using only ground water not under  One water sample per         Locations representing maximum residence
 direct influence of surface water using   quarter per treatment        time.\1\
 chemical disinfectant and serving at      plant \2\.
 least 10,000 persons.
System using only ground water not under  One sample per year per      Locations representing maximum residence
 direct influence of surface water using   treatment plant \2\ during   time.\1\ If the sample (or average of
 chemical disinfectant and serving fewer   month of warmest water       annual samples, if more than one sample
 than 10,000 persons.                      temperature.                 is taken) exceeds the MCL, the system
                                                                        must increase monitoring to one sample
                                                                        per treatment plant per quarter, taken
                                                                        at a point reflecting the maximum
                                                                        residence time in the distribution
                                                                        system, until the system meets criteria
                                                                        in paragraph (b)(1)(iv) of this section.
 
----------------------------------------------------------------------------------------------------------------
\1\ If a system elects to sample more frequently than the minimum required, at least 25 percent of all samples
  collected each quarter (including those taken in excess of the required frequency) must be taken at locations
  that represent the maximum residence time of the water in the distribution system. The remaining samples must
  be taken at locations representative of at least average residence time in the distribution system.
\2\ Multiple wells drawing water from a single aquifer may be considered one treatment plant for determining the
  minimum number of samples required, with State approval in accordance with criteria developed under Sec.
  142.16(h)(5) of this chapter.
 
 
[[Page 492]]
 
    (ii) Systems may reduce monitoring, except as otherwise provided, in 
accordance with the following table:
 
                                 Reduced Monitoring Frequency for TTHM and HAA5
----------------------------------------------------------------------------------------------------------------
                                           You may reduce monitoring
                                            if you have monitored at
           If you are a . . .             least one year and your . .                To this level
                                                       .
----------------------------------------------------------------------------------------------------------------
Subpart H system serving at least 10,000  TTHM annual average <ls-thn- One sample per treatment plant per
 persons which has a source water annual   eq>0.040 mg/L and HAA5       quarter at distribution system location
 average TOC level, before any             annual average <ls-thn-      reflecting maximum residence time.
 treatment, <ls-thn-eq>4.0 mg/L.           eq>0.030 mg/L.
Subpart H system serving from 500 to      TTHM annual average <ls-thn- One sample per treatment plant per year
 9,999 persons which has a source water    eq>0.040 mg/L and HAA5       at distribution system location
 annual average TOC level, before any      annual average <ls-thn-      reflecting maximum residence time during
 treatment, <ls-thn-eq>4.0 mg/L.           eq>0.030 mg/L.               month of warmest water temperature.
                                                                        NOTE: Any Subpart H system serving fewer
                                                                        than 500 persons may not reduce its
                                                                        monitoring to less than one sample per
                                                                        treatment plant per year.
System using only ground water not under  TTHM annual average <ls-thn- One sample per treatment plant per year
 direct influence of surface water using   eq>0.040 mg/L and HAA5       at distribution system location
 chemical disinfectant and serving at      annual average <ls-thn-      reflecting maximum residence time during
 least 10,000 persons.                     eq>0.030 mg/L.               month of warmest water temperature
System using only ground water not under  TTHM annual average <ls-thn- One sample per treatment plant per three
 direct influence of surface water using   eq>0.040 mg/L and HAA5       year monitoring cycle at distribution
 chemical disinfectant and serving fewer   annual average <ls-thn-      system location reflecting maximum
 than 10,000 persons.                      eq>0.030 mg/L for two        residence time during month of warmest
                                           consecutive years OR TTHM    water temperature, with the three-year
                                           annual average <ls-thn-      cycle beginning on January 1 following
                                           eq>0.020 mg/L and HAA5       quarter in which system qualifies for
                                           annual average <ls-thn-      reduced monitoring.
                                           eq>0.015 mg/L for one year.
----------------------------------------------------------------------------------------------------------------
 
    (iii) Systems that do not meet these levels must resume monitoring 
at the frequency identified in paragraph (b)(1)(i) of this section 
(minimum monitoring frequency column) in the quarter immediately 
following the monitoring period in which the system exceeds 0.060 mg/L 
or 0.045 mg/L for TTHM or HAA5 respectively. For systems using only 
ground water not under the direct influence of surface water and serving 
fewer than 10,000 persons, if either the TTHM annual average is >0.080 
mg/L or the HAA5 annual average is >0.060 mg/L, the system must go to 
the increased monitoring identified in paragraph (b)(1)(i) of this 
section (sample location column) in the quarter immediately following 
the monitoring period in which the system exceeds 0.080 mg/L or 0.060 
mg/L for TTHMs or HAA5 respectively.
    (iv) Systems on increased monitoring may return to routine 
monitoring if, after at least one year of monitoring their TTHM annual 
average is <ls-thn-eq>0.060 mg/L and their HAA5 annual average is 
<ls-thn-eq>0.045 mg/L.
    (v) The State may return a system to routine monitoring at the 
State's discretion.
    (2) Chlorite. Community and nontransient noncommunity water systems 
using chlorine dioxide, for disinfection or oxidation, must conduct 
monitoring for chlorite.
    (i) Routine monitoring. (A) Daily monitoring. Systems must take 
daily samples at the entrance to the distribution system. For any daily 
sample that exceeds the chlorite MCL, the system must take additional 
samples in the distribution system the following day at the locations 
required by paragraph (b)(2)(ii) of this section, in addition to the 
sample required at the entrance to the distribution system.
    (B) Monthly monitoring. Systems must take a three-sample set each 
month in the distribution system. The system must take one sample at 
each of the following locations: near the first customer, at a location 
representative of average residence time, and at a location reflecting 
maximum residence time in the distribution system. Any additional 
routine sampling must be
 
[[Page 493]]
 
conducted in the same manner (as three-sample sets, at the specified 
locations). The system may use the results of additional monitoring 
conducted under paragraph (b)(2)(ii) of this section to meet the 
requirement for monitoring in this paragraph.
    (ii) Additional monitoring. On each day following a routine sample 
monitoring result that exceeds the chlorite MCL at the entrance to the 
distribution system, the system is required to take three chlorite 
distribution system samples at the following locations: as close to the 
first customer as possible, in a location representative of average 
residence time, and as close to the end of the distribution system as 
possible (reflecting maximum residence time in the distribution system).
    (iii) Reduced monitoring. (A) Chlorite monitoring at the entrance to 
the distribution system required by paragraph (b)(2)(i)(A) of this 
section may not be reduced.
    (B) Chlorite monitoring in the distribution system required by 
paragraph (b)(2)(i)(B) of this section may be reduced to one three-
sample set per quarter after one year of monitoring where no individual 
chlorite sample taken in the distribution system under paragraph 
(b)(2)(i)(B) of this section has exceeded the chlorite MCL and the 
system has not been required to conduct monitoring under paragraph 
(b)(2)(ii) of this section. The system may remain on the reduced 
monitoring schedule until either any of the three individual chlorite 
samples taken quarterly in the distribution system under paragraph 
(b)(2)(i)(B) of this section exceeds the chlorite MCL or the system is 
required to conduct monitoring under paragraph (b)(2)(ii) of this 
section, at which time the system must revert to routine monitoring.
    (3) Bromate. (i) Routine monitoring. Community and nontransient 
noncommunity systems using ozone, for disinfection or oxidation, must 
take one sample per month for each treatment plant in the system using 
ozone. Systems must take samples monthly at the entrance to the 
distribution system while the ozonation system is operating under normal 
conditions.
    (ii) Reduced monitoring. Systems required to analyze for bromate may 
reduce monitoring from monthly to once per quarter, if the system 
demonstrates that the average source water bromide concentration is less 
than 0.05 mg/L based upon representative monthly bromide measurements 
for one year. The system may remain on reduced bromate monitoring until 
the running annual average source water bromide concentration, computed 
quarterly, is equal to or greater than 0.05 mg/L based upon 
representative monthly measurements. If the running annual average 
source water bromide concentration is 0.05 mg/L, the system 
must resume routine monitoring required by paragraph (b)(3)(i) of this 
section.
    (c) Monitoring requirements for disinfectant residuals. (1) Chlorine 
and chloramines. (i) Routine monitoring. Community and nontransient 
noncommunity water systems that use chlorine or chloramines must measure 
the residual disinfectant level in the distribution system at the same 
point in the distribution system and at the same time as total coliforms 
are sampled, as specified in Sec. 141.21. Subpart H systems may use the 
results of residual disinfectant concentration sampling conducted under 
Sec. 141.74(b)(6)(i) for unfiltered systems or Sec. 141.74(c)(3)(i) for 
systems which filter, in lieu of taking separate samples.
    (ii) Reduced monitoring. Monitoring may not be reduced.
    (2) Chlorine dioxide. (i) Routine monitoring. Community, 
nontransient noncommunity, and transient noncommunity water systems that 
use chlorine dioxide for disinfection or oxidation must take daily 
samples at the entrance to the distribution system. For any daily sample 
that exceeds the MRDL, the system must take samples in the distribution 
system the following day at the locations required by paragraph 
(c)(2)(ii) of this section, in addition to the sample required at the 
entrance to the distribution system.
    (ii) Additional monitoring. On each day following a routine sample 
monitoring result that exceeds the MRDL, the system is required to take 
three chlorine dioxide distribution system samples. If chlorine dioxide 
or chloramines are used to maintain a disinfectant residual in the 
distribution system, or if
 
[[Page 494]]
 
chlorine is used to maintain a disinfectant residual in the distribution 
system and there are no disinfection addition points after the entrance 
to the distribution system (i.e., no booster chlorination), the system 
must take three samples as close to the first customer as possible, at 
intervals of at least six hours. If chlorine is used to maintain a 
disinfectant residual in the distribution system and there are one or 
more disinfection addition points after the entrance to the distribution 
system (i.e., booster chlorination), the system must take one sample at 
each of the following locations: as close to the first customer as 
possible, in a location representative of average residence time, and as 
close to the end of the distribution system as possible (reflecting 
maximum residence time in the distribution system).
    (iii) Reduced monitoring. Chlorine dioxide monitoring may not be 
reduced.
    (d) Monitoring requirements for disinfection byproduct precursors 
(DBPP). (1) Routine monitoring. Subpart H systems which use conventional 
filtration treatment (as defined in Sec. 141.2) must monitor each 
treatment plant for TOC no later than the point of combined filter 
effluent turbidity monitoring and representative of the treated water. 
All systems required to monitor under this paragraph (d)(1) must also 
monitor for TOC in the source water prior to any treatment at the same 
time as monitoring for TOC in the treated water. These samples (source 
water and treated water) are referred to as paired samples. At the same 
time as the source water sample is taken, all systems must monitor for 
alkalinity in the source water prior to any treatment. Systems must take 
one paired sample and one source water alkalinity sample per month per 
plant at a time representative of normal operating conditions and 
influent water quality.
    (2) Reduced monitoring. Subpart H systems with an average treated 
water TOC of less than 2.0 mg/L for two consecutive years, or less than 
1.0 mg/L for one year, may reduce monitoring for both TOC and alkalinity 
to one paired sample and one source water alkalinity sample per plant 
per quarter. The system must revert to routine monitoring in the month 
following the quarter when the annual average treated water TOC 
2.0 mg/L.
    (e) Bromide. Systems required to analyze for bromate may reduce 
bromate monitoring from monthly to once per quarter, if the system 
demonstrates that the average source water bromide concentration is less 
than 0.05 mg/L based upon representative monthly measurements for one 
year. The system must continue bromide monitoring to remain on reduced 
bromate monitoring.
    (f) Monitoring plans. Each system required to monitor under this 
subpart must develop and implement a monitoring plan. The system must 
maintain the plan and make it available for inspection by the State and 
the general public no later than 30 days following the applicable 
compliance dates in Sec. 141.130(b). All Subpart H systems serving more 
than 3300 people must submit a copy of the monitoring plan to the State 
no later than the date of the first report required under Sec. 141.134. 
The State may also require the plan to be submitted by any other system. 
After review, the State may require changes in any plan elements. The 
plan must include at least the following elements.
    (1) Specific locations and schedules for collecting samples for any 
parameters included in this subpart.
    (2) How the system will calculate compliance with MCLs, MRDLs, and 
treatment techniques.
    (3) If approved for monitoring as a consecutive system, or if 
providing water to a consecutive system, under the provisions of 
Sec. 141.29, the sampling plan must reflect the entire distribution 
system.
 
[63 FR 69466, Dec. 16, 1998, as amended at 66 FR 3776, Jan. 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.133]
 
[Page 494-496]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
    Subpart L--Disinfectant Residuals, Disinfection Byproducts, and 
                    Disinfection Byproduct Precursors
 
Sec. 141.133  Compliance requirements.
 
    (a) General requirements. (1) Where compliance is based on a running 
annual average of monthly or quarterly samples or averages and the 
system fails to monitor for TTHM, HAA5, or bromate, this failure to 
monitor will be treated as a monitoring violation for the entire period 
covered by the annual average. Where compliance is based on a running 
annual average of monthly or quarterly samples or averages and the 
system failure to monitor makes it
 
[[Page 495]]
 
impossible to determine compliance with MRDLs for chlorine and 
chloramines, this failure to monitor will be treated as a monitoring 
violation for the entire period covered by the annual average.
    (2) All samples taken and analyzed under the provisions of this 
subpart must be included in determining compliance, even if that number 
is greater than the minimum required.
    (3) If, during the first year of monitoring under Sec. 141.132, any 
individual quarter's average will cause the running annual average of 
that system to exceed the MCL, the system is out of compliance at the 
end of that quarter.
    (b) Disinfection byproducts--(1) TTHMs and HAA5. (i) For systems 
monitoring quarterly, compliance with MCLs in Sec. 141.64 must be based 
on a running annual arithmetic average, computed quarterly, of quarterly 
arithmetic averages of all samples collected by the system as prescribed 
by Sec. 141.132(b)(1).
    (ii) For systems monitoring less frequently than quarterly, systems 
demonstrate MCL compliance if the average of samples taken that year 
under the provisions of Sec. 141.132(b)(1) does not exceed the MCLs in 
Sec. 141.64. If the average of these samples exceeds the MCL, the system 
must increase monitoring to once per quarter per treatment plant and 
such a system is not in violation of the MCL until it has completed one 
year of quarterly monitoring, unless the result of fewer than four 
quarters of monitoring will cause the running annual average to exceed 
the MCL, in which case the system is in violation at the end of that 
quarter. Systems required to increase monitoring frequency to quarterly 
monitoring must calculate compliance by including the sample which 
triggered the increased monitoring plus the following three quarters of 
monitoring.
    (iii) If the running annual arithmetic average of quarterly averages 
covering any consecutive four-quarter period exceeds the MCL, the system 
is in violation of the MCL and must notify the public pursuant to 
Sec. 141.32 or Sec. 141.202, whichever is effective for your system, in 
addition to reporting to the State pursuant to Sec. 141.134.
    (iv) If a PWS fails to complete four consecutive quarters of 
monitoring, compliance with the MCL for the last four-quarter compliance 
period must be based on an average of the available data.
    (2) Bromate. Compliance must be based on a running annual arithmetic 
average, computed quarterly, of monthly samples (or, for months in which 
the system takes more than one sample, the average f all samples taken 
during the month) collected by the system as prescribed by 
Sec. 141.132(b)(3). If the average of samples covering any consecutive 
four-quarter period exceeds the MCL, the system is in violation of the 
MCL and must notify the public pursuant to subpart Q, in addition to 
reporting to the State pursuant to Sec. 141.134. If a PWS fails to 
complete 12 consecutive months' monitoring, compliance with the MCL for 
the last four-quarter compliance period must be based on an average of 
the available data.
    (3) Chlorite. Compliance must be based on an arithmetic average of 
each three sample set taken in the distribution system as prescribed by 
Sec. 141.132(b)(2)(i)(B) and Sec. 141.132(b)(2)(ii). If the arithmetic 
average of any three sample set exceeds the MCL, the system is in 
violation of the MCL and must notify the public pursuant to subpart Q, 
in addition to reporting to the State pursuant to Sec. 141.134.
    (c) Disinfectant residuals. (1) Chlorine and chloramines. (i) 
Compliance must be based on a running annual arithmetic average, 
computed quarterly, of monthly averages of all samples collected by the 
system under Sec. 141.132(c)(1). If the average covering any consecutive 
four-quarter period exceeds the MRDL, the system is in violation of the 
MRDL and must notify the public pursuant to subpart Q, in addition to 
reporting to the State pursuant to Sec. 141.134.
    (ii) In cases where systems switch between the use of chlorine and 
chloramines for residual disinfection during the year, compliance must 
be determined by including together all monitoring results of both 
chlorine and chloramines in calculating compliance. Reports submitted 
pursuant to Sec. 141.134 must clearly indicate which residual 
disinfectant was analyzed for each sample.
 
[[Page 496]]
 
    (2) Chlorine dioxide. (i) Acute violations. Compliance must be based 
on consecutive daily samples collected by the system under 
Sec. 141.132(c)(2). If any daily sample taken at the entrance to the 
distribution system exceeds the MRDL, and on the following day one (or 
more) of the three samples taken in the distribution system exceed the 
MRDL, the system is in violation of the MRDL and must take immediate 
corrective action to lower the level of chlorine dioxide below the MRDL 
and must notify the public pursuant to the procedures for acute health 
risks in subpart Q in addition to reporting to the State pursuant to 
Sec. 141.134. Failure to take samples in the distribution system the day 
following an exceedance of the chlorine dioxide MRDL at the entrance to 
the distribution system will also be considered an MRDL violation and 
the system must notify the public of the violation in accordance with 
the provisions for acute violations under subpart Q in addition to 
reporting to the State pursuant to Sec. 141.134.
    (ii) Nonacute violations. Compliance must be based on consecutive 
daily samples collected by the system under Sec. 141.132(c)(2). If any 
two consecutive daily samples taken at the entrance to the distribution 
system exceed the MRDL and all distribution system samples taken are 
below the MRDL, the system is in violation of the MRDL and must take 
corrective action to lower the level of chlorine dioxide below the MRDL 
at the point of sampling and will notify the public pursuant to the 
procedures for nonacute health risks in subpart Q in addition to 
reporting to the State pursuant to Sec. 141.134. Failure to monitor at 
the entrance to the distribution system the day following an exceedance 
of the chlorine dioxide MRDL at the entrance to the distribution system 
is also an MRDL violation and the system must notify the public of the 
violation in accordance with the provisions for nonacute violations 
under Sec. 141.32(e)(78) in addition to reporting to the State pursuant 
to Sec. 141.134.
    (d) Disinfection byproduct precursors (DBPP). Compliance must be 
determined as specified by Sec. 141.135(c). Systems may begin monitoring 
to determine whether Step 1 TOC removals can be met 12 months prior to 
the compliance date for the system. This monitoring is not required and 
failure to monitor during this period is not a violation. However, any 
system that does not monitor during this period, and then determines in 
the first 12 months after the compliance date that it is not able to 
meet the Step 1 requirements in Sec. 141.135(b)(2) and must therefore 
apply for alternate minimum TOC removal (Step 2) requirements, is not 
eligible for retroactive approval of alternate minimum TOC removal (Step 
2) requirements as allowed pursuant to Sec. 141.135(b)(3) and is in 
violation. Systems may apply for alternate minimum TOC removal (Step 2) 
requirements any time after the compliance date. For systems required to 
meet Step 1 TOC removals, if the value calculated under 
Sec. 141.135(c)(1)(iv) is less than 1.00, the system is in violation of 
the treatment technique requirements and must notify the public pursuant 
to Sec. 141.32, in addition to reporting to the State pursuant to 
Sec. 141.134.
 
[63 FR 69466, Dec. 16, 1998, as amended at 65 FR 26022, May 4, 2000; 65 
FR 40521, June 30, 2000; 66 FR 3777, Jan. 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.134]
 
[Page 496-498]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
    Subpart L--Disinfectant Residuals, Disinfection Byproducts, and 
                    Disinfection Byproduct Precursors
 
Sec. 141.134  Reporting and recordkeeping requirements.
 
    (a) Systems required to sample quarterly or more frequently must 
report to the State within 10 days after the end of each quarter in 
which samples were collected, notwithstanding the provisions of 
Sec. 141.31. Systems required to sample less frequently than quarterly 
must report to the State within 10 days after the end of each monitoring 
period in which samples were collected.
    (b) Disinfection byproducts. Systems must report the information 
specified in the following table:
 
[[Page 497]]
 
 
 
------------------------------------------------------------------------
           If you are a * * *                 You must report * * *
------------------------------------------------------------------------
(1) System monitoring for TTHMs and      (i) The number of samples taken
 HAA5 under the requirements of Sec.      during the last quarter.
 141.132(b) on a quarterly or more       (ii) The location, date, and
 frequent basis.                          result of each sample taken
                                          during the last quarter.
                                         (iii) The arithmetic average of
                                          all samples taken in the last
                                          quarter.
                                         (iv) The annual arithmetic
                                          average of the quarterly
                                          arithmetic averages of this
                                          section for the last four
                                          quarters.
                                         (v) Whether, based on Sec.
                                          141.133(b)(1), the MCL was
                                          violated.
(2) System monitoring for TTHMs and      (i) The number of samples taken
 HAA5 under the requirements of Sec.      during the last year.
 141.132(b) less frequently than         (ii) The location, date, and
 quarterly (but as least annually).       result of each sample taken
                                          during the last monitoring
                                          period.
                                         (iii) The arithmetic average of
                                          all samples taken over the
                                          last year.
                                         (iv) Whether, based on Sec.
                                          141.133(b)(1), the MCL was
                                          violated.
(3) System monitoring for TTHMs and      (i) The location, date, and
 HAA5 under the requriements of Sec.      result of each sample taken
 141.132(b) less frequently than         (ii) Whether, based on Sec.
 annually.                                141.133(b)(1), the MCL was
                                          violated.
(4) System monitoring for chlorite       (i) The number of entry point
 under the requirements of Sec.           samples taken each month for
 141.132(b).                              the last 3 months.
                                         (ii) The location, date, and
                                          result of each sample (both
                                          entry point and distribution
                                          system) taken during the last
                                          quarter.
                                         (iii) For each month in the
                                          reporting period, the
                                          arithmetic average of all
                                          samples taken in each three
                                          samples set taken in the
                                          distribution system.
                                         (iv) Whether, based on Sec.
                                          141.133(b)(3), the MCL was
                                          violated, in which month, and
                                          how many times it was violated
                                          each month.
(5) System monitoring for bromate under  (i)The number of samples taken
 the requirements of Sec.  141.132(b).    during the last quarter.
                                         (ii)The location, date, and
                                          result of each sample taken
                                          during the last quarter.
                                         (iii) The arithmetic average of
                                          the monthly arithmetic
                                          averages of all samples taken
                                          in the last year.
                                         (iv) Whether, based on Sec.
                                          141.133(b)(2), the MCL was
                                          violated.
------------------------------------------------------------------------
\1\ The State may choose to perform calculations and determine whether
  the MCL was exceeded, in lieu of having the system report that
  information
 
    (c) Disinfectants. Systems must report the information specified in 
the following table:
 
------------------------------------------------------------------------
           If you are a * * *                 You must report * * *
------------------------------------------------------------------------
(1) System monitoring for chlorine or    (i) The number of samples taken
 chloramines under the requirements of    during each month of the last
 Sec.  141.132(c).                        quarter.
                                         (ii) The month arithmetic
                                          average of all samples taken
                                          in each month for the last 12
                                          months.
                                         (iii) The arithmetic average of
                                          the monthly averages for the
                                          last 12 months.
                                         (iv) Whether, based on Sec.
                                          141.133(c)(1), the MRD was
                                          violated.
(2) System monitoring for chlorine       (i) The dates, result, and
 dioxide under the requirements of Sec.   locations of samples taken
  141.132(c).                             during the last quarter.
                                         (ii) Whether, based on Sec.
                                          141.133(c)(2), the MRDL was
                                          violated.
                                         (iii) Whether the MRDL was
                                          exceeded in any two
                                          consecutive daily samples and
                                          whether the resulting
                                          violation was acuate or
                                          nonacute.
------------------------------------------------------------------------
\1\ The State may choose to perform calculations and determine whether
  the MRDL was exceeded, in lieu of having the system report that
  information.
 
    (d) Disinfection byproduct precursors and enhanced coagulation or 
enhanced softening. Systems must report the information specified in the 
following table:
 
[[Page 498]]
 
 
 
------------------------------------------------------------------------
            If you are a...                   You must report...\1\
------------------------------------------------------------------------
(1) System monitoring monthly or         (i) The number of paired
 quarterly for TOC under the              (source water and treated
 requirements of Sec.  141.132(d) and     water) samples taken during
 required to meet the enhanced            the last quarter.
 coagulation or enhanced softening       (ii) The location, date, and
 requirements in Sec.  141.135(b)(2) or   results of each paired sample
 (3).                                     and associated alkalinity
                                          taken during the last quarter.
                                         (iii) For each month in the
                                          reporting period that paired
                                          samples were taken, the
                                          arithmetic average of the
                                          percent reduction of TOC for
                                          each paired sample and the
                                          required TOC percent removal.
                                         (iv) Calculations for
                                          determining compliance with
                                          the TOC percent removal
                                          requirements, as provided in
                                          Sec.  141.135(c)(1).
                                         (v) Whether the system is in
                                          compliance with the enhanced
                                          coagulation or enhanced
                                          softening percent removal
                                          requirements in Sec.
                                          141.135(b) for the last four
                                          quarters.
(2) System monitoring monthly or         (i) The alternative compliance
 quarterly for TOC under the              criterion that the system is
 requirements of Sec.  141.132(d) and     using.
 meeting one or more of the alternative
 compliance criteria in Sec.
 141.135(a)(2) or (3).
                                         (ii) The number of paired
                                          samples taken during the last
                                          quarter.
                                         (iii) The location, date, and
                                          result of each paired sample
                                          and associated alkalinity
                                          taken during the last quarter.
                                         (iv) The running annual
                                          arithmetic average based on
                                          monthly averages (or quarterly
                                          samples) of source water TOC
                                          for systems meeting a
                                          criterion in Secs.
                                          141.135(a)(2)(i) or (iii) or
                                          of treated water TOC for
                                          systems meeting the criterion
                                          in Sec.  141.135(a)(2)(ii).
                                         (v) The running annual
                                          arithmetic average based on
                                          monthly averages (or quarterly
                                          samples) of source water SUVA
                                          for systems meeting the
                                          criterion in Sec.
                                          141.135(a)(2)(v) or of treated
                                          water SUVA for systems meeting
                                          the criterion in Sec.
                                          141.135(a)(2)(vi).
                                         (vi) The running annual average
                                          of source water alkalinity for
                                          systems meeting the criterion
                                          in Sec.  141.135(a)(2)(iii)
                                          and of treated water
                                          alkalinity for systems meeting
                                          the criterion in Sec.
                                          141.135(a)(3)(i).
                                         (vii) The running annual
                                          average for both TTHM and HAA5
                                          for systems meeting the
                                          criterion in Sec.
                                          141.135(a)(2)(iii) or (iv).
                                         (viii) The running annual
                                          average of the amount of
                                          magnesium hardness removal (as
                                          CaCO<INF>3</INF>, in mg/L) for systems
                                          meeting the criterion in Sec.
                                          141.135(a)(3)(ii).
                                         (ix) Whether the system is in
                                          compliance with the particular
                                          alternative compliance
                                          criterion in Sec.
                                          141.135(a)(2) or (3).
------------------------------------------------------------------------
\1\ The State may choose to perform calculations and determine whether
  the treatment technique was met, in lieu of having the system report
  that information.
 
 
[63 FR 69466, Dec. 16, 1998, as amended at 66 FR 3778, Jan. 16, 2001; 66 
FR 9903, Feb. 12, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.135]
 
[Page 498-501]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
    Subpart L--Disinfectant Residuals, Disinfection Byproducts, and 
                    Disinfection Byproduct Precursors
 
Sec. 141.135  Treatment technique for control of disinfection byproduct (DBP) precursors.
 
    (a) Applicability. (1) Subpart H systems using conventional 
filtration treatment (as defined in Sec. 141.2 ) must operate with 
enhanced coagulation or enhanced softening to achieve the TOC percent 
removal levels specified in paragraph (b) of this section unless the 
system meets at least one of the alternative compliance criteria listed 
in paragraph (a)(2) or (a)(3) of this section.
    (2) Alternative compliance criteria for enhanced coagulation and 
enhanced softening systems. Subpart H systems using conventional 
filtration treatment may use the alternative compliance criteria in 
paragraphs (a)(2)(i) through (vi) of this section to comply with this 
section in lieu of complying with paragraph (b) of this section. Systems 
must still comply with monitoring requirements in Sec. 141.132(d).
    (i) The system's source water TOC level, measured according to 
Sec. 141.131(d)(3), is less than 2.0 mg/L, calculated quarterly as a 
running annual average.
    (ii) The system's treated water TOC level, measured according to 
Sec. 141.131(d)(3), is less than 2.0 mg/L, calculated quarterly as a 
running annual average.
    (iii) The system's source water TOC level, measured according to 
Sec. 141.131(d)(3), is less than 4.0 mg/L, calculated quarterly as a 
running annual
 
[[Page 499]]
 
average; the source water alkalinity, measured according to 
Sec. 141.131(d)(1), is greater than 60 mg/L (as CaCO<INF>3</INF>), 
calculated quarterly as a running annual average; and either the TTHM 
and HAA5 running annual averages are no greater than 0.040 mg/L and 
0.030 mg/L, respectively; or prior to the effective date for compliance 
in Sec. 141.130(b), the system has made a clear and irrevocable 
financial commitment not later than the effective date for compliance in 
Sec. 141.130(b) to use of technologies that will limit the levels of 
TTHMs and HAA5 to no more than 0.040 mg/L and 0.030 mg/L, respectively. 
Systems must submit evidence of a clear and irrevocable financial 
commitment, in addition to a schedule containing milestones and periodic 
progress reports for installation and operation of appropriate 
technologies, to the State for approval not later than the effective 
date for compliance in Sec. 141.130(b). These technologies must be 
installed and operating not later than June 30, 2005. Failure to install 
and operate these technologies by the date in the approved schedule will 
constitute a violation of National Primary Drinking Water Regulations.
    (iv) The TTHM and HAA5 running annual averages are no greater than 
0.040 mg/L and 0.030 mg/L, respectively, and the system uses only 
chlorine for primary disinfection and maintenance of a residual in the 
distribution system.
    (v) The system's source water SUVA, prior to any treatment and 
measured monthly according to Sec. 141.131(d)(4), is less than or equal 
to 2.0 L/mg-m, calculated quarterly as a running annual average.
    (vi) The system's finished water SUVA, measured monthly according to 
Sec. 141.131(d)(4), is less than or equal to 2.0 L/mg-m, calculated 
quarterly as a running annual average.
    (3) Additional alternative compliance criteria for softening 
systems. Systems practicing enhanced softening that cannot achieve the 
TOC removals required by paragraph (b)(2) of this section may use the 
alternative compliance criteria in paragraphs (a)(3)(i) and (ii) of this 
section in lieu of complying with paragraph (b) of this section. Systems 
must still comply with monitoring requirements in Sec. 141.132(d).
    (i) Softening that results in lowering the treated water alkalinity 
to less than 60 mg/L (as CaCO<INF>3</INF>), measured monthly according 
to Sec. 141.131(d)(1) and calculated quarterly as a running annual 
average.
    (ii) Softening that results in removing at least 10 mg/L of 
magnesium hardness (as CaCO<INF>3</INF>), measured monthly and 
calculated quarterly as an annual running average.
    (b) Enhanced coagulation and enhanced softening performance 
requirements. (1) Systems must achieve the percent reduction of TOC 
specified in paragraph (b)(2) of this section between the source water 
and the combined filter effluent, unless the State approves a system's 
request for alternate minimum TOC removal (Step 2) requirements under 
paragraph (b)(3) of this section.
    (2) Required Step 1 TOC reductions, indicated in the following 
table, are based upon specified source water parameters measured in 
accordance with Sec. 141.131(d). Systems practicing softening are 
required to meet the Step 1 TOC reductions in the far-right column 
(Source water alkalinity >120 mg/L) for the specified source water TOC:
 
   Step 1 Required Removal of TOC by Enhanced Coagulation and Enhanced
    Softening for Subpart H Systems Using Conventional Treatment <SUP>1</SUP> <SUP>2</SUP>
------------------------------------------------------------------------
                                 Source-water alkalinity, mg/L as CaCO <INF>3</INF>
                                            (in precentages)
    Source-water  TOC, mg/L    -----------------------------------------
                                    0-60         >60-120       >120 <SUP>3</SUP>
------------------------------------------------------------------------
>2.0-4.0......................         35.0          25.0          15.0
>4.0-8.0......................         45.0          35.0          25.0
>8.0..........................         50.0          40.0         30.0
------------------------------------------------------------------------
\1\ Systems meeting at least one of the conditions in paragraph
  (a)(2)(i)-(vi) of this section are not required to operate with
  enhanced coagulation.
\2\ Softening system meeting one of the alternative compliance criteria
  in paragraph (a)(3) of this section are not required to operate with
  enhanced softening.
\3\ System practicing softening must meet the TOC removal requirements
  in this column.
 
 
[[Page 500]]
 
    (3) Subpart H conventional treatment systems that cannot achieve the 
Step 1 TOC removals required by paragraph (b)(2) of this section due to 
water quality parameters or operational constraints must apply to the 
State, within three months of failure to achieve the TOC removals 
required by paragraph (b)(2) of this section, for approval of 
alternative minimum TOC (Step 2) removal requirements submitted by the 
system. If the State approves the alternative minimum TOC removal (Step 
2) requirements, the State may make those requirements retroactive for 
the purposes of determining compliance. Until the State approves the 
alternate minimum TOC removal (Step 2) requirements, the system must 
meet the Step 1 TOC removals contained in paragraph (b)(2) of this 
section.
    (4) Alternate minimum TOC removal (Step 2) requirements. 
Applications made to the State by enhanced coagulation systems for 
approval of alternate minimum TOC removal (Step 2) requirements under 
paragraph (b)(3) of this section must include, at a minimum, results of 
bench- or pilot-scale testing conducted under paragraph (b)(4)(i) of 
this section. The submitted bench- or pilot-scale testing must be used 
to determine the alternate enhanced coagulation level.
    (i) Alternate enhanced coagulation level is defined as coagulation 
at a coagulant dose and pH as determined by the method described in 
paragraphs (b)(4)(i) through (v) of this section such that an 
incremental addition of 10 mg/L of alum (or equivalent amount of ferric 
salt) results in a TOC removal of <ls-thn-eq> 0.3 mg/L. The percent 
removal of TOC at this point on the "TOC removal versus coagulant 
dose" curve is then defined as the minimum TOC removal required for the 
system. Once approved by the State, this minimum requirement supersedes 
the minimum TOC removal required by the table in paragraph (b)(2) of 
this section. This requirement will be effective until such time as the 
State approves a new value based on the results of a new bench- and 
pilot-scale test. Failure to achieve State-set alternative minimum TOC 
removal levels is a violation of National Primary Drinking Water 
Regulations.
    (ii) Bench- or pilot-scale testing of enhanced coagulation must be 
conducted by using representative water samples and adding 10 mg/L 
increments of alum (or equivalent amounts of ferric salt) until the pH 
is reduced to a level less than or equal to the enhanced coagulation 
Step 2 target pH shown in the following table:
 
                  Enhanced Coagulation Step 2 target pH
------------------------------------------------------------------------
                 Alkalinity (mg/L as CaCO<INF>3</INF>)                   Target pH
------------------------------------------------------------------------
0-60.......................................................          5.5
>60-120....................................................          6.3
>120-240...................................................          7.0
>240.......................................................          7.5
------------------------------------------------------------------------
 
    (iii) For waters with alkalinities of less than 60 mg/L for which 
addition of small amounts of alum or equivalent addition of iron 
coagulant drives the pH below 5.5 before significant TOC removal occurs, 
the system must add necessary chemicals to maintain the pH between 5.3 
and 5.7 in samples until the TOC removal of 0.3 mg/L per 10 mg/L alum 
added (or equivalant addition of iron coagulant) is reached.
    (iv) The system may operate at any coagulant dose or pH necessary 
(consistent with other NPDWRs) to achieve the minimum TOC percent 
removal approved under paragraph (b)(3) of this section.
    (v) If the TOC removal is consistently less than 0.3 mg/L of TOC per 
10 mg/L of incremental alum dose at all dosages of alum (or equivalant 
addition of iron coagulant), the water is deemed to contain TOC not 
amenable to enhanced coagulation. The system may then apply to the State 
for a waiver of enhanced coagulation requirements.
    (c) Compliance calculations. (1) Subpart H systems other than those 
identified in paragraph (a)(2) or (a)(3) of this section must comply 
with requirements contained in paragraph (b)(2) or (b)(3) of this 
section. Systems must calculate compliance quarterly, beginning after 
the system has collected 12 months of data, by determining an annual 
average using the following method:
    (i) Determine actual monthly TOC percent removal, equal to:
 
 
[[Page 501]]
 
 
 
            (1--(treated water TOC/source water TOC))  x  100
 
    (ii) Determine the required monthly TOC percent removal (from either 
the table in paragraph (b)(2) of this section or from paragraph (b)(3) 
of this section).
    (iii) Divide the value in paragraph (c)(1)(i) of this section by the 
value in paragraph (c)(1)(ii) of this section.
    (iv) Add together the results of paragraph (c)(1)(iii) of this 
section for the last 12 months and divide by 12.
    (v) If the value calculated in paragraph (c)(1)(iv) of this section 
is less than 1.00, the system is not in compliance with the TOC percent 
removal requirements.
    (2) Systems may use the provisions in paragraphs (c)(2)(i) through 
(v) of this section in lieu of the calculations in paragraph (c)(1)(i) 
through (v) of this section to determine compliance with TOC percent 
removal requirements.
    (i) In any month that the system's treated or source water TOC 
level, measured according to Sec. 141.131(d)(3), is less than 2.0 mg/L, 
the system may assign a monthly value of 1.0 (in lieu of the value 
calculated in paragraph (c)(1)(iii) of this section) when calculating 
compliance under the provisions of paragraph (c)(1) of this section.
    (ii) In any month that a system practicing softening removes at 
least 10 mg/L of magnesium hardness (as CaCO<INF>3</INF>), the system 
may assign a monthly value of 1.0 (in lieu of the value calculated in 
paragraph (c)(1)(iii) of this section) when calculating compliance under 
the provisions of paragraph (c)(1) of this section.
    (iii) In any month that the system's source water SUVA, prior to any 
treatment and measured according to Sec. 141.131(d)(4), is 
<ls-thn-eq>2.0 L/mg-m, the system may assign a monthly value of 1.0 (in 
lieu of the value calculated in paragraph (c)(1)(iii) of this section) 
when calculating compliance under the provisions of paragraph (c)(1) of 
this section.
    (iv) In any month that the system's finished water SUVA, measured 
according to Sec. 141.131(d)(4), is <ls-thn-eq>2.0 L/mg-m, the system 
may assign a monthly value of 1.0 (in lieu of the value calculated in 
paragraph (c)(1)(iii) of this section) when calculating compliance under 
the provisions of paragraph (c)(1) of this section.
    (v) In any month that a system practicing enhanced softening lowers 
alkalinity below 60 mg/L (as CaCO<INF>3</INF>), the system may assign a 
monthly value of 1.0 (in lieu of the value calculated in paragraph 
(c)(1)(iii) of this section) when calculating compliance under the 
provisions of paragraph (c)(1) of this section.
    (3) Subpart H systems using conventional treatment may also comply 
with the requirements of this section by meeting the criteria in 
paragraph (a)(2) or (3) of this section.
    (d) Treatment technique requirements for DBP precursors. The 
Administrator identifies the following as treatment techniques to 
control the level of disinfection byproduct precursors in drinking water 
treatment and distribution systems: For Subpart H systems using 
conventional treatment, enhanced coagulation or enhanced softening.
 
[63 FR 69466, Dec. 16, 1998, as amended at 66 FR 3779, Jan. 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.151]
 
[Page 501-502]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart O--Consumer Confidence Reports
 
Sec. 141.151  Purpose and applicability of this subpart.
 
    Source: 63 FR 44526, Aug. 19, 1998, unless otherwise noted.
 
 
    (a) This subpart establishes the minimum requirements for the 
content of annual reports that community water systems must deliver to 
their customers. These reports must contain information on the quality 
of the water delivered by the systems and characterize the risks (if 
any) from exposure to contaminants detected in the drinking water in an 
accurate and understandable manner.
    (b) Notwithstanding the provisions of Sec. 141.3, this subpart 
applies only to community water systems.
    (c) For the purpose of this subpart, customers are defined as 
billing units or service connections to which water is delivered by a 
community water system.
 
[[Page 502]]
 
    (d) For the purpose of this subpart, detected means: at or above the 
levels prescribed by Sec. 141.23(a)(4) for inorganic contaminants, at or 
above the levels prescribed by Sec. 141.24(f)(7) for the contaminants 
listed in Sec. 141.61(a), at or above the level prescribed by 
Sec. 141.24(h)(18) for the contaminants listed in Sec. 141.61(c), and at 
or above the levels prescribed by Sec. 141.25(c) for radioactive 
contaminants.
    (e) A State that has primary enforcement responsibility may adopt by 
rule, after notice and comment, alternative requirements for the form 
and content of the reports. The alternative requirements must provide 
the same type and amount of information as required by Secs. 141.153 and 
141.154, and must be designed to achieve an equivalent level of public 
information and education as would be achieved under this subpart.
    (f) For purpose of Secs. 141.154 and 141.155 of this subpart, the 
term "primacy agency" refers to the State or tribal government entity 
that has jurisdiction over, and primary enforcement responsibility for, 
public water systems, even if that government does not have interim or 
final primary enforcement responsibility for this rule. Where the State 
or tribe does not have primary enforcement responsibility for public 
water systems, the term "primacy agency" refers to the appropriate EPA 
regional office.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.152]
 
[Page 502]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart O--Consumer Confidence Reports
 
Sec. 141.152  Effective dates.
 
    (a) The regulations in this subpart shall take effect on September 
18, 1998.
    (b) Each existing community water system must deliver its first 
report by October 19, 1999, its second report by July 1, 2000, and 
subsequent reports by July 1 annually thereafter. The first report must 
contain data collected during, or prior to, calendar year 1998 as 
prescribed in Sec. 141.153(d)(3). Each report thereafter must contain 
data collected during, or prior to, the previous calendar year.
    (c) A new community water system must deliver its first report by 
July 1 of the year after its first full calendar year in operation and 
annually thereafter.
    (d) A community water system that sells water to another community 
water system must deliver the applicable information required in 
Sec. 141.153 to the buyer system:
    (1) No later than April 19, 1999, by April 1, 2000, and by April 1 
annually thereafter or
    (2) On a date mutually agreed upon by the seller and the purchaser, 
and specifically included in a contract between the parties.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.153]
 
[Page 502-506]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart O--Consumer Confidence Reports
 
Sec. 141.153  Content of the reports.
 
    (a) Each community water system must provide to its customers an 
annual report that contains the information specified in this section 
and Sec. 141.154.
    (b) Information on the source of the water delivered:
    (1) Each report must identify the source(s) of the water delivered 
by the community water system by providing information on:
    (i) The type of the water: e.g., surface water, ground water; and
    (ii) The commonly used name (if any) and location of the body (or 
bodies) of water.
    (2) If a source water assessment has been completed, the report must 
notify consumers of the availability of this information and the means 
to obtain it. In addition, systems are encouraged to highlight in the 
report significant sources of contamination in the source water area if 
they have readily available information. Where a system has received a 
source water assessment from the primacy agency, the report must include 
a brief summary of the system's susceptibility to potential sources of 
contamination, using language provided by the primacy agency or written 
by the operator.
    (c) Definitions. (1) Each report must include the following 
definitions:
    (i) Maximum Contaminant Level Goal or MCLG: The level of a 
contaminant in drinking water below which there is no known or expected 
risk to health. MCLGs allow for a margin of safety.
    (ii) Maximum Contaminant Level or MCL: The highest level of a 
contaminant that is allowed in drinking water. MCLs are set as close to 
the MCLGs as feasible using the best available treatment technology.
    (2) A report for a community water system operating under a variance 
or an exemption issued under Sec. 1415 or 1416
 
[[Page 503]]
 
of SDWA must include the following definition: Variances and Exemptions: 
State or EPA permission not to meet an MCL or a treatment technique 
under certain conditions.
    (3) A report that contains data on contaminants that EPA regulates 
using any of the following terms must include the applicable 
definitions:
    (i) Treatment Technique: A required process intended to reduce the 
level of a contaminant in drinking water.
    (ii) Action Level: The concentration of a contaminant which, if 
exceeded, triggers treatment or other requirements which a water system 
must follow.
    (iii) Maximum residual disinfectant level goal or MRDLG: The level 
of a drinking water disinfectant below which there is no known or 
expected risk to health. MRDLGs do not reflect the benefits of the use 
of disinfectants to control microbial contaminants.
    (iv) Maximum residual disinfectant level or MRDL: The highest level 
of a disinfectant allowed in drinking water. There is convincing 
evidence that addition of a disinfectant is necessary for control of 
microbial contaminants.
    (d) Information on Detected Contaminants.
    (1) This sub-section specifies the requirements for information to 
be included in each report for contaminants subject to mandatory 
monitoring (except Cryptosporidium). It applies to:
    (i) Contaminants subject to a MCL, action level, maximum residual 
disinfectant level, or treatment technique (regulated contaminants).
    (ii) Contaminants for which monitoring is required by Sec. 141.40 
(unregulated contaminants); and
    (iii) Disinfection by-products or microbial contaminants for which 
monitoring is required by Secs. 141.142 and 141.143, except as provided 
under paragraph (e)(1) of this section, and which are detected in the 
finished water.
    (2) The data relating to these contaminants must be displayed in one 
table or in several adjacent tables. Any additional monitoring results 
which a community water system chooses to include in its report must be 
displayed separately.
    (3) The data must be derived from data collected to comply with EPA 
and State monitoring and analytical requirements during calendar year 
1998 for the first report and subsequent calendar years thereafter 
except that:
    (i) Where a system is allowed to monitor for regulated contaminants 
less often than once a year, the table(s) must include the date and 
results of the most recent sampling and the report must include a brief 
statement indicating that the data presented in the report are from the 
most recent testing done in accordance with the regulations. No data 
older than 5 years need be included.
    (ii) Results of monitoring in compliance with Secs. 141.142 and 
141.143 need only be included for 5 years from the date of last sample 
or until any of the detected contaminants becomes regulated and subject 
to routine monitoring requirements, whichever comes first.
    (4) For detected regulated contaminants (listed in appendix A to 
this subpart), the table(s) must contain:
    (i) The MCL for that contaminant expressed as a number equal to or 
greater than 1.0 (as provided in appendix A to this subpart);
    (ii) The MCLG for that contaminant expressed in the same units as 
the MCL;
    (iii) If there is no MCL for a detected contaminant, the table must 
indicate that there is a treatment technique, or specify the action 
level, applicable to that contaminant, and the report must include the 
definitions for treatment technique and/or action level, as appropriate, 
specified in paragraph(c)(3) of this section;
    (iv) For contaminants subject to an MCL, except turbidity and total 
coliforms, the highest contaminant level used to determine compliance 
with an NPDWR and the range of detected levels, as follows:
    (A) When compliance with the MCL is determined annually or less 
frequently: The highest detected level at any sampling point and the 
range of detected levels expressed in the same units as the MCL.
    (B) When compliance with the MCL is determined by calculating a 
running annual average of all samples taken at a sampling point: the 
highest average of any of the sampling points and the
 
[[Page 504]]
 
range of all sampling points expressed in the same units as the MCL.
    (C) When compliance with the MCL is determined on a system-wide 
basis by calculating a running annual average of all samples at all 
sampling points: the average and range of detection expressed in the 
same units as the MCL.
 
    Note to paragraph (d)(4)(iv): When rounding of results to determine 
compliance with the MCL is allowed by the regulations, rounding should 
be done prior to multiplying the results by the factor listed in 
appendix A of this subpart;
 
    (v) For turbidity.
    (A) When it is reported pursuant to Sec. 141.13: The highest average 
monthly value.
    (B) When it is reported pursuant to the requirements of Sec. 141.71: 
the highest monthly value. The report should include an explanation of 
the reasons for measuring turbidity.
    (C) When it is reported pursuant to Secs. 141.73 or 141.173: The 
highest single measurement and the lowest monthly percentage of samples 
meeting the turbidity limits specified in Secs. 141.73 or 141.173 for 
the filtration technology being used. The report should include an 
explanation of the reasons for measuring turbidity;
    (vi) For lead and copper: the 90th percentile value of the most 
recent round of sampling and the number of sampling sites exceeding the 
action level;
    (vii) For total coliform:
    (A) The highest monthly number of positive samples for systems 
collecting fewer than 40 samples per month; or
    (B) The highest monthly percentage of positive samples for systems 
collecting at least 40 samples per month;
    (viii) For fecal coliform: The total number of positive samples; and
    (ix) The likely source(s) of detected contaminants to the best of 
the operator's knowledge. Specific information regarding contaminants 
may be available in sanitary surveys and source water assessments, and 
should be used when available to the operator. If the operator lacks 
specific information on the likely source, the report must include one 
or more of the typical sources for that contaminant listed in appendix A 
to this subpart that is most applicable to the system.
    (5) If a community water system distributes water to its customers 
from multiple hydraulically independent distribution systems that are 
fed by different raw water sources, the table should contain a separate 
column for each service area and the report should identify each 
separate distribution system. Alternatively, systems could produce 
separate reports tailored to include data for each service area.
    (6) The table(s) must clearly identify any data indicating 
violations of MCLs, MRDLs, or treatment techniques, and the report must 
contain a clear and readily understandable explanation of the violation 
including: the length of the violation, the potential adverse health 
effects, and actions taken by the system to address the violation. To 
describe the potential health effects, the system must use the relevant 
language of appendix A to this subpart.
    (7) For detected unregulated contaminants for which monitoring is 
required (except Cryptosporidium), the table(s) must contain the average 
and range at which the contaminant was detected. The report may include 
a brief explanation of the reasons for monitoring for unregulated 
contaminants.
    (e) Information on Cryptosporidium, radon, and other contaminants:
    (1) If the system has performed any monitoring for Cryptosporidium, 
including monitoring performed to satisfy the requirements of 
Sec. 141.143, which indicates that Cryptosporidium may be present in the 
source water or the finished water, the report must include:
    (i) A summary of the results of the monitoring; and
    (ii) An explanation of the significance of the results.
    (2) If the system has performed any monitoring for radon which 
indicates that radon may be present in the finished water, the report 
must include:
    (i) The results of the monitoring; and
    (ii) An explanation of the significance of the results.
    (3) If the system has performed additional monitoring which 
indicates the presence of other contaminants in the
 
[[Page 505]]
 
finished water, EPA strongly encourages systems to report any results 
which may indicate a health concern. To determine if results may 
indicate a health concern, EPA recommends that systems find out if EPA 
has proposed an NPDWR or issued a health advisory for that contaminant 
by calling the Safe Drinking Water Hotline (800-426-4791). EPA considers 
detects above a proposed MCL or health advisory level to indicate 
possible health concerns. For such contaminants, EPA recommends that the 
report include:
    (i) The results of the monitoring; and
    (ii) An explanation of the significance of the results noting the 
existence of a health advisory or a proposed regulation.
    (f) Compliance with NPDWR. In addition to the requirements of 
Sec. 141.153(d)(6), the report must note any violation that occurred 
during the year covered by the report of a requirement listed below, and 
include a clear and readily understandable explanation of the violation, 
any potential adverse health effects, and the steps the system has taken 
to correct the violation.
    (1) Monitoring and reporting of compliance data;
    (2) Filtration and disinfection prescribed by subpart H of this 
part. For systems which have failed to install adequate filtration or 
disinfection equipment or processes, or have had a failure of such 
equipment or processes which constitutes a violation, the report must 
include the following language as part of the explanation of potential 
adverse health effects: Inadequately treated water may contain disease-
causing organisms. These organisms include bacteria, viruses, and 
parasites which can cause symptoms such as nausea, cramps, diarrhea, and 
associated headaches.
    (3) Lead and copper control requirements prescribed by subpart I of 
this part. For systems that fail to take one or more actions prescribed 
by Secs. 141.80(d), 141.81, 141.82, 141.83 or 141.84, the report must 
include the applicable language of appendix A to this subpart for lead, 
copper, or both.
    (4) Treatment techniques for Acrylamide and Epichlorohydrin 
prescribed by subpart K of this part. For systems that violate the 
requirements of subpart K of this part, the report must include the 
relevant language from appendix A to this subpart.
    (5) Recordkeeping of compliance data.
    (6) Special monitoring requirements prescribed by Secs. 141.40 and 
141.41; and
    (7) Violation of the terms of a variance, an exemption, or an 
administrative or judicial order.
    (g) Variances and Exemptions. If a system is operating under the 
terms of a variance or an exemption issued under Sec. 1415 or 1416 of 
SDWA, the report must contain:
    (1) An explanation of the reasons for the variance or exemption;
    (2) The date on which the variance or exemption was issued;
    (3) A brief status report on the steps the system is taking to 
install treatment, find alternative sources of water, or otherwise 
comply with the terms and schedules of the variance or exemption; and
    (4) A notice of any opportunity for public input in the review, or 
renewal, of the variance or exemption.
    (h) Additional information:
    (1) The report must contain a brief explanation regarding 
contaminants which may reasonably be expected to be found in drinking 
water including bottled water. This explanation may include the language 
of paragraphs (h)(1) (i) through (iii) or systems may use their own 
comparable language. The report also must include the language of 
paragraph (h)(1)(iv) of this section.
    (i) The sources of drinking water (both tap water and bottled water) 
include rivers, lakes, streams, ponds, reservoirs, springs, and wells. 
As water travels over the surface of the land or through the ground, it 
dissolves naturally-occurring minerals and, in some cases, radioactive 
material, and can pick up substances resulting from the presence of 
animals or from human activity.
    (ii) Contaminants that may be present in source water include:
    (A) Microbial contaminants, such as viruses and bacteria, which may 
come from sewage treatment plants, septic systems, agricultural 
livestock operations, and wildlife.
 
[[Page 506]]
 
    (B) Inorganic contaminants, such as salts and metals, which can be 
naturally-occurring or result from urban stormwater runoff, industrial 
or domestic wastewater discharges, oil and gas production, mining, or 
farming.
    (C) Pesticides and herbicides, which may come from a variety of 
sources such as agriculture, urban stormwater runoff, and residential 
uses.
    (D) Organic chemical contaminants, including synthetic and volatile 
organic chemicals, which are by-products of industrial processes and 
petroleum production, and can also come from gas stations, urban 
stormwater runoff, and septic systems.
    (E) Radioactive contaminants, which can be naturally-occurring or be 
the result of oil and gas production and mining activities.
    (iii) In order to ensure that tap water is safe to drink, EPA 
prescribes regulations which limit the amount of certain contaminants in 
water provided by public water systems. FDA regulations establish limits 
for contaminants in bottled water which must provide the same protection 
for public health.
    (iv) Drinking water, including bottled water, may reasonably be 
expected to contain at least small amounts of some contaminants. The 
presence of contaminants does not necessarily indicate that water poses 
a health risk. More information about contaminants and potential health 
effects can be obtained by calling the Environmental Protection Agency's 
Safe Drinking Water Hotline (800-426-4791).
    (2) The report must include the telephone number of the owner, 
operator, or designee of the community water system as a source of 
additional information concerning the report.
    (3) In communities with a large proportion of non-English speaking 
residents, as determined by the Primacy Agency, the report must contain 
information in the appropriate language(s) regarding the importance of 
the report or contain a telephone number or address where such residents 
may contact the system to obtain a translated copy of the report or 
assistance in the appropriate language.
    (4) The report must include information (e.g., time and place of 
regularly scheduled board meetings) about opportunities for public 
participation in decisions that may affect the quality of the water.
    (5) The systems may include such additional information as they deem 
necessary for public education consistent with, and not detracting from, 
the purpose of the report.
 
[63 FR 44526, Aug. 19, 1998, as amended at 63 FR 69516, Dec. 16, 1998; 
64 FR 34733, June 29, 1999; 65 FR 26022, May 4, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.154]
 
[Page 506-507]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart O--Consumer Confidence Reports
 
Sec. 141.154  Required additional health information.
 
    (a) All reports must prominently display the following language: 
Some people may be more vulnerable to contaminants in drinking water 
than the general population. Immuno-compromised persons such as persons 
with cancer undergoing chemotherapy, persons who have undergone organ 
transplants, people with HIV/AIDS or other immune system disorders, some 
elderly, and infants can be particularly at risk from infections. These 
people should seek advice about drinking water from their health care 
providers. EPA/CDC guidelines on appropriate means to lessen the risk of 
infection by Cryptosporidium and other microbial contaminants are 
available from the Safe Drinking Water Hotline (800-426-4791).
    (b) A system which detects arsenic at levels above 25 "<greek-m>g/
l, but below the MCL:
    (1) Must include in its report a short informational statement about 
arsenic, using language such as: EPA is reviewing the drinking water 
standard for arsenic because of special concerns that it may not be 
stringent enough. Arsenic is a naturally-occurring mineral known to 
cause cancer in humans at high concentrations.
    (2) May write its own educational statement, but only in 
consultation with the Primacy Agency.
    (c) A system which detects nitrate at levels above 5 mg/l, but below 
the MCL:
    (1) Must include a short informational statement about the impacts 
of nitrate on children using language such as: Nitrate in drinking water 
at levels above 10 ppm is a health risk for infants of less than six 
months of age. High nitrate levels in drinking water can cause blue baby 
syndrome. Nitrate
 
[[Page 507]]
 
levels may rise quickly for short periods of time because of rainfall or 
agricultural activity. If you are caring for an infant you should ask 
advice from your health care provider.
    (2) May write its own educational statement, but only in 
consultation with the Primacy Agency.
    (d) Systems which detect lead above the action level in more than 
5%, and up to and including 10%, of homes sampled:
    (1) Must include a short informational statement about the special 
impact of lead on children using language such as: Infants and young 
children are typically more vulnerable to lead in drinking water than 
the general population. It is possible that lead levels at your home may 
be higher than at other homes in the community as a result of materials 
used in your home's plumbing. If you are concerned about elevated lead 
levels in your home's water, you may wish to have your water tested and 
flush your tap for 30 seconds to 2 minutes before using tap water. 
Additional information is available from the Safe Drinking Water Hotline 
(800-426-4791).
    (2) May write its own educational statement, but only in 
consultation with the Primacy Agency.
    (e) Community water systems that detect TTHM above 0.080 mg/l, but 
below the MCL in Sec. 141.12, as an annual average, monitored and 
calculated under the provisions of Sec. 141.30, must include health 
effects language for TTHMs prescribed by appendix A.
 
[63 FR 44526, Aug. 19, 1998, as amended at 63 FR 69475, Dec. 16, 1998; 
64 FR 34733, June 29, 1999; 65 FR 26023, May 4, 2000]
 
    Effective Date Note: At 66 FR 7064, Jan. 22, 2001, Sec. 141.154 was 
amended by revising paragraph (b) and adding paragraph (f), effective 
Mar. 23, 2001. At 66 FR 16134, Mar. 23, 2001, the effective date was 
delayed until May 22, 2001. At 66 FR 28350, May 22, 2001, the effective 
date was further delayed until Feb. 22, 2002. For the convenience of the 
user, the revised and added text is set forth as follows:
 
Sec. 141.154  Required additional health information.
 
                                * * * * *
 
    (b) Ending in the report due by July 1, 2001, a system which detects 
arsenic at levels above 0.025 mg/L, but below the 0.05 mg/L, and 
beginning in the report due by July 1, 2002, a system that detects 
arsenic above 0.005 mg/L and up to and including 0.01 mg/L:
    (1) Must include in its report a short informational statement about 
arsenic, using language such as: While your drinking water meets EPA's 
standard for arsenic, it does contain low levels of arsenic. EPA's 
standard balances the current understanding of arsenic's possible health 
effects against the costs of removing arsenic from drinking water. EPA 
continues to research the health effects of low levels of arsenic, which 
is a mineral known to cause cancer in humans at high concentrations and 
is linked to other health effects such as skin damage and circulatory 
problems.
    (2) May write its own educational statement, but only in 
consultation with the Primacy Agency.
 
                                * * * * *
 
    (f) Beginning in the report due by July 1, 2002 and ending January 
22, 2006, a community water system that detects arsenic above 0.01 mg/L 
and up to and including 0.05 mg/L must include the arsenic health 
effects language prescribed by Appendix A to Subpart O.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.155]
 
[Page 507-524]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
                 Subpart O--Consumer Confidence Reports
 
Sec. 141.155  Report delivery and recordkeeping.
 
    (a) Except as provided in paragraph (g) of this section, each 
community water system must mail or otherwise directly deliver one copy 
of the report to each customer.
    (b) The system must make a good faith effort to reach consumers who 
do not get water bills, using means recommended by the primacy agency. 
EPA expects that an adequate good faith effort will be tailored to the 
consumers who are served by the system but are not bill-paying 
customers, such as renters or workers. A good faith effort to reach 
consumers would include a mix of methods appropriate to the particular 
system such as: Posting the reports on the Internet; mailing to postal 
patrons in metropolitan areas; advertising the availability of the 
report in the news media; publication in a local newspaper; posting in 
public places such as cafeterias or lunch rooms of public buildings; 
delivery of multiple copies for distribution by single-biller customers 
such as apartment buildings or large private employers; delivery to 
community organizations.
    (c) No later than the date the system is required to distribute the 
report to
 
[[Page 508]]
 
its customers, each community water system must mail a copy of the 
report to the primacy agency, followed within 3 months by a 
certification that the report has been distributed to customers, and 
that the information is correct and consistent with the compliance 
monitoring data previously submitted to the primacy agency.
    (d) No later than the date the system is required to distribute the 
report to its customers, each community water system must deliver the 
report to any other agency or clearinghouse identified by the primacy 
agency.
    (e) Each community water system must make its reports available to 
the public upon request.
    (f) Each community water system serving 100,000 or more persons must 
post its current year's report to a publicly-accessible site on the 
Internet.
    (g) The Governor of a State or his designee, or the Tribal Leader 
where the tribe has met the eligibility requirements contained in 
Sec. 142.72 for the purposes of waiving the mailing requirement, can 
waive the requirement of paragraph (a) of this section for community 
water systems serving fewer than 10,000 persons. In consultation with 
the tribal government, the Regional Administrator may waive the 
requirement of Sec. 141.155(a) in areas in Indian country where no tribe 
has been deemed eligible.
    (1) Such systems must:
    (i) Publish the reports in one or more local newspapers serving the 
area in which the system is located;
    (ii) Inform the customers that the reports will not be mailed, 
either in the newspapers in which the reports are published or by other 
means approved by the State; and
    (iii) Make the reports available to the public upon request.
    (2) Systems serving 500 or fewer persons may forego the requirements 
of paragraphs (g)(1)(i) and (ii) of this section if they provide notice 
at least once per year to their customers by mail, door-to-door delivery 
or by posting in an appropriate location that the report is available 
upon request.
    (h) Any system subject to this subpart must retain copies of its 
Consumer Confidence Report for no less than 3 years.
 
[63 FR 44526, Aug. 19, 1998, as amended at 65 FR 26023, May 4, 2000]
 
       Appendix A to Subpart O of Part 141--Regulated Contaminants
 
[[Page 509]]
 
 
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                  Traditional MCL     To convert for                                            Major sources in       Health effects
      Contaminant (units)             in mg/L        CCR, multiply by   MCL in CCR units         MCLG            drinking water           language
--------------------------------------------------------------------------------------------------------------------------------------------------------
Microbiological contaminants:
    Total Coliform Bacteria....  MCL: (systems      .................  MCL: (systems      0.................  Naturally present in  Coliforms are
                                  that collect <gr-                     that collect <gr-                      the environment.      bacteria that are
                                  thn-eq>40                             thn-eq>40                                                    naturally present
                                  samples/month)                        samples/month)                                               in the environment
                                  5% of monthly                         5% of monthly                                                and are used as an
                                  samples are                           samples are                                                  indicator that
                                  positive;                             positive;                                                    other, potentially-
                                  (systems that                         (systems that                                                harmful, bacteria
                                  collect 40                            collect 40                                                   may be present.
                                  samples/month) 1                      samples/month) 1                                             Coliforms were
                                  positive monthly                      positive monthly                                             found in more
                                  sample.                               sample.                                                      samples than
                                                                                                                                     allowed and this
                                                                                                                                     was a warning of
                                                                                                                                     potential problems.
    Fecal coliform and E. coli.  0................  .................  0................  0.................  Human and animal      Fecal coliforms and
                                                                                                               fecal waste.          E. coli are
                                                                                                                                     bacteria whose
                                                                                                                                     presence indicates
                                                                                                                                     that the water may
                                                                                                                                     be contaminated
                                                                                                                                     with human or
                                                                                                                                     animal wastes.
                                                                                                                                     Microbes in these
                                                                                                                                     wastes can cause
                                                                                                                                     short-term effects,
                                                                                                                                     such as diarrhea,
                                                                                                                                     cramps, nausea,
                                                                                                                                     headaches, or other
                                                                                                                                     symptoms. They may
                                                                                                                                     pose a special
                                                                                                                                     health risk for
                                                                                                                                     infants, young
                                                                                                                                     children, some of
                                                                                                                                     the elderly, and
                                                                                                                                     people with
                                                                                                                                     severely-
                                                                                                                                     compromised immune
                                                                                                                                     systems.
    Total organic carbon (ppm).  TT...............  .................  TT...............  N/A...............  Naturally present in  Total organic carbon
                                                                                                               the environment.      (TOC) has no health
                                                                                                                                     effects. However,
                                                                                                                                     total organic
                                                                                                                                     carbon provides a
                                                                                                                                     medium for the
                                                                                                                                     formation of
                                                                                                                                     disinfection by
                                                                                                                                     products. These
                                                                                                                                     byproducts include
                                                                                                                                     trihalomethanes
                                                                                                                                     (THMs) and
                                                                                                                                     haloacetic acids
                                                                                                                                     (HAAs). Drinking
                                                                                                                                     water containing
                                                                                                                                     these byproducts in
                                                                                                                                     excess of the MCL
                                                                                                                                     may lead to adverse
                                                                                                                                     health effects,
                                                                                                                                     liver or kidney
                                                                                                                                     problems, or
                                                                                                                                     nervous system
                                                                                                                                     effects, and may
                                                                                                                                     lead to an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
 
[[Page 510]]
 
 
    Turbidity (NTU)............  TT...............  .................  TT...............  N/A...............  Soil runoff.........  Turbidity has no
                                                                                                                                     health effects.
                                                                                                                                     However, turbidity
                                                                                                                                     can interfere with
                                                                                                                                     disinfection and
                                                                                                                                     provide a medium
                                                                                                                                     for microbial
                                                                                                                                     growth. Turbidity
                                                                                                                                     may indicate the
                                                                                                                                     presence of disease-
                                                                                                                                     causing organisms.
                                                                                                                                     These organisms
                                                                                                                                     include bacteria,
                                                                                                                                     viruses, and
                                                                                                                                     parasites that can
                                                                                                                                     cause symptoms such
                                                                                                                                     as nausea, cramps,
                                                                                                                                     diarrhea and
                                                                                                                                     associated
                                                                                                                                     headaches.
Radioactive contaminants:
    Beta/photon emitters (mrem/  4 mrem/yr........  .................  4................  N/A...............  Decay of natural and  Certain minerals are
     yr).                                                                                                      man-made deposits.    radioactive and may
                                                                                                                                     emit forms of
                                                                                                                                     radiation known as
                                                                                                                                     photons and beta
                                                                                                                                     radiation. Some
                                                                                                                                     people who drink
                                                                                                                                     water containing
                                                                                                                                     beta and photon
                                                                                                                                     emitters in excess
                                                                                                                                     of the MCL over
                                                                                                                                     many years may have
                                                                                                                                     an increased risk
                                                                                                                                     of getting cancer.
    Alpha emitters (pCi/l).....  15 pCi/l.........  .................  15...............  N/A...............  Erosion of natural    Certain minerals are
                                                                                                               deposits.             radioactive and may
                                                                                                                                     emit a form of
                                                                                                                                     radiation known as
                                                                                                                                     alpha radiation.
                                                                                                                                     Some people who
                                                                                                                                     drink water
                                                                                                                                     containing alpha
                                                                                                                                     emitters in excess
                                                                                                                                     of the MCL over
                                                                                                                                     many years may have
                                                                                                                                     an increased risk
                                                                                                                                     of getting cancer.
    Combined radium (pCi/l)....  5 pCi/l..........  --...............  5................  N/A...............  Erosion of natural    Some people who
                                                                                                               deposits.             drink water
                                                                                                                                     containing radium
                                                                                                                                     226 or 228 in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years may
                                                                                                                                     have an increased
                                                                                                                                     risk of getting
                                                                                                                                     cancer
Inorganic contaminants:
    Antimony (ppb).............  .006.............  1000.............  6................  6.................  Discharge from        Some people who
                                                                                                               petroleum             drink water
                                                                                                               refineries; fire      containing antimony
                                                                                                               retardants;           well in excess of
                                                                                                               ceramics;             the MCL over many
                                                                                                               electronics; solder.  years could
                                                                                                                                     experience
                                                                                                                                     increases in blood
                                                                                                                                     cholesterol and
                                                                                                                                     decreases in blood
                                                                                                                                     sugar.
 
[[Page 511]]
 
 
    Arsenic (ppb)..............  .05..............  1000.............  50...............  N/A...............  Erosion of natural    Some people who
                                                                                                               deposits; Runoff      drink water
                                                                                                               from orchards;        containing arsenic
                                                                                                               Runoff from glass     in excess of the
                                                                                                               and electronics       MCL over many years
                                                                                                               production wastes.    could experience
                                                                                                                                     skin damage or
                                                                                                                                     problems with their
                                                                                                                                     circulatory system,
                                                                                                                                     and may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
    Asbestos (MFL).............  7 MFL............  .................  7................  7.................  Decay of asbestos     Some people who
                                                                                                               cement water mains;   drink water
                                                                                                               Erosion of natural    containing asbestos
                                                                                                               deposits.             in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     may have an
                                                                                                                                     increased risk of
                                                                                                                                     developing benign
                                                                                                                                     intestinal polyps.
    Barium (ppm)...............  2................  .................  2................  2.................  Discharge of          Some people who
                                                                                                               drilling wastes;      drink water
                                                                                                               Discharge from        containing barium
                                                                                                               metal refineries;     in excess of the
                                                                                                               Erosion of natural    MCL over many years
                                                                                                               deposits.             could experience an
                                                                                                                                     increase in their
                                                                                                                                     blood pressure.
    Beryllium (ppb)............  .004.............  1000.............  4................  4.................  Discharge from metal  Some people who
                                                                                                               refineries and coal-  drink water
                                                                                                               burning factories;    containing
                                                                                                               Discharge from        beryllium well in
                                                                                                               electrical,           excess of the MCL
                                                                                                               aerospace, and        over many years
                                                                                                               defense industries.   could develop
                                                                                                                                     intestinal lesions
    Cadmium (ppb)..............  .005.............  1000.............  5................  5.................  Corrosion of          Some people who
                                                                                                               galvanized pipes;     drink water
                                                                                                               Erosion of natural    containing cadmium
                                                                                                               deposits; Discharge   in excess of the
                                                                                                               from metal            MCL over many years
                                                                                                               refineries; Runoff    could experience
                                                                                                               from waste            kidney damage.
                                                                                                               batteries and
                                                                                                               paints.
    Chromium (ppb).............  .1...............  1000.............  100..............  100...............  Discharge from steel  Some people who use
                                                                                                               and pulp mills;       water containing
                                                                                                               Erosion of natural    chromium well in
                                                                                                               deposits.             excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could experience
                                                                                                                                     allergic
                                                                                                                                     dermatitis.
    Copper (ppm)...............  AL=1.3...........  .................  AL=1.3...........  1.3...............  Corrosion of          Copper is an
                                                                                                               household plumbing    essential nutrient,
                                                                                                               systems; Erosion of   but some people who
                                                                                                               natural deposits;     drink water
                                                                                                               Leaching from wood    containing copper
                                                                                                               preservatives.        in excess of the
                                                                                                                                     action level over a
                                                                                                                                     relatively short
                                                                                                                                     amount of time
                                                                                                                                     could experience
                                                                                                                                     gastrointestinal
                                                                                                                                     distress. Some
                                                                                                                                     people who drink
                                                                                                                                     water containing
                                                                                                                                     copper in excess of
                                                                                                                                     the action level
                                                                                                                                     over many years
                                                                                                                                     could suffer liver
                                                                                                                                     or kidney damage.
                                                                                                                                     People with
                                                                                                                                     Wilson's Disease
                                                                                                                                     should consult
                                                                                                                                     their personal
                                                                                                                                     doctor.
 
[[Page 512]]
 
 
    Cyanide (ppb)..............  .2...............  1000.............  200..............  200...............  Discharge from steel/ Some people who
                                                                                                               metal factories;      drink water
                                                                                                               Discharge from        containing cyanide
                                                                                                               plastic and           well in excess of
                                                                                                               fertilizer            the MCL over many
                                                                                                               factories.            years could
                                                                                                                                     experience nerve
                                                                                                                                     damage or problems
                                                                                                                                     with their thyroid.
    Fluoride (ppm).............  4................  .................  4................  4.................  Erosion of natural    Some people who
                                                                                                               deposits; Water       drink water
                                                                                                               additive which        containing fluoride
                                                                                                               promotes strong       in excess of the
                                                                                                               teeth; Discharge      MCL over many years
                                                                                                               from fertilizer and   could get bone
                                                                                                               aluminum factories.   disease, including
                                                                                                                                     pain and tenderness
                                                                                                                                     of the bones.
                                                                                                                                     Fluoride in
                                                                                                                                     drinking water at
                                                                                                                                     half the MCL or
                                                                                                                                     more may cause
                                                                                                                                     mottling of
                                                                                                                                     children's teeth,
                                                                                                                                     usually in children
                                                                                                                                     less than nine
                                                                                                                                     years old.
                                                                                                                                     Mottling, also
                                                                                                                                     known as dental
                                                                                                                                     fluorosis, may
                                                                                                                                     include brown
                                                                                                                                     staining and/or
                                                                                                                                     pitting of the
                                                                                                                                     teeth, and occurs
                                                                                                                                     only in developing
                                                                                                                                     teeth before they
                                                                                                                                     erupt from the
                                                                                                                                     gums.
    Lead (ppb).................  AL=.015..........  1000.............  AL=15............  0.................  Corrosion of          Infants and children
                                                                                                               household plumbing    who drink water
                                                                                                               systems; Erosion of   containing lead in
                                                                                                               natural deposits.     excess of the
                                                                                                                                     action level could
                                                                                                                                     experience delays
                                                                                                                                     in their physical
                                                                                                                                     or mental
                                                                                                                                     development.
                                                                                                                                     Children could show
                                                                                                                                     slight deficits in
                                                                                                                                     attention span and
                                                                                                                                     learning abilities.
                                                                                                                                     Adults who drink
                                                                                                                                     this water over
                                                                                                                                     many years could
                                                                                                                                     develop kidney
                                                                                                                                     problems or high
                                                                                                                                     blood pressure.
    Mercury [inorganic] (ppb)..  .002.............  1000.............  2................  2.................  Erosion of natural    Some people who
                                                                                                               deposits; Dis         drink water
                                                                                                               charge from           containing
                                                                                                               refineries and        inorganic mercury
                                                                                                               factories; Runoff     well in excess of
                                                                                                               from landfills;       the MCL over many
                                                                                                               Runoff from           years could
                                                                                                               cropland.             experience kidney
                                                                                                                                     damage.
    Nitrate (ppm)..............  10...............  .................  10...............  10................  Runoff from           Infants below the
                                                                                                               fertilizer use;       age of six months
                                                                                                               Leaching from         who drink water
                                                                                                               septic tanks, sew     containing nitrate
                                                                                                               age; Erosion of       in excess of the
                                                                                                               natural deposits.     MCL could become
                                                                                                                                     seriously ill and,
                                                                                                                                     if untreated, may
                                                                                                                                     die. Symptoms
                                                                                                                                     include shortness
                                                                                                                                     of breath and blue
                                                                                                                                     baby syndrome.
 
[[Page 513]]
 
 
    Nitrite (ppm)..............  1................  .................  1................  1.................  Runoff from           Infants below the
                                                                                                               fertilizer use;       age of six months
                                                                                                               Leaching from         who drink water
                                                                                                               septic tanks, sew     containing nitrite
                                                                                                               age; Erosion of       in excess of the
                                                                                                               natural deposits.     MCL could become
                                                                                                                                     seriously ill and,
                                                                                                                                     if untreated, may
                                                                                                                                     die. Symptoms
                                                                                                                                     include shortness
                                                                                                                                     of breath and blue
                                                                                                                                     baby syndrome.
    Selenium (ppb).............  .05..............  1000.............  50...............  50................  Discharge from        Selenium is an
                                                                                                               petroleum and metal   essential nutrient.
                                                                                                               refineries; Erosion   However, some
                                                                                                               of natural            people who drink
                                                                                                               deposits; Discharge   water containing
                                                                                                               from mines.           selenium in excess
                                                                                                                                     of the MCL over
                                                                                                                                     many years could
                                                                                                                                     experience hair or
                                                                                                                                     fingernail losses,
                                                                                                                                     numbness in fingers
                                                                                                                                     or toes, or
                                                                                                                                     problems with their
                                                                                                                                     circulation.
    Thallium (ppb).............  .002.............  1000.............  2................  0.5...............  Leaching from ore-    Some people who
                                                                                                               processing sites;     drink water
                                                                                                               Discharge from        containing thallium
                                                                                                               electronics, glass,   in excess of the
                                                                                                               and drug factories.   MCL over many years
                                                                                                                                     could experience
                                                                                                                                     hair loss, changes
                                                                                                                                     in their blood, or
                                                                                                                                     problems with their
                                                                                                                                     kidneys,
                                                                                                                                     intestines, or
                                                                                                                                     liver.
Synthetic organic contaminants
 including pesticides and
 herbicides:
    2,4-D (ppb)................  .07..............  1000.............  70...............  70................  Runoff from           Some people who
                                                                                                               herbicide used on     drink water
                                                                                                               row crops.            containing the weed
                                                                                                                                     killer 2,4-D well
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     kidneys, liver, or
                                                                                                                                     adrenal glands.
    2,4,5-TP [Silvex](ppb).....  .05..............  1000.............  50...............  50................  Residue of banned     Some people who
                                                                                                               herbicide.            drink water
                                                                                                                                     containing silvex
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could experience
                                                                                                                                     liver problems.
    Acrylamide.................  TT...............  .................  TT...............  0.................  Added to water        Some people who
                                                                                                               during sewage/        drink water
                                                                                                               wastewater            containing high
                                                                                                               treatment.            levels of
                                                                                                                                     acrylamide over a
                                                                                                                                     long period of time
                                                                                                                                     could have problems
                                                                                                                                     with their nervous
                                                                                                                                     system or blood,
                                                                                                                                     and may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
 
[[Page 514]]
 
 
    Alachlor (ppb).............  .002.............  1000.............  2................  0.................  Runoff from           Some people who
                                                                                                               herbicide used on     drink water
                                                                                                               row crops.            containing alachlor
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could have problems
                                                                                                                                     with their eyes,
                                                                                                                                     liver, kidneys, or
                                                                                                                                     spleen, or
                                                                                                                                     experience anemia,
                                                                                                                                     and may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
    Atrazine (ppb).............  .003.............  1000.............  3................  3.................  Runoff from           Some people who
                                                                                                               herbicide used on     drink water
                                                                                                               row crops.            containing atrazine
                                                                                                                                     well in excess of
                                                                                                                                     the MCL over many
                                                                                                                                     years could
                                                                                                                                     experience problems
                                                                                                                                     with their
                                                                                                                                     cardiovascular
                                                                                                                                     system or
                                                                                                                                     reproductive
                                                                                                                                     difficulties.
    Benzo(a)pyrene [PAH]         .0002............  1,000,000........  200..............  0.................  Leaching from         Some people who
     (nanograms/l).                                                                                            linings of water      drink water
                                                                                                               storage tanks and     containing
                                                                                                               distribution lines.   benzo(a)pyrene in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years may
                                                                                                                                     experience
                                                                                                                                     reproductive
                                                                                                                                     difficulties and
                                                                                                                                     may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
    Carbofuran (ppb)...........  .04..............  1000.............  40...............  40................  Leaching of soil      Some people who
                                                                                                               fumigant used on      drink water
                                                                                                               rice and alfalfa.     containing
                                                                                                                                     carbofuran in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     blood, or nervous
                                                                                                                                     or reproductive
                                                                                                                                     systems.
    Chlordane (ppb)............  .002.............  1000.............  2................  0.................  Residue of banned     Some people who
                                                                                                               termiticide.          drink water
                                                                                                                                     containing
                                                                                                                                     chlordane in excess
                                                                                                                                     of the MCL over
                                                                                                                                     many years could
                                                                                                                                     experience problems
                                                                                                                                     with their liver or
                                                                                                                                     nervous system, and
                                                                                                                                     may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
    Dalapon (ppb)..............  .2...............  1000.............  200..............  200...............  Runoff from           Some people who
                                                                                                               herbicide used on     drink water
                                                                                                               rights of way.        containing dalapon
                                                                                                                                     well in excess of
                                                                                                                                     the MCL over many
                                                                                                                                     years could
                                                                                                                                     experience minor
                                                                                                                                     kidney changes.
    Di(2-ethylhexyl) adipate     .4...............  1000.............  400..............  400...............  Discharge from        Some people who
     (ppb).                                                                                                    chemical factories.   drink water
                                                                                                                                     containing di (2-
                                                                                                                                     ethylhexyl) adipate
                                                                                                                                     well in excess of
                                                                                                                                     the MCL over many
                                                                                                                                     years could
                                                                                                                                     experience general
                                                                                                                                     toxic effects or
                                                                                                                                     reproductive
                                                                                                                                     difficulties.
 
[[Page 515]]
 
 
    Di(2-ethylhexyl) phthalate   .006.............  1000.............  6................  0.................  Discharge from        Some people who
     (ppb).                                                                                                    rubber and chemical   drink water
                                                                                                               factories.            containing di (2-
                                                                                                                                     ethylhexyl)
                                                                                                                                     phthalate in excess
                                                                                                                                     of the MCL over
                                                                                                                                     many years may have
                                                                                                                                     problems with their
                                                                                                                                     liver, or
                                                                                                                                     experience
                                                                                                                                     reproductive
                                                                                                                                     difficulties, and
                                                                                                                                     may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
    Dibromochloropropane (ppt).  .0002............  1,000,000........  200..............  0.................  Runoff/leaching from  Some people who
                                                                                                               soil fumigant used    drink water
                                                                                                               on soybeans,          containing DBCP in
                                                                                                               cotton, pineapples,   excess of the MCL
                                                                                                               and orchards.         over many years
                                                                                                                                     could experience
                                                                                                                                     reproductive
                                                                                                                                     problems and may
                                                                                                                                     have an increased
                                                                                                                                     risk of getting
                                                                                                                                     cancer.
    Dinoseb (ppb)..............  .007.............  1000.............  7................  7.................  Runoff from           Some people who
                                                                                                               herbicide used on     drink water
                                                                                                               soybeans and          containing dinoseb
                                                                                                               vegetables.           well in excess of
                                                                                                                                     the MCL over many
                                                                                                                                     years could
                                                                                                                                     experience
                                                                                                                                     reproductive
                                                                                                                                     difficulties.
    Diquat (ppb)...............  .02..............  1000.............  20...............  20................  Runoff from           Some people who
                                                                                                               herbicide use.        drink water
                                                                                                                                     containing diquat
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could get
                                                                                                                                     cataracts.
    Dioxin [2,3,7,8-TCDD] (ppq)  .00000003........  1,000,000, 000...  30...............  0.................  Emissions from waste  Some people who
                                                                                                               incineration and      drink water
                                                                                                               other combustion;     containing dioxin
                                                                                                               Discharge from        in excess of the
                                                                                                               chemical factories.   MCL over many years
                                                                                                                                     could experience
                                                                                                                                     reproductive
                                                                                                                                     difficulties and
                                                                                                                                     may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
    Endothall (ppb)............  .1...............  1000.............  100..............  100...............  Runoff from           Some people who
                                                                                                               herbicide use.        drink water
                                                                                                                                     containing
                                                                                                                                     endothall in excess
                                                                                                                                     of the MCL over
                                                                                                                                     many years could
                                                                                                                                     experience problems
                                                                                                                                     with their stomach
                                                                                                                                     or intestines.
    Endrin (ppb)...............  .002.............  1000.............  2................  2.................  Residue of banned     Some people who
                                                                                                               insecticide.          drink water
                                                                                                                                     containing endrin
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could experience
                                                                                                                                     liver problems.
    Epichlorohydrin............  TT...............  .................  TT...............  0.................  Discharge from        Some people who
                                                                                                               industrial chemical   drink water
                                                                                                               factories; An         containing high
                                                                                                               impurity of some      levels of
                                                                                                               water treatment       epichlorohydrin
                                                                                                               chemicals.            over a long period
                                                                                                                                     of time could
                                                                                                                                     experience stomach
                                                                                                                                     problems, and may
                                                                                                                                     have an increased
                                                                                                                                     risk of getting
                                                                                                                                     cancer.
 
[[Page 516]]
 
 
    Ethylene dibromide (ppt)...  .00005...........  1,000,000........  50...............  0.................  Discharge from        Some people who
                                                                                                               petroleum             drink water
                                                                                                               refineries.           containing ethylene
                                                                                                                                     dibromide in excess
                                                                                                                                     of the MCL over
                                                                                                                                     many years could
                                                                                                                                     experience problems
                                                                                                                                     with their liver,
                                                                                                                                     stomach,
                                                                                                                                     reproductive
                                                                                                                                     system, or kidneys,
                                                                                                                                     and may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
    Glyphosate (ppb)...........  .7...............  1000.............  700..............  700...............  Runoff from           Some people who
                                                                                                               herbicide use.        drink water
                                                                                                                                     containing
                                                                                                                                     glyphosate in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     kidneys or
                                                                                                                                     reproductive
                                                                                                                                     difficulties.
    Heptachlor (ppt)...........  .0004............  1,000,000........  400..............  0.................  Residue of banned     Some people who
                                                                                                               pesticide.            drink water
                                                                                                                                     containing
                                                                                                                                     heptachlor in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could experience
                                                                                                                                     liver damage and
                                                                                                                                     may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
    Heptachlor epoxide (ppt)...  .0002............  1,000,000........  200..............  0.................  Breakdown of          Some people who
                                                                                                               heptachlor.           drink water
                                                                                                                                     containing
                                                                                                                                     heptachlor epoxide
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could experience
                                                                                                                                     liver damage, and
                                                                                                                                     may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
    Hexachlorobenzene (ppb)....  .001.............  1000.............  1................  0.................  Discharge from metal  Some people who
                                                                                                               refineries and        drink water
                                                                                                               agricultural          containing
                                                                                                               chemical factories.   hexachlorobenzene
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     liver or kidneys,
                                                                                                                                     or adverse
                                                                                                                                     reproductive
                                                                                                                                     effects, and may
                                                                                                                                     have an increased
                                                                                                                                     risk of getting
                                                                                                                                     cancer.
    Hexachlorocyclopentadiene    .05..............  1000.............  50...............  50................  Discharge from        Some people who
     (ppb).                                                                                                    chemical factories.   drink water
                                                                                                                                     containing
                                                                                                                                     hexachlorocyclopent
                                                                                                                                     adiene well in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     kidneys or stomach.
    Lindane (ppt)..............  .0002............  1,000,000........  200..............  200...............  Runoff/leaching from  Some people who
                                                                                                               insecticide used on   drink water
                                                                                                               cattle, lumber,       containing lindane
                                                                                                               gardens.              in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     kidneys or liver.
 
[[Page 517]]
 
 
    Methoxychlor (ppb).........  .04..............  1000.............  40...............  40................  Runoff/leaching from  Some people who
                                                                                                               insecticide used on   drink water
                                                                                                               fruits, vegetables,   containing
                                                                                                               alfalfa, livestock.   methoxychlor in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could experience
                                                                                                                                     reproductive
                                                                                                                                     difficulties.
    Oxamyl [Vydate] (ppb)......  .2...............  1000.............  200..............  200...............  Runoff/leaching from  Some people who
                                                                                                               insecticide used on   drink water
                                                                                                               apples, potatoes      containing oxamyl
                                                                                                               and tomatoes.         in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could experience
                                                                                                                                     slight nervous
                                                                                                                                     system effects.
    PCBs [Polychlorinated        .0005............  1,000,000........  500..............  0.................  Runoff from           Some people who
     biphenyls] (ppt).                                                                                         landfills;            drink water
                                                                                                               Discharge of waste    containing PCBs in
                                                                                                               chemicals.            excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could experience
                                                                                                                                     changes in their
                                                                                                                                     skin, problems with
                                                                                                                                     their thymus gland,
                                                                                                                                     immune
                                                                                                                                     deficiencies, or
                                                                                                                                     reproductive or
                                                                                                                                     nervous system
                                                                                                                                     difficulties, and
                                                                                                                                     may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
    Pentachlorophenol (ppb)....  .001.............  1000.............  1................  0.................  Discharge from wood   Some people who
                                                                                                               preserving            drink water
                                                                                                               factories.            containing
                                                                                                                                     pentachlorophenol
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     liver or kidneys,
                                                                                                                                     and may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
    Picloram (ppb).............  .5...............  1000.............  500..............  500...............  Herbicide runoff....  Some people who
                                                                                                                                     drink water
                                                                                                                                     containing picloram
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     liver.
    Simazine (ppb).............  .004.............  1000.............  4................  4.................  Herbicide runoff....  Some people who
                                                                                                                                     drink water
                                                                                                                                     containing simazine
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     blood.
    Toxaphene (ppb)............  .003.............  1000.............  3................  0.................  Runoff/leaching from  Some people who
                                                                                                               insecticide used on   drink water
                                                                                                               cotton and cattle.    containing
                                                                                                                                     toxaphene in excess
                                                                                                                                     of the MCL over
                                                                                                                                     many years could
                                                                                                                                     have problems with
                                                                                                                                     their kidneys,
                                                                                                                                     liver, or thyroid,
                                                                                                                                     and may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
 
[[Page 518]]
 
 
Volatile organic contaminants:
    Benzene (ppb)..............  .005.............  1000.............  5................  0.................  Discharge from        Some people who
                                                                                                               factories; Leaching   drink water
                                                                                                               from gas storage      containing benzene
                                                                                                               tanks and landfills.  in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could experience
                                                                                                                                     anemia or a
                                                                                                                                     decrease in blood
                                                                                                                                     platelets, and may
                                                                                                                                     have an increased
                                                                                                                                     risk of getting
                                                                                                                                     cancer.
    Bromate (ppb)..............  .010.............  1000.............  10...............  0.................  By-product of         Some people who
                                                                                                               drinking water        drink water
                                                                                                               chlorination.         containing bromate
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
    Carbon tetrachloride (ppb).  .005.............  1000.............  5................  0.................  Discharge from        Some people who
                                                                                                               chemical plants and   drink water
                                                                                                               other industrial      containing carbon
                                                                                                               activities.           tetrachloride in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     liver and may have
                                                                                                                                     an increased risk
                                                                                                                                     of getting cancer.
    Chloramines (ppm)..........  MRDL = 4.........  .................  MRDL = 4.........  MRDLG = 4.........  Water additive used   Some people who use
                                                                                                               to control microbes.  water containing
                                                                                                                                     chloramines well in
 
                                                                                                                                     excess of the MRDL
                                                                                                                                     could experience
                                                                                                                                     irritating effects
                                                                                                                                     to their eyes and
                                                                                                                                     nose. Some people
                                                                                                                                     who drink water
                                                                                                                                     containing
                                                                                                                                     chloramines well in
                                                                                                                                     excess of the MRDL
                                                                                                                                     could experience
                                                                                                                                     stomach discomfort
                                                                                                                                     or anemia.
    Chlorine (ppm).............  MRDL = 4.........  .................  MRDL = 4.........  MRDLG = 4.........  Water additive used   Some people who use
                                                                                                               to control microbes.  water containing
                                                                                                                                     chlorine well in
                                                                                                                                     excess of the MRDL
                                                                                                                                     could experience
                                                                                                                                     irritating effects
                                                                                                                                     to their eyes and
                                                                                                                                     nose. Some people
                                                                                                                                     who drink water
                                                                                                                                     containing chlorine
                                                                                                                                     well in excess of
                                                                                                                                     the MRDL could
                                                                                                                                     experience stomach
                                                                                                                                     discomfort.
 
[[Page 519]]
 
 
    Chlorite (ppm).............  1................  .................  1................  0.8...............  By-product of         Some infants and
                                                                                                               drinking water        young children who
                                                                                                               chlorination.         drink water
                                                                                                                                     containing chlorite
                                                                                                                                     in excess of the
                                                                                                                                     MCL could
                                                                                                                                     experience nervous
                                                                                                                                     system effects.
                                                                                                                                     Similar effects may
                                                                                                                                     occur in fetuses of
                                                                                                                                     pregnant women who
                                                                                                                                     drink water
                                                                                                                                     containing chlorite
                                                                                                                                     in excess of the
                                                                                                                                     MCL. Some people
                                                                                                                                     may experience
                                                                                                                                     anemia.
    Chloride dioxide (ppb).....  MRDL = .8........  1000.............  MRDL = 800.......  MRDLG = 800.......  Water additive used   Some infants and
                                                                                                               to control microbes.  young children who
                                                                                                                                     drink water
                                                                                                                                     containing chlorine
                                                                                                                                     dioxide in excess
                                                                                                                                     of the MRDL could
                                                                                                                                     experience nervous
                                                                                                                                     system effects.
                                                                                                                                     Similar effects may
                                                                                                                                     occur in fetuses of
                                                                                                                                     pregnant women who
                                                                                                                                     drink water
                                                                                                                                     containing chlorine
                                                                                                                                     dioxide in excess
                                                                                                                                     of the MRDL. Some
                                                                                                                                     people may
                                                                                                                                     experience anemia.
    Chlorobenzene (ppb)........  .1...............  1000.............  100..............  100...............  Discharge from        Some people who
                                                                                                               chemical and          drink water
                                                                                                               agricultural          containing
                                                                                                               chemical factories.   chlorobenzene in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     liver or kidneys.
    o-Dichlorobenzene (ppb)....  .6...............  1000.............  600..............  600...............  Discharge from        Some people who
                                                                                                               industrial chemical   drink water
                                                                                                               factories.            containing o-
                                                                                                                                     dichlorobenzene
                                                                                                                                     well in excess of
                                                                                                                                     the MCL over many
                                                                                                                                     years could
                                                                                                                                     experience problems
                                                                                                                                     with their liver,
                                                                                                                                     kidneys, or
                                                                                                                                     circulatory
                                                                                                                                     systems.
    p-Dichlorobenzene (ppb)....  .075.............  1000.............  75...............  75................  Discharge from        Some people who
                                                                                                               industrial chemical   drink water
                                                                                                               factories.            containing p-
                                                                                                                                     dichlorobenzene in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could experience
                                                                                                                                     anemia, damage to
                                                                                                                                     their liver,
                                                                                                                                     kidneys, or spleen,
                                                                                                                                     or changes in their
                                                                                                                                     blood.
    1,2-Dichloroethane (ppb)...  .005.............  1000.............  5................  0.................  Discharge from        Some people who
                                                                                                               industrial chemical   drink water
                                                                                                               factories.            containing 1,2-
                                                                                                                                     dichloroethane in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years may
                                                                                                                                     have an increased
                                                                                                                                     risk of getting
                                                                                                                                     cancer.
    1,1-Dichloroethylene (ppb).  .007.............  1000.............  7................  7.................  Discharge from        Some people who
                                                                                                               industrial chemical   drink water
                                                                                                               factories.            containing 1,1-
                                                                                                                                     dichloroethylene in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     liver.
 
[[Page 520]]
 
 
    cis-1,2-Dichloroethylene     .07..............  1000.............  70...............  70................  Discharge from        Some people who
     (ppb).                                                                                                    industrial chemical   drink water
                                                                                                               factories.            containing cis-1,2-
                                                                                                                                     dichloroethylene in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     liver.
    trans-1,2-Dichloroethylene   .1...............  1000.............  100..............  100...............  Discharge from        Some people who
     (ppb).                                                                                                    industrial chemical   drink water
                                                                                                               factories.            containing trans-
                                                                                                                                     1,2-
                                                                                                                                     dichloroethylene
                                                                                                                                     well in excess of
                                                                                                                                     the MCL over many
                                                                                                                                     years could
                                                                                                                                     experience problems
                                                                                                                                     with their liver.
    Dichloromethane (ppb)......  .005.............  1000.............  5................  0.................  Discharge from        Some people who
                                                                                                               pharmaceutical and    drink water
                                                                                                               chemical factories.   containing
                                                                                                                                     dichloromethane in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could have liver
                                                                                                                                     problems and may
                                                                                                                                     have an increased
                                                                                                                                     risk of getting
                                                                                                                                     cancer.
    1,2-Dichloropropane (ppb)..  .005.............  1000.............  5................  0.................  Discharge from        Some people who
                                                                                                               industrial chemical   drink water
                                                                                                               factories.            containing 1,2-
                                                                                                                                     dichloropropane in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years may
                                                                                                                                     have an increased
                                                                                                                                     risk of getting
                                                                                                                                     cancer.
    Ethylbenzene (ppb).........  .7...............  1000.............  700..............  700...............  Discharge from        Some people who
                                                                                                               petroleum             drink water
                                                                                                               refineries.           containing
                                                                                                                                     ethylbenzene well
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     liver or kidneys.
    Haloacetic Acids (HAA)       .060.............  1000.............  60...............  N/A...............  By-product of         Some people who
     (ppb).                                                                                                    drinking water        drink water
                                                                                                               disinfection.         containing
                                                                                                                                     haloacetic acids in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years may
                                                                                                                                     have an increased
                                                                                                                                     risk of getting
                                                                                                                                     cancer.
    Styrene (ppb)..............  .1...............  1000.............  100..............  100...............  Discharge from        Some people who
                                                                                                               rubber and plastic    drink water
                                                                                                               factories; Leaching   containing styrene
                                                                                                               from landfills.       well in excess of
                                                                                                                                     the MCL over many
                                                                                                                                     years could have
                                                                                                                                     problems with their
                                                                                                                                     liver, kidneys, or
                                                                                                                                     circulatory system.
    Tetrachloroethylene (ppb)..  .005.............  1000.............  5................  0.................  Discharge from        Some people who
                                                                                                               factories and dry     drink water
                                                                                                               cleaners.             containing
                                                                                                                                     tetrachloroethylene
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could have problems
                                                                                                                                     with their liver,
                                                                                                                                     and may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
 
[[Page 521]]
 
 
    1,2,4-Trichlorobenzene       .07..............  1000.............  70...............  70................  Discharge from        Some people who
     (ppb).                                                                                                    textile-finishing     drink water
                                                                                                               factories.            containing 1,2,4-
                                                                                                                                     trichlorobenzene
                                                                                                                                     well in excess of
                                                                                                                                     the MCL over many
                                                                                                                                     years could
                                                                                                                                     experience changes
                                                                                                                                     in their adrenal
                                                                                                                                     glands.
    1,1,1-Trichloroethane (ppb)  .2...............  1000.............  200..............  200...............  Discharge from metal  Some people who
                                                                                                               degreasing sites      drink water
                                                                                                               and other factories.  containing 1,1,1-
                                                                                                                                     trichloroethane in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     liver, nervous
                                                                                                                                     system, or
                                                                                                                                     circulatory system.
    1,1,2-Trichloroethane (ppb)  .005.............  1000.............  5................  3.................  Discharge from        Some people who
                                                                                                               industrial chemical   drink water
                                                                                                               factories.            containing 1,1,2-
                                                                                                                                     trichloroethane
                                                                                                                                     well in excess of
                                                                                                                                     the MCL over many
                                                                                                                                     years could have
                                                                                                                                     problems with their
                                                                                                                                     liver, kidneys, or
                                                                                                                                     immune systems.
    Trichloroethylene (ppb)....  .005.............  1000.............  5................  0.................  Discharge from metal  Some people who
                                                                                                               degreasing sites      drink water
                                                                                                               and other factories.  containing
                                                                                                                                     trichloroethylene
                                                                                                                                     in excess of the
                                                                                                                                     MCL over many years
                                                                                                                                     could experience
                                                                                                                                     problems with their
                                                                                                                                     liver and may have
                                                                                                                                     an increased risk
                                                                                                                                     of getting cancer.
    TTHMs [Total                 0.10/.080........  1000.............  100/80...........  N/A...............  By-product of         Some people who
     trihalomethanes] (ppb).                                                                                   drinking water        drink water
                                                                                                               chlorination.         containing
                                                                                                                                     trihalomethanes in
                                                                                                                                     excess of the MCL
                                                                                                                                     over many years may
                                                                                                                                     experience problems
                                                                                                                                     with their liver,
                                                                                                                                     kidneys, or central
                                                                                                                                     nervous systems,
                                                                                                                                     and may have an
                                                                                                                                     increased risk of
                                                                                                                                     getting cancer.
    Toluene (ppm)..............  1................  .................  1................  1.................  Discharge from        Some people who
                                                                                                               petroleum factories.  drink water
                                                                                                                                     containing toluene
                                                                                                                                     well in excess of
                                                                                                                                     the MCL over many
                                                                                                                                     years could have
                                                                                                                                     problems with their
                                                                                                                                     nervous system,
                                                                                                                                     kidneys, or liver.
    Vinyl Chloride (ppb).......  .002.............  1000.............  2................  0.................  Leaching from PVC     Some people who
                                                                                                               piping; Discharge     drink water
                                                                                                               from plastics         containing vinyl
                                                                                                               factories.            chloride in excess
                                                                                                                                     of the MCL over
                                                                                                                                     many years may have
                                                                                                                                     an increased risk
                                                                                                                                     of getting cancer.
 
[[Page 522]]
 
 
    Xylenes (ppm)..............  10...............  .................  10...............  10................  Discharge from        Some people who
                                                                                                               petroleum             drink water
                                                                                                               factories;            containing xylenes
                                                                                                               Discharge from        in excess of the
                                                                                                               chemical factories.   MCL over many years
                                                                                                                                     could experience
                                                                                                                                     damage to their
                                                                                                                                     nervous system.
--------------------------------------------------------------------------------------------------------------------------------------------------------
Key:
AL=Action Level
MCL=Maximum Contaminant Level
MCLG=Maximum Contaminant Level Goal
MFL=million fibers per liter
MRDL=Maximum Residual Disinfectant Level
MRDLG=Maximum Residual Disinfectant Level Goal
mrem/year=millirems per year (a measure of radiation absorbed by the body)
N/A=Not Applicable
NTU=Nephelometric Turbidity Units (a measure of water clarity)
pCi/l=picocuries per liter (a measure of radioactivity)
ppm=parts per million, or milligrams per liter (mg/l)
ppb=parts per billion, or micrograms per liter (<greek-m>g/l)
ppt=parts per trillion, or nanograms per liter
ppq=parts per quadrillion, or picograms per liter
TT=Treatment Technique
 
[65 FR 26024, May 4, 2000]
 
[[Page 523]]
 
 
    Effective Date Note 1: At 65 FR 76749, Dec. 7, 2000, the table in 
appendix A to subpart O was amended under the heading "Radioactive 
contaminants" by revising the entries for "Beta/photon emitters (mrem/
yr)", "Alpha emitters (pCi/l)", and "Combined radium (pCi/l)" and 
adding a new entry for "Uranium (pCi/L)", effective Dec. 8, 2003. For 
the convenience of the user, the revised and added entries are set forth 
as follows:
 
             Appendix A to Subpart O--Regulated Contaminants
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                    Traditional MCL in    To convert for CCR,                                     Major sources in      Health effects
        Contaminant units                  mg/L               multiply by        MCL in CCR units       MCLG       drinking water          language
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
                 *                  *                   *                   *                  *                   *                   *
Radioactive contaminants:
    Beta/photon emitters (mrem/    4 mrem/yr...........  -...................  4...................  0........  Decay of natural     Certain minerals
     yr).                                                                                                        and man-made         are radioactive
                                                                                                                 deposits.            and may emit forms
                                                                                                                                      of radiation known
                                                                                                                                      as photons and
                                                                                                                                      beta radiation.
                                                                                                                                      Some people who
                                                                                                                                      drink water
                                                                                                                                      containing beta
                                                                                                                                      particle and
                                                                                                                                      photon
                                                                                                                                      radioactivity in
                                                                                                                                      excess of the MCL
                                                                                                                                      over many years
                                                                                                                                      may have an
                                                                                                                                      increased risk of
                                                                                                                                      getting cancer.
    Alpha emitters (pCi/L).......  15 pCi/L............  -...................  15..................  0........  Erosion of natural   Certain minerals
                                                                                                                 deposits.            are radioactive
                                                                                                                                      and may emit a
                                                                                                                                      form of radiation
                                                                                                                                      known as alpha
                                                                                                                                      radiation. Some
                                                                                                                                      people who drink
                                                                                                                                      water containing
                                                                                                                                      alpha emitters in
                                                                                                                                      excess of the MCL
                                                                                                                                      over many years
                                                                                                                                      may have an
                                                                                                                                      increased risk of
                                                                                                                                      getting cancer.
    Combined radium (pCi/L)......  5 pCi/L.............  -...................  5...................  0........  Erosion of natural   Some people who
                                                                                                                 deposits.            drink water
                                                                                                                                      containing radium-
                                                                                                                                      226 or -228 in
                                                                                                                                      excess of the MCL
                                                                                                                                      over many years
                                                                                                                                      may have an
                                                                                                                                      increased risk of
                                                                                                                                      getting cancer.
    Uranium (pCi/L)..............  30 <greek-m>g/L.....  -...................  30..................  0........  Erosion of natural   Some people who
                                                                                                                 deposits.            drink water
                                                                                                                                      containing uranium
                                                                                                                                      in excess of the
                                                                                                                                      MCL over many
                                                                                                                                      years may have an
                                                                                                                                      increased risk of
                                                                                                                                      getting cancer and
                                                                                                                                      kidney toxicity.
 
 
                 *                  *                   *                   *                  *                   *                   *
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
 
    Effective Date Note 2: At 66 FR 7064, Jan. 22, 2001, Appendix A to 
Subpart O was amended by revising the entry for arsenic under 
"Inorganic contaminants:" and adding an endnote, effective Mar. 23, 
2001. At 66 FR 16134, Mar. 23, 2001, the effective date was delayed 
until May 22, 2001. At 66 FR 28350, May 22, 2001, the effective date was 
further delayed until Feb. 22, 2002. For the convenience of the user, 
the revised and added text is set forth as follows:
 
             Appendix A to Subpart O--Regulated Contaminants
 
[[Page 524]]
 
 
 
--------------------------------------------------------------------------------------------------------------------------------------------------------
                                                        To  convert
                                           Traditional    for  CCR,  MCL in  CCR                Major Sources  in  drinking
           Contaminant  (units)             MCL  in mg/   multiply      units         MCLG                 water               Health effects language
                                                L            by
--------------------------------------------------------------------------------------------------------------------------------------------------------
          *                  *                  *                  *                  *                  *                  *
Inorganic contaminants:
          *                  *                  *                  *                  *                  *                  *
    Arsenic (ppb)........................     \1\ 0.01         1000       \1\ 10        \1\ 0  Erosion of natural deposits;  Some people who drink water
                                                                                                Runoff from orchards;         containing arsenic in
                                                                                                Runoff from glass and         excess of the MCL over
                                                                                                electronics production        many years could
                                                                                                wastes.                       experience skin damage or
                                                                                                                              problems with their
                                                                                                                              circulatory system, and
                                                                                                                              may have an increased risk
                                                                                                                              of getting cancer.
          *                  *                  *                  *                  *                  *                  *
--------------------------------------------------------------------------------------------------------------------------------------------------------
 
                                * * * * *
 
    1. These arsenic values are effective January 23, 2006. Until then, 
the MCL is 0.05 mg/L and there is no MCLG.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.170]
 
[Page 524]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
             Subpart P--Enhanced Filtration and Disinfection
 
Sec. 141.170  General requirements.
 
    Source: 63 FR 69516, Dec. 16, 1998, unless otherwise noted.
 
 
    (a) The requirements of this subpart P constitute national primary 
drinking water regulations. These regulations establish requirements for 
filtration and disinfection that are in addition to criteria under which 
filtration and disinfection are required under subpart H of this part. 
The requirements of this subpart are applicable to subpart H systems 
serving at least 10,000 people, beginning January 1, 2002 unless 
otherwise specified in this subpart. The regulations in this subpart 
establish or extend treatment technique requirements in lieu of maximum 
contaminant levels for the following contaminants: Giardia lamblia, 
viruses, heterotrophic plate count bacteria, Legionella, 
Cryptosporidium, and turbidity. Each subpart H system serving at least 
10,000 people must provide treatment of its source water that complies 
with these treatment technique requirements and are in addition to those 
identified in Sec. 141.70. The treatment technique requirements consist 
of installing and properly operating water treatment processes which 
reliably achieve:
    (1) At least 99 percent (2-log) removal of Cryptosporidium between a 
point where the raw water is not subject to recontamination by surface 
water runoff and a point downstream before or at the first customer for 
filtered systems, or Cryptosporidium control under the watershed control 
plan for unfiltered systems.
    (2) Compliance with the profiling and benchmark requirements under 
the provisions of Sec. 141.172.
    (b) A public water system subject to the requirements of this 
subpart is considered to be in compliance with the requirements of 
paragraph (a) of this section if:
    (1) It meets the requirements for avoiding filtration in 
Secs. 141.71 and 141.171 and the disinfection requirements in 
Secs. 141.72 and 141.172; or
    (2) It meets the applicable filtration requirements in either 
Sec. 141.73 or Sec. 141.173 and the disinfection requirements in 
Secs. 141.72 and 141.172.
    (c) Systems are not permitted to begin construction of uncovered 
finished water storage facilities beginning February 16, 1999.
 
[63 FR 69516, Dec. 16, 1998, as amended at 66 FR 3779, Jan. 16, 2001]
 
[[Page 525]]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.171]
 
[Page 525]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
             Subpart P--Enhanced Filtration and Disinfection
 
Sec. 141.171  Criteria for avoiding filtration.
 
    In addition to the requirements of Sec. 141.71, a public water 
system subject to the requirements of this subpart that does not provide 
filtration must meet all of the conditions of paragraphs (a) and (b) of 
this section.
    (a) Site-specific conditions. In addition to site-specific 
conditions in Sec. 141.71(b), systems must maintain the watershed 
control program under Sec. 141.71(b)(2) to minimize the potential for 
contamination by Cryptosporidium oocysts in the source water. The 
watershed control program must, for Cryptosporidium:
    (1) Identify watershed characteristics and activities which may have 
an adverse effect on source water quality; and
    (2) Monitor the occurrence of activities which may have an adverse 
effect on source water quality.
    (b) During the onsite inspection conducted under the provisions of 
Sec. 141.71(b)(3), the State must determine whether the watershed 
control program established under Sec. 141.71(b)(2) is adequate to limit 
potential contamination by Cryptosporidium oocysts. The adequacy of the 
program must be based on the comprehensiveness of the watershed review; 
the effectiveness of the system's program to monitor and control 
detrimental activities occurring in the watershed; and the extent to 
which the water system has maximized land ownership and/or controlled 
land use within the watershed.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.172]
 
[Page 525-528]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
             Subpart P--Enhanced Filtration and Disinfection
 
Sec. 141.172  Disinfection profiling and benchmarking.
 
    (a) Determination of systems required to profile. A public water 
system subject to the requirements of this subpart must determine its 
TTHM annual average using the procedure in paragraph (a)(1) of this 
section and its HAA5 annual average using the procedure in paragraph 
(a)(2) of this section. The annual average is the arithmetic average of 
the quarterly averages of four consecutive quarters of monitoring.
    (1) The TTHM annual average must be the annual average during the 
same period as is used for the HAA5 annual average.
    (i) Those systems that collected data under the provisions of 
subpart M (Information Collection Rule) must use the results of the 
samples collected during the last four quarters of required monitoring 
under Sec. 141.142.
    (ii) Those systems that use "grandfathered" HAA5 occurrence data 
that meet the provisions of paragraph (a)(2)(ii) of this section must 
use TTHM data collected at the same time under the provisions of 
Secs. 141.12 and 141.30.
    (iii) Those systems that use HAA5 occurrence data that meet the 
provisions of paragraph (a)(2)(iii)(A) of this section must use TTHM 
data collected at the same time under the provisions of Secs. 141.12 and 
141.30.
    (2) The HAA5 annual average must be the annual average during the 
same period as is used for the TTHM annual average.
    (i) Those systems that collected data under the provisions of 
subpart M (Information Collection Rule) must use the results of the 
samples collected during the last four quarters of required monitoring 
under Sec. 141.142.
    (ii) Those systems that have collected four quarters of HAA5 
occurrence data that meets the routine monitoring sample number and 
location requirements for TTHM in Secs. 141.12 and 141.30 and handling 
and analytical method requirements of Sec. 141.142(b)(1) may use those 
data to determine whether the requirements of this section apply.
    (iii) Those systems that have not collected four quarters of HAA5 
occurrence data that meets the provisions of either paragraph (a)(2)(i) 
or (ii) of this section by March 16, 1999 must either:
    (A) Conduct monitoring for HAA5 that meets the routine monitoring 
sample number and location requirements for TTHM in Secs. 141.12 and 
141.30 and handling and analytical method requirements of 
Sec. 141.142(b)(1) to determine the HAA5 annual average and whether the 
requirements of paragraph (b) of this section apply. This monitoring 
must be completed so that the applicability determination can be made no 
later than March 31, 2000, or
    (B) Comply with all other provisions of this section as if the HAA5 
monitoring had been conducted and the results required compliance with 
paragraph (b) of this section.
 
[[Page 526]]
 
    (3) The system may request that the State approve a more 
representative annual data set than the data set determined under 
paragraph (a)(1) or (2) of this section for the purpose of determining 
applicability of the requirements of this section.
    (4) The State may require that a system use a more representative 
annual data set than the data set determined under paragraph (a)(1) or 
(2) of this section for the purpose of determining applicability of the 
requirements of this section.
    (5) The system must submit data to the State on the schedule in 
paragraphs (a)(5)(i) through (v) of this section.
    (i) Those systems that collected TTHM and HAA5 data under the 
provisions of subpart M (Information Collection Rule), as required by 
paragraphs (a)(1)(i) and (a)(2)(i) of this section, must submit the 
results of the samples collected during the last 12 months of required 
monitoring under Sec. 141.142 not later than December 31, 1999.
    (ii) Those systems that have collected four consecutive quarters of 
HAA5 occurrence data that meets the routine monitoring sample number and 
location for TTHM in Secs. 141.12 and 141.30 and handling and analytical 
method requirements of Sec. 141.142(b)(1), as allowed by paragraphs 
(a)(1)(ii) and (a)(2)(ii) of this section, must submit those data to the 
State not later than April 16, 1999. Until the State has approved the 
data, the system must conduct monitoring for HAA5 using the monitoring 
requirements specified under paragraph (a)(2)(iii) of this section.
    (iii) Those systems that conduct monitoring for HAA5 using the 
monitoring requirements specified by paragraphs (a)(1)(iii) and 
(a)(2)(iii)(A) of this section, must submit TTHM and HAA5 data not later 
than March 31, 2000.
    (iv) Those systems that elect to comply with all other provisions of 
this section as if the HAA5 monitoring had been conducted and the 
results required compliance with this section, as allowed under 
paragraphs (a)(2)(iii)(B) of this section, must notify the State in 
writing of their election not later than December 31, 1999.
    (v) If the system elects to request that the State approve a more 
representative annual data set than the data set determined under 
paragraph (a)(2)(i) of this section, the system must submit this request 
in writing not later than December 31, 1999.
    (6) Any system having either a TTHM annual average 0.064 
mg/L or an HAA5 annual average 0.048 mg/L during the period 
identified in paragraphs (a)(1) and (2) of this section must comply with 
paragraph (b) of this section.
    (b) Disinfection profiling. (1) Any system that meets the criteria 
in paragraph (a)(6) of this section must develop a disinfection profile 
of its disinfection practice for a period of up to three years.
    (2) The system must monitor daily for a period of 12 consecutive 
calendar months to determine the total logs of inactivation for each day 
of operation, based on the CT99.9 values in Tables 1.1-1.6, 2.1, and 3.1 
of Sec. 141.74(b), as appropriate, through the entire treatment plant. 
This system must begin this monitoring not later than April 1, 2000. As 
a minimum, the system with a single point of disinfectant application 
prior to entrance to the distribution system must conduct the monitoring 
in paragraphs (b)(2)(i) through (iv) of this section. A system with more 
than one point of disinfectant application must conduct the monitoring 
in paragraphs (b)(2)(i) through (iv) of this section for each 
disinfection segment. The system must monitor the parameters necessary 
to determine the total inactivation ratio, using analytical methods in 
Sec. 141.74(a), as follows:
    (i) The temperature of the disinfected water must be measured once 
per day at each residual disinfectant concentration sampling point 
during peak hourly flow.
    (ii) If the system uses chlorine, the pH of the disinfected water 
must be measured once per day at each chlorine residual disinfectant 
concentration sampling point during peak hourly flow.
    (iii) The disinfectant contact time(s) ("T") must be determined 
for each day during peak hourly flow.
    (iv) The residual disinfectant concentration(s) ("C") of the water 
before or at the first customer and prior to
 
[[Page 527]]
 
each additional point of disinfection must be measured each day during 
peak hourly flow.
    (3) In lieu of the monitoring conducted under the provisions of 
paragraph (b)(2) of this section to develop the disinfection profile, 
the system may elect to meet the requirements of paragraph (b)(3)(i) of 
this section. In addition to the monitoring conducted under the 
provisions of paragraph (b)(2) of this section to develop the 
disinfection profile, the system may elect to meet the requirements of 
paragraph (b)(3)(ii) of this section.
    (i) A PWS that has three years of existing operational data may 
submit those data, a profile generated using those data, and a request 
that the State approve use of those data in lieu of monitoring under the 
provisions of paragraph (b)(2) of this section not later than March 31, 
2000. The State must determine whether these operational data are 
substantially equivalent to data collected under the provisions of 
paragraph (b)(2) of this section. These data must also be representative 
of Giardia lamblia inactivation through the entire treatment plant and 
not just of certain treatment segments. Until the State approves this 
request, the system is required to conduct monitoring under the 
provisions of paragraph (b)(2) of this section.
    (ii) In addition to the disinfection profile generated under 
paragraph (b)(2) of this section, a PWS that has existing operational 
data may use those data to develop a disinfection profile for additional 
years. Such systems may use these additional yearly disinfection 
profiles to develop a benchmark under the provisions of paragraph (c) of 
this section. The State must determine whether these operational data 
are substantially equivalent to data collected under the provisions of 
paragraph (b)(2) of this section. These data must also be representative 
of inactivation through the entire treatment plant and not just of 
certain treatment segments.
    (4) The system must calculate the total inactivation ratio as 
follows:
    (i) If the system uses only one point of disinfectant application, 
the system may determine the total inactivation ratio for the 
disinfection segment based on either of the methods in paragraph 
(b)(4)(i)(A) or (b)(4)(i)(B) of this section.
    (A) Determine one inactivation ratio (CTcalc/CT<INF>99.9</INF>) 
before or at the first customer during peak hourly flow.
    (B) Determine successive CTcalc/CT<INF>99.9</INF> values, 
representing sequential inactivation ratios, between the point of 
disinfectant application and a point before or at the first customer 
during peak hourly flow. Under this alternative, the system must 
calculate the total inactivation ratio by determining (CTcalc/
CT<INF>99.9</INF>) for each sequence and then adding the (CTcalc/
CT<INF>99.9</INF>) values together to determine (<greek-S> (CTcalc/
CT<INF>99.9</INF>)).
    (ii) If the system uses more than one point of disinfectant 
application before the first customer, the system must determine the CT 
value of each disinfection segment immediately prior to the next point 
of disinfectant application, or for the final segment, before or at the 
first customer, during peak hourly flow. The (CTcalc/CT<INF>99.9</INF>) 
value of each segment and (<greek-S>(CTcalc/CT<INF>99.9</INF>)) must be 
calculated using the method in paragraph (b)(4)(i) of this section.
    (iii) The system must determine the total logs of inactivation by 
multiplying the value calculated in paragraph (b)(4)(i) or (ii) of this 
section by 3.0.
    (5) A system that uses either chloramines or ozone for primary 
disinfection must also calculate the logs of inactivation for viruses 
using a method approved by the State.
    (6) The system must retain disinfection profile data in graphic 
form, as a spreadsheet, or in some other format acceptable to the State 
for review as part of sanitary surveys conducted by the State.
    (c) Disinfection benchmarking. (1) Any system required to develop a 
disinfection profile under the provisions of paragraphs (a) and (b) of 
this section and that decides to make a significant change to its 
disinfection practice must consult with the State prior to making such 
change. Significant changes to disinfection practice are:
    (i) Changes to the point of disinfection;
    (ii) Changes to the disinfectant(s) used in the treatment plant;
 
[[Page 528]]
 
    (iii) Changes to the disinfection process; and
    (iv) Any other modification identified by the State.
    (2) Any system that is modifying its disinfection practice must 
calculate its disinfection benchmark using the procedure specified in 
paragraphs (c)(2)(i) through (ii) of this section.
    (i) For each year of profiling data collected and calculated under 
paragraph (b) of this section, the system must determine the lowest 
average monthly Giardia lamblia inactivation in each year of profiling 
data. The system must determine the average Giardia lamblia inactivation 
for each calendar month for each year of profiling data by dividing the 
sum of daily Giardia lamblia of inactivation by the number of values 
calculated for that month.
    (ii) The disinfection benchmark is the lowest monthly average value 
(for systems with one year of profiling data) or average of lowest 
monthly average values (for systems with more than one year of profiling 
data) of the monthly logs of Giardia lamblia inactivation in each year 
of profiling data.
    (3) A system that uses either chloramines or ozone for primary 
disinfection must also calculate the disinfection benchmark for viruses 
using a method approved by the State.
    (4) The system must submit information in paragraphs (c)(4)(i) 
through (iii) of this section to the State as part of its consultation 
process.
    (i) A description of the proposed change;
    (ii) The disinfection profile for Giardia lamblia (and, if 
necessary, viruses) under paragraph (b) of this section and benchmark as 
required by paragraph (c)(2) of this section; and
    (iii) An analysis of how the proposed change will affect the current 
levels of disinfection.
 
[63 FR 69516, Dec. 16, 1998, as amended at 66 FR 3779, Jan. 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.173]
 
[Page 528]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
             Subpart P--Enhanced Filtration and Disinfection
 
Sec. 141.173  Filtration.
 
    A public water system subject to the requirements of this subpart 
that does not meet all of the criteria in this subpart and subpart H of 
this part for avoiding filtration must provide treatment consisting of 
both disinfection, as specified in Sec. 141.72(b), and filtration 
treatment which complies with the requirements of paragraph (a) or (b) 
of this section or Sec. 141.73 (b) or (c) by December 31, 2001.
    (a) Conventional filtration treatment or direct filtration. (1) For 
systems using conventional filtration or direct filtration, the 
turbidity level of representative samples of a system's filtered water 
must be less than or equal to 0.3 NTU in at least 95 percent of the 
measurements taken each month, measured as specified in Sec. 141.74(a) 
and (c).
    (2) The turbidity level of representative samples of a system's 
filtered water must at no time exceed 1 NTU, measured as specified in 
Sec. 141.74(a) and (c).
    (3) A system that uses lime softening may acidify representative 
samples prior to analysis using a protocol approved by the State.
    (b) Filtration technologies other than conventional filtration 
treatment, direct filtration, slow sand filtration, or diatomaceous 
earth filtration. A public water system may use a filtration technology 
not listed in paragraph (a) of this section or in Sec. 141.73(b) or (c) 
if it demonstrates to the State, using pilot plant studies or other 
means, that the alternative filtration technology, in combination with 
disinfection treatment that meets the requirements of Sec. 141.72(b), 
consistently achieves 99.9 percent removal and/or inactivation of 
Giardia lamblia cysts and 99.99 percent removal and/or inactivation of 
viruses, and 99 percent removal of Cryptosporidium oocysts, and the 
State approves the use of the filtration technology. For each approval, 
the State will set turbidity performance requirements that the system 
must meet at least 95 percent of the time and that the system may not 
exceed at any time at a level that consistently achieves 99.9 percent 
removal and/or inactivation of Giardia lamblia cysts, 99.99 percent 
removal and/or inactivation of viruses, and 99 percent removal of 
Cryptosporidium oocysts.
 
[63 FR 69516, Dec. 16, 1998, as amended at 65 FR 20313, Apr. 14, 2000; 
66 FR 3779, Jan. 16, 2001]
 
[[Page 529]]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.174]
 
[Page 529]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
             Subpart P--Enhanced Filtration and Disinfection
 
Sec. 141.174  Filtration sampling requirements.
 
    (a) Monitoring requirements for systems using filtration treatment. 
In addition to monitoring required by Sec. 141.74, a public water system 
subject to the requirements of this subpart that provides conventional 
filtration treatment or direct filtration must conduct continuous 
monitoring of turbidity for each individual filter using an approved 
method in Sec. 141.74(a) and must calibrate turbidimeters using the 
procedure specified by the manufacturer. Systems must record the results 
of individual filter monitoring every 15 minutes.
    (b) If there is a failure in the continuous turbidity monitoring 
equipment, the system must conduct grab sampling every four hours in 
lieu of continuous monitoring, but for no more than five working days 
following the failure of the equipment.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.175]
 
[Page 529-530]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
             Subpart P--Enhanced Filtration and Disinfection
 
Sec. 141.175  Reporting and recordkeeping requirements.
 
    In addition to the reporting and recordkeeping requirements in 
Sec. 141.75, a public water system subject to the requirements of this 
subpart that provides conventional filtration treatment or direct 
filtration must report monthly to the State the information specified in 
paragraphs (a) and (b) of this section beginning January 1, 2002. In 
addition to the reporting and recordkeeping requirements in Sec. 141.75, 
a public water system subject to the requirements of this subpart that 
provides filtration approved under Sec. 141.173(b) must report monthly 
to the State the information specified in paragraph (a) of this section 
beginning January 1, 2002. The reporting in paragraph (a) of this 
section is in lieu of the reporting specified in Sec. 141.75(b)(1).
    (a) Turbidity measurements as required by Sec. 141.173 must be 
reported within 10 days after the end of each month the system serves 
water to the public. Information that must be reported includes:
    (1) The total number of filtered water turbidity measurements taken 
during the month.
    (2) The number and percentage of filtered water turbidity 
measurements taken during the month which are less than or equal to the 
turbidity limits specified in Sec. 141.173(a) or (b).
    (3) The date and value of any turbidity measurements taken during 
the month which exceed 1 NTU for systems using conventional filtration 
treatment or direct filtration, or which exceed the maximum level set by 
the State under Sec. 141.173(b).
    (b) Systems must maintain the results of individual filter 
monitoring taken under Sec. 141.174 for at least three years. Systems 
must report that they have conducted individual filter turbidity 
monitoring under Sec. 141.174 within 10 days after the end of each month 
the system serves water to the public. Systems must report individual 
filter turbidity measurement results taken under Sec. 141.174 within 10 
days after the end of each month the system serves water to the public 
only if measurements demonstrate one or more of the conditions in 
paragraphs (b)(1) through (4) of this section. Systems that use lime 
softening may apply to the State for alternative exceedance levels for 
the levels specified in paragraphs (b)(1) through (4) of this section if 
they can demonstrate that higher turbidity levels in individual filters 
are due to lime carryover only and not due to degraded filter 
performance.
    (1) For any individual filter that has a measured turbidity level of 
greater than 1.0 NTU in two consecutive measurements taken 15 minutes 
apart, the system must report the filter number, the turbidity 
measurement, and the date(s) on which the exceedance occurred. In 
addition, the system must either produce a filter profile for the filter 
within 7 days of the exceedance (if the system is not able to identify 
an obvious reason for the abnormal filter performance) and report that 
the profile has been produced or report the obvious reason for the 
exceedance.
    (2) For any individual filter that has a measured turbidity level of 
greater than 0.5 NTU in two consecutive measurements taken 15 minutes 
apart at the end of the first four hours of continuous filter operation 
after the filter has been backwashed or otherwise taken offline, the 
system must report the filter number, the turbidity, and the date(s) on 
which the exceedance occurred. In addition, the system must
 
[[Page 530]]
 
either produce a filter profile for the filter within 7 days of the 
exceedance (if the system is not able to identify an obvious reason for 
the abnormal filter performance) and report that the profile has been 
produced or report the obvious reason for the exceedance.
    (3) For any individual filter that has a measured turbidity level of 
greater than 1.0 NTU in two consecutive measurements taken 15 minutes 
apart at any time in each of three consecutive months, the system must 
report the filter number, the turbidity measurement, and the date(s) on 
which the exceedance occurred. In addition, the system must conduct a 
self-assessment of the filter within 14 days of the exceedance and 
report that the self-assessment was conducted. The self assessment must 
consist of at least the following components: assessment of filter 
performance; development of a filter profile; identification and 
prioritization of factors limiting filter performance; assessment of the 
applicability of corrections; and preparation of a filter self-
assessment report.
    (4) For any individual filter that has a measured turbidity level of 
greater than 2.0 NTU in two consecutive measurements taken 15 minutes 
apart at any time in each of two consecutive months, the system must 
report the filter number, the turbidity measurement, and the date(s) on 
which the exceedance occurred. In addition, the system must arrange for 
the conduct of a comprehensive performance evaluation by the State or a 
third party approved by the State no later than 30 days following the 
exceedance and have the evaluation completed and submitted to the State 
no later than 90 days following the exceedance.
    (c) Additional reporting requirements. (1) If at any time the 
turbidity exceeds 1 NTU in representative samples of filtered water in a 
system using conventional filtration treatment or direct filtration, the 
system must inform the State as soon as possible, but no later than the 
end of the next business day.
    (2) If at any time the turbidity in representative samples of 
filtered water exceeds the maximum level set by the State under 
Sec. 141.173(b) for filtration technologies other than conventional 
filtration treatment, direct filtration, slow sand filtration, or 
diatomaceous earth filtration, the system must inform the State as soon 
as possible, but no later than the end of the next business day.
 
[63 FR 69516, Dec. 16, 1998, as amended at 66 FR 3779, Jan. 16, 2001]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.201]
 
[Page 530-531]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
       Subpart Q--Public Notification of Drinking Water Violations
 
Sec. 141.201  General public notification requirements.
 
    Source: 65 FR 26035, May 4, 2000, unless otherwise noted.
 
 
    Public water systems in States with primacy for the public water 
system supervision (PWSS) program must comply with the requirements in 
this subpart no later than May 6, 2002 or on the date the State-adopted 
rule becomes effective, whichever comes first. Public water systems in 
jurisdictions where EPA directly implements the PWSS program must comply 
with the requirements in this subpart on October 31, 2000. Prior to 
these dates, public water systems must continue to comply with the 
public notice requirements in Sec. 141.32 of this part. The term 
"primacy agency" is used in this subpart to refer to either EPA or the 
State or the Tribe in cases where EPA, the State, or the Tribe exercises 
primary enforcement responsibility for this subpart.
    (a) Who must give public notice? Each owner or operator of a public 
water system (community water systems, non-transient non-community water 
systems, and transient non-community water systems) must give notice for 
all violations of national primary drinking water regulations (NPDWR) 
and for other situations, as listed in Table 1. The term "NPDWR 
violations" is used in this subpart to include violations of the 
maximum contaminant level (MCL), maximum residual disinfection level 
(MRDL), treatment technique (TT), monitoring requirements, and testing 
procedures in this part 141. Appendix A to this subpart identifies the 
tier assignment for each specific violation or situation requiring a 
public notice.
 
[[Page 531]]
 
._______________________________________________________________________
 
  Table 1 to Sec.  141.201.--Violation Categories and Other Situations
                        Requiring a Public Notice
------------------------------------------------------------------------
 
-------------------------------------------------------------------------
(1) NPDWR violations:
  (i) Failure to comply with an applicable maximum contaminant level
   (MCL) or maximum residual disinfectant level (MRDL).
  (ii) Failure to comply with a prescribed treatment technique (TT).
  (iii) Failure to perform water quality monitoring, as required by the
   drinking water regulations.
  (iv) Failure to comply with testing procedures as prescribed by a
   drinking water regulation.
(2) Variance and exemptions under sections 1415 and 1416 of SDWA:
  (i) Operation under a variance or an exemption.
  (ii) Failure to comply with the requirements of any schedule that has
   been set under a variance or exemption.
(3) Special public notices:
  (i) Occurrence of a waterborne disease outbreak or other waterborne
   emergency.
  (ii) Exceedance of the nitrate MCL by non-community water systems
   (NCWS), where granted permission by the primacy agency under
   141.11(d) of this part.
  (iii) Exceedance of the secondary maximum contaminant level (SMCL) for
   fluoride.
  (iv) Availability of unregulated contaminant monitoring data.
  (v) Other violations and situations determined by the primacy agency
   to require a public notice under this subpart, not already listed in
   Appendix A.
------------------------------------------------------------------------
 
    (b) What type of public notice is required for each violation or 
situation? Public notice requirements are divided into three tiers, to 
take into account the seriousness of the violation or situation and of 
any potential adverse health effects that may be involved. The public 
notice requirements for each violation or situation listed in Table 1 of 
this section are determined by the tier to which it is assigned. Table 2 
of this section provides the definition of each tier. Appendix A of this 
part identifies the tier assignment for each specific violation or 
situation.
._______________________________________________________________________
 
      Table 2 to Sec.  141.201.--Definition of Public Notice Tiers
------------------------------------------------------------------------
 
-------------------------------------------------------------------------
(1) Tier 1 public notice--required for NPDWR violations and situations
 with significant potential to have serious adverse effects on human
 health as a result of short-term exposure.
(2) Tier 2 public notice--required for all other NPDWR violations and
 situations with potential to have serious adverse effects on human
 health.
(3) Tier 3 public notice--required for all other NPDWR violations and
 situations not included in Tier 1 and Tier 2.
------------------------------------------------------------------------
 
    (c) Who must be notified?
    (1) Each public water system must provide public notice to persons 
served by the water system, in accordance with this subpart. Public 
water systems that sell or otherwise provide drinking water to other 
public water systems (i.e., to consecutive systems) are required to give 
public notice to the owner or operator of the consecutive system; the 
consecutive system is responsible for providing public notice to the 
persons it serves.
    (2) If a public water system has a violation in a portion of the 
distribution system that is physically or hydraulically isolated from 
other parts of the distribution system, the primacy agency may allow the 
system to limit distribution of the public notice to only persons served 
by that portion of the system which is out of compliance. Permission by 
the primacy agency for limiting distribution of the notice must be 
granted in writing.
    (3) A copy of the notice must also be sent to the primacy agency, in 
accordance with the requirements under Sec. 141.31(d).
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.202]
 
[Page 531-533]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
       Subpart Q--Public Notification of Drinking Water Violations
 
Sec. 141.202  Tier 1 Public Notice--Form, manner, and frequency of notice.
 
    (a) Which violations or situations require a Tier 1 public notice? 
Table 1 of this section lists the violation categories and other 
situations requiring a Tier 1 public notice. Appendix A to this subpart 
identifies the tier assignment for each specific violation or situation.
 
[[Page 532]]
 
._______________________________________________________________________
 
  Table 1 to Sec.  141.202.--Violation Categories and Other Situations
                    Requiring a Tier 1 Public Notice
------------------------------------------------------------------------
 
-------------------------------------------------------------------------
(1) Violation of the MCL for total coliforms when fecal coliform or E.
 coli are present in the water distribution system (as specified in Sec.
  141.63(b)), or when the water system fails to test for fecal coliforms
 or E. coli when any repeat sample tests positive for coliform (as
 specified in Sec.  141.21(e));
(2) Violation of the MCL for nitrate, nitrite, or total nitrate and
 nitrite, as defined in Sec.  141.62, or when the water system fails to
 take a confirmation sample within 24 hours of the system's receipt of
 the first sample showing an exceedance of the nitrate or nitrite MCL,
 as specified in Sec.  141.23(f)(2);
(3) Exceedance of the nitrate MCL by non-community water systems, where
 permitted to exceed the MCL by the primacy agency under Sec.
 141.11(d), as required under Sec.  141.209;
(4) Violation of the MRDL for chlorine dioxide, as defined in Sec.
 141.65(a), when one or more samples taken in the distribution system
 the day following an exceedance of the MRDL at the entrance of the
 distribution system exceed the MRDL, or when the water system does not
 take the required samples in the distribution system, as specified in
 Sec.  141.133(c)(2)(i);
(5) Violation of the turbidity MCL under Sec.  141.13(b), where the
 primacy agency determines after consultation that a Tier 1 notice is
 required or where consultation does not take place within 24 hours
 after the system learns of the violation;
(6) Violation of the Surface Water Treatment Rule (SWTR) or Interim
 Enhanced Surface Water Treatment rule (IESWTR) treatment technique
 requirement resulting from a single exceedance of the maximum allowable
 turbidity limit (as identified in Appendix A), where the primacy agency
 determines after consultation that a Tier 1 notice is required or where
 consultation does not take place within 24 hours after the system
 learns of the violation;
(7) Occurrence of a waterborne disease outbreak, as defined in Sec.
 141.2, or other waterborne emergency (such as a failure or significant
 interruption in key water treatment processes, a natural disaster that
 disrupts the water supply or distribution system, or a chemical spill
 or unexpected loading of possible pathogens into the source water that
 significantly increases the potential for drinking water
 contamination);
(8) Other violations or situations with significant potential to have
 serious adverse effects on human health as a result of short-term
 exposure, as determined by the primacy agency either in its regulations
 or on a case-by-case basis.
------------------------------------------------------------------------
 
    (b) When is the Tier 1 public notice to be provided? What additional 
steps are required? Public water systems must:
    (1) Provide a public notice as soon as practical but no later than 
24 hours after the system learns of the violation;
    (2) Initiate consultation with the primacy agency as soon as 
practical, but no later than 24 hours after the public water system 
learns of the violation or situation, to determine additional public 
notice requirements; and
    (3) Comply with any additional public notification requirements 
(including any repeat notices or direction on the duration of the posted 
notices) that are established as a result of the consultation with the 
primacy agency. Such requirements may include the timing, form, manner, 
frequency, and content of repeat notices (if any) and other actions 
designed to reach all persons served.
    (c) What is the form and manner of the public notice? Public water 
systems must provide the notice within 24 hours in a form and manner 
reasonably calculated to reach all persons served. The form and manner 
used by the public water system are to fit the specific situation, but 
must be designed to reach residential, transient, and non-transient 
users of the water system. In order to reach all persons served, water 
systems are to use, at a minimum, one
 
[[Page 533]]
 
or more of the following forms of delivery:
    (1) Appropriate broadcast media (such as radio and television);
    (2) Posting of the notice in conspicuous locations throughout the 
area served by the water system;
    (3) Hand delivery of the notice to persons served by the water 
system; or
    (4) Another delivery method approved in writing by the primacy 
agency.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.203]
 
[Page 533-534]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
       Subpart Q--Public Notification of Drinking Water Violations
 
Sec. 141.203  Tier 2 Public Notice--Form, manner, and frequency of notice.
 
    (a) Which violations or situations require a Tier 2 public notice? 
Table 1 of this section lists the violation categories and other 
situations requiring a Tier 2 public notice. Appendix A to this subpart 
identifies the tier assignment for each specific violation or situation.
._______________________________________________________________________
 
  Table 1 to Sec.  141.203.--Violation Categories and Other Situations
                    Requiring a Tier 2 Public Notice
(1) All violations of the MCL, MRDL, and treatment technique
 requirements, except where a Tier 1 notice is required under Sec.
 141.202(a) or where the primacy agency determines that a Tier 1 notice
 is required;
(2) Violations of the monitoring and testing procedure requirements,
 where the primacy agency determines that a Tier 2 rather than a Tier 3
 public notice is required, taking into account potential health impacts
 and persistence of the violation; and
(3) Failure to comply with the terms and conditions of any variance or
 exemption in place.
------------------------------------------------------------------------
 
    (b) When is the Tier 2 public notice to be provided?
    (1) Public water systems must provide the public notice as soon as 
practical, but no later than 30 days after the system learns of the 
violation. If the public notice is posted, the notice must remain in 
place for as long as the violation or situation persists, but in no case 
for less than seven days, even if the violation or situation is 
resolved. The primacy agency may, in appropriate circumstances, allow 
additional time for the initial notice of up to three months from the 
date the system learns of the violation. It is not appropriate for the 
primacy agency to grant an extension to the 30-day deadline for any 
unresolved violation or to allow across-the-board extensions by rule or 
policy for other violations or situations requiring a Tier 2 public 
notice. Extensions granted by the primacy agency must be in writing.
    (2) The public water system must repeat the notice every three 
months as long as the violation or situation persists, unless the 
primacy agency determines that appropriate circumstances warrant a 
different repeat notice frequency. In no circumstance may the repeat 
notice be given less frequently than once per year. It is not 
appropriate for the primacy agency to allow less frequent repeat notice 
for an MCL violation under the Total Coliform Rule or a treatment 
technique violation under the Surface Water Treatment Rule or Interim 
Enhanced Surface Water Treatment Rule. It is also not appropriate for 
the primacy agency to allow through its rules or policies across-the-
board reductions in the repeat notice frequency for other ongoing 
violations requiring a Tier 2 repeat notice. Primacy agency 
determinations allowing repeat notices to be given less frequently than 
once every three months must be in writing.
    (3) For the turbidity violations specified in this paragraph, public 
water systems must consult with the primacy agency as soon as practical 
but no later than 24 hours after the public water system learns of the 
violation, to determine whether a Tier 1 public notice under 
Sec. 141.202(a) is required to protect public health. When consultation 
does not take place within the 24-hour period, the water system must 
distribute a Tier 1 notice of the violation within the next 24 hours 
(i.e., no later than 48 hours after the system learns of the violation), 
following the requirements under Sec. 141.202(b) and (c). Consultation 
with the primacy agency is required for:
    (i) Violation of the turbidity MCL under Sec. 141.13(b); or
    (ii) Violation of the SWTR or IESWTR treatment technique requirement 
resulting from a single exceedance of the maximum allowable turbidity 
limit.
 
[[Page 534]]
 
    (c) What is the form and manner of the Tier 2 public notice? Public 
water systems must provide the initial public notice and any repeat 
notices in a form and manner that is reasonably calculated to reach 
persons served in the required time period. The form and manner of the 
public notice may vary based on the specific situation and type of water 
system, but it must at a minimum meet the following requirements:
    (1) Unless directed otherwise by the primacy agency in writing, 
community water systems must provide notice by:
    (i) Mail or other direct delivery to each customer receiving a bill 
and to other service connections to which water is delivered by the 
public water system; and
    (ii) Any other method reasonably calculated to reach other persons 
regularly served by the system, if they would not normally be reached by 
the notice required in paragraph (c)(1)(i) of this section. Such persons 
may include those who do not pay water bills or do not have service 
connection addresses (e.g., house renters, apartment dwellers, 
university students, nursing home patients, prison inmates, etc.). Other 
methods may include: Publication in a local newspaper; delivery of 
multiple copies for distribution by customers that provide their 
drinking water to others (e.g., apartment building owners or large 
private employers); posting in public places served by the system or on 
the Internet; or delivery to community organizations.
    (2) Unless directed otherwise by the primacy agency in writing, non-
community water systems must provide notice by:
    (i) Posting the notice in conspicuous locations throughout the 
distribution system frequented by persons served by the system, or by 
mail or direct delivery to each customer and service connection (where 
known); and
    (ii) Any other method reasonably calculated to reach other persons 
served by the system if they would not normally be reached by the notice 
required in paragraph (c)(2)(i) of this section. Such persons may 
include those served who may not see a posted notice because the posted 
notice is not in a location they routinely pass by. Other methods may 
include: Publication in a local newspaper or newsletter distributed to 
customers; use of E-mail to notify employees or students; or, delivery 
of multiple copies in central locations (e.g., community centers).
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.204]
 
[Page 534-535]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
       Subpart Q--Public Notification of Drinking Water Violations
 
Sec. 141.204  Tier 3 Public Notice--Form, manner, and frequency of notice.
 
    (a) Which violations or situations require a Tier 3 public notice? 
Table 1 of this section lists the violation categories and other 
situations requiring a Tier 3 public notice. Appendix A to this subpart 
identifies the tier assignment for each specific violation or situation.
._______________________________________________________________________
 
  Table 1 to Sec.  141.204.--Violation Categories and Other Situations
                    Requiring a Tier 3 Public Notice
------------------------------------------------------------------------
 
-------------------------------------------------------------------------
(1) Monitoring violations under 40 CFR part 141, except where a Tier 1
 notice is required under Sec.  141.202(a) or where the primacy agency
 determines that a Tier 2 notice is required;
(2) Failure to comply with a testing procedure established in 40 CFR
 part 141, except where a Tier 1 notice is required under Sec.
 141.202(a)) or where the primacy agency determines that a Tier 2 notice
 is required;
(3) Operation under a variance granted under Section 1415 or an
 exemption granted under Section 1416 of the Safe Drinking Water Act;
(4) Availability of unregulated contaminant monitoring results, as
 required under Sec.  141.207; and
(5) Exceedance of the fluoride secondary maximum contaminant level
 (SMCL), as required under Sec.  141.208.
------------------------------------------------------------------------
 
    (b) When is the Tier 3 public notice to be provided?
    (1) Public water systems must provide the public notice not later 
than one year after the public water system learns of the violation or 
situation or begins operating under a variance or exemption. Following 
the initial notice, the public water system must repeat the notice 
annually for as long as the violation, variance, exemption, or other 
situation persists. If the public
 
[[Page 535]]
 
notice is posted, the notice must remain in place for as long as the 
violation, variance, exemption, or other situation persists, but in no 
case less than seven days (even if the violation or situation is 
resolved).
    (2) Instead of individual Tier 3 public notices, a public water 
system may use an annual report detailing all violations and situations 
that occurred during the previous twelve months, as long as the timing 
requirements of paragraph (b)(1) of this section are met.
    (c) What is the form and manner of the Tier 3 public notice? Public 
water systems must provide the initial notice and any repeat notices in 
a form and manner that is reasonably calculated to reach persons served 
in the required time period. The form and manner of the public notice 
may vary based on the specific situation and type of water system, but 
it must at a minimum meet the following requirements:
    (1) Unless directed otherwise by the primacy agency in writing, 
community water systems must provide notice by:
    (i) Mail or other direct delivery to each customer receiving a bill 
and to other service connections to which water is delivered by the 
public water system; and
    (ii) Any other method reasonably calculated to reach other persons 
regularly served by the system, if they would not normally be reached by 
the notice required in paragraph (c)(1)(i) of this section. Such persons 
may include those who do not pay water bills or do not have service 
connection addresses (e.g., house renters, apartment dwellers, 
university students, nursing home patients, prison inmates, etc.). Other 
methods may include: Publication in a local newspaper; delivery of 
multiple copies for distribution by customers that provide their 
drinking water to others (e.g., apartment building owners or large 
private employers); posting in public places or on the Internet; or 
delivery to community organizations.
    (2) Unless directed otherwise by the primacy agency in writing, non-
community water systems must provide notice by:
    (i) Posting the notice in conspicuous locations throughout the 
distribution system frequented by persons served by the system, or by 
mail or direct delivery to each customer and service connection (where 
known); and
    (ii) Any other method reasonably calculated to reach other persons 
served by the system, if they would not normally be reached by the 
notice required in paragraph (c)(2)(i) of this section. Such persons may 
include those who may not see a posted notice because the notice is not 
in a location they routinely pass by. Other methods may include: 
Publication in a local newspaper or newsletter distributed to customers; 
use of E-mail to notify employees or students; or, delivery of multiple 
copies in central locations (e.g., community centers).
    (d) In what situations may the Consumer Confidence Report be used to 
meet the Tier 3 public notice requirements? For community water systems, 
the Consumer Confidence Report (CCR) required under Subpart O of this 
part may be used as a vehicle for the initial Tier 3 public notice and 
all required repeat notices, as long as:
    (1) The CCR is provided to persons served no later than 12 months 
after the system learns of the violation or situation as required under 
Sec. 141.204(b);
    (2) The Tier 3 notice contained in the CCR follows the content 
requirements under Sec. 141.205; and
    (3) The CCR is distributed following the delivery requirements under 
Sec. 141.204(c).
 
[65 FR 26035, May 4, 2000; 65 FR 38629, June 21, 2000]
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.205]
 
[Page 535-537]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
       Subpart Q--Public Notification of Drinking Water Violations
 
Sec. 141.205  Content of the public notice.
 
    (a) What elements must be included in the public notice for 
violations of National Primary Drinking Water Regulations (NPDWR) or 
other situations requiring a public notice? When a public water system 
violates a NPDWR or has a situation requiring public notification, each 
public notice must include the following elements:
    (1) A description of the violation or situation, including the 
contaminant(s) of concern, and (as applicable) the contaminant level(s);
    (2) When the violation or situation occurred;
    (3) Any potential adverse health effects from the violation or 
situation, including the standard language under
 
[[Page 536]]
 
paragraph (d)(1) or (d)(2) of this section, whichever is applicable;
    (4) The population at risk, including subpopulations particularly 
vulnerable if exposed to the contaminant in their drinking water;
    (5) Whether alternative water supplies should be used;
    (6) What actions consumers should take, including when they should 
seek medical help, if known;
    (7) What the system is doing to correct the violation or situation;
    (8) When the water system expects to return to compliance or resolve 
the situation;
    (9) The name, business address, and phone number of the water system 
owner, operator, or designee of the public water system as a source of 
additional information concerning the notice; and
    (10) A statement to encourage the notice recipient to distribute the 
public notice to other persons served, using the standard language under 
paragraph (d)(3) of this section, where applicable.
    (b) What elements must be included in the public notice for public 
water systems operating under a variance or exemption?
    (1) If a public water system has been granted a variance or an 
exemption, the public notice must contain:
    (i) An explanation of the reasons for the variance or exemption;
    (ii) The date on which the variance or exemption was issued;
    (iii) A brief status report on the steps the system is taking to 
install treatment, find alternative sources of water, or otherwise 
comply with the terms and schedules of the variance or exemption; and
    (iv) A notice of any opportunity for public input in the review of 
the variance or exemption.
    (2) If a public water system violates the conditions of a variance 
or exemption, the public notice must contain the ten elements listed in 
paragraph (a) of this section.
    (c) How is the public notice to be presented?
    (1) Each public notice required by this section:
    (i) Must be displayed in a conspicuous way when printed or posted;
    (ii) Must not contain overly technical language or very small print;
    (iii) Must not be formatted in a way that defeats the purpose of the 
notice;
    (iv) Must not contain language which nullifies the purpose of the 
notice.
    (2) Each public notice required by this section must comply with 
multilingual requirements, as follows:
    (i) For public water systems serving a large proportion of non-
English speaking consumers, as determined by the primacy agency, the 
public notice must contain information in the appropriate language(s) 
regarding the importance of the notice or contain a telephone number or 
address where persons served may contact the water system to obtain a 
translated copy of the notice or to request assistance in the 
appropriate language.
    (ii) In cases where the primacy agency has not determined what 
constitutes a large proportion of non-English speaking consumers, the 
public water system must include in the public notice the same 
information as in paragraph (c)(2)(i) of this section, where appropriate 
to reach a large proportion of non-English speaking persons served by 
the water system.
    (d) What standard language must public water systems include in 
their public notice? Public water systems are required to include the 
following standard language in their public notice:
    (1) Standard health effects language for MCL or MRDL violations, 
treatment technique violations, and violations of the condition of a 
variance or exemption. Public water systems must include in each public 
notice the health effects language specified in Appendix B to this 
subpart corresponding to each MCL, MRDL, and treatment technique 
violation listed in Appendix A to this subpart, and for each violation 
of a condition of a variance or exemption.
    (2) Standard language for monitoring and testing procedure 
violations. Public water systems must include the following language in 
their notice, including the language necessary to fill in the blanks, 
for all monitoring and testing procedure violations listed in Appendix A 
to this subpart:
 
    We are required to monitor your drinking water for specific 
contaminants on a regular basis. Results of regular monitoring are an 
indicator of whether or not your drinking
 
[[Page 537]]
 
water meets health standards. During [compliance period], we "did not 
monitor or test" or "did not complete all monitoring or testing" for 
[contaminant(s)], and therefore cannot be sure of the quality of your 
drinking water during that time.
 
    (3) Standard language to encourage the distribution of the public 
notice to all persons served. Public water systems must include in their 
notice the following language (where applicable):
 
    Please share this information with all the other people who drink 
this water, especially those who may not have received this notice 
directly (for example, people in apartments, nursing homes, schools, and 
businesses). You can do this by posting this notice in a public place or 
distributing copies by hand or mail.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.206]
 
[Page 537]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
       Subpart Q--Public Notification of Drinking Water Violations
 
Sec. 141.206  Notice to new billing units or new customers.
 
    (a) What is the requirement for community water systems? Community 
water systems must give a copy of the most recent public notice for any 
continuing violation, the existence of a variance or exemption, or other 
ongoing situations requiring a public notice to all new billing units or 
new customers prior to or at the time service begins.
    (b) What is the requirement for non-community water systems? Non-
community water systems must continuously post the public notice in 
conspicuous locations in order to inform new consumers of any continuing 
violation, variance or exemption, or other situation requiring a public 
notice for as long as the violation, variance, exemption, or other 
situation persists.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.207]
 
[Page 537]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
       Subpart Q--Public Notification of Drinking Water Violations
 
Sec. 141.207  Special notice of the availability of unregulated contaminant monitoring results.
 
    (a) When is the special notice to be given? The owner or operator of 
a community water system or non-transient, non-community water system 
required to monitor under Sec. 141.40 must notify persons served by the 
system of the availability of the results of such sampling no later than 
12 months after the monitoring results are known.
    (b) What is the form and manner of the special notice? The form and 
manner of the public notice must follow the requirements for a Tier 3 
public notice prescribed in Secs. 141.204(c), (d)(1), and (d)(3). The 
notice must also identify a person and provide the telephone number to 
contact for information on the monitoring results.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.208]
 
[Page 537-538]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
       Subpart Q--Public Notification of Drinking Water Violations
 
Sec. 141.208  Special notice for exceedance of the SMCL for fluoride.
 
    (a) When is the special notice to be given? Community water systems 
that exceed the fluoride secondary maximum contaminant level (SMCL) of 2 
mg/l as specified in Sec. 143.3 (determined by the last single sample 
taken in accordance with Sec. 141.23), but do not exceed the maximum 
contaminant level (MCL) of 4 mg/l for fluoride (as specified in 
Sec. 141.62), must provide the public notice in paragraph (c) of this 
section to persons served. Public notice must be provided as soon as 
practical but no later than 12 months from the day the water system 
learns of the exceedance. A copy of the notice must also be sent to all 
new billing units and new customers at the time service begins and to 
the State public health officer. The public water system must repeat the 
notice at least annually for as long as the SMCL is exceeded. If the 
public notice is posted, the notice must remain in place for as long as 
the SMCL is exceeded, but in no case less than seven days (even if the 
exceedance is eliminated). On a case-by-case basis, the primacy agency 
may require an initial notice sooner than 12 months and repeat notices 
more frequently than annually.
    (b) What is the form and manner of the special notice? The form and 
manner of the public notice (including repeat notices) must follow the 
requirements for a Tier 3 public notice in Sec. 141.204(c) and (d)(1) 
and (d)(3).
    (c) What mandatory language must be contained in the special notice? 
The notice must contain the following language, including the language 
necessary to fill in the blanks:
 
    This is an alert about your drinking water and a cosmetic dental 
problem that might affect children under nine years of age. At low 
levels, fluoride can help prevent cavities, but children drinking water 
containing more than 2 milligrams per liter (mg/l) of fluoride may 
develop cosmetic discoloration of their permanent teeth (dental 
fluorosis). The drinking water provided by your community water system 
[name] has a fluoride concentration of [insert value] mg/l.
    Dental fluorosis, in its moderate or severe forms, may result in a 
brown staining and/or pitting of the permanent teeth. This problem
 
[[Page 538]]
 
occurs only in developing teeth, before they erupt from the gums. 
Children under nine should be provided with alternative sources of 
drinking water or water that has been treated to remove the fluoride to 
avoid the possibility of staining and pitting of their permanent teeth. 
You may also want to contact your dentist about proper use by young 
children of fluoride-containing products. Older children and adults may 
safely drink the water.
    Drinking water containing more than 4 mg/L of fluoride (the U.S. 
Environmental Protection Agency's drinking water standard) can increase 
your risk of developing bone disease. Your drinking water does not 
contain more than 4 mg/l of fluoride, but we're required to notify you 
when we discover that the fluoride levels in your drinking water exceed 
2 mg/l because of this cosmetic dental problem.
    For more information, please call [name of water system contact] of 
[name of community water system] at [phone number]. Some home water 
treatment units are also available to remove fluoride from drinking 
water. To learn more about available home water treatment units, you may 
call NSF International at 1-877-8-NSF-HELP."
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.209]
 
[Page 538]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
       Subpart Q--Public Notification of Drinking Water Violations
 
Sec. 141.209  Special notice for nitrate exceedances above MCL by non-community water systems (NCWS), where granted permission by the primacy agency under Sec. 141.11(d)
 
    (a) When is the special notice to be given? The owner or operator of 
a non-community water system granted permission by the primacy agency 
under Sec. 141.11(d) to exceed the nitrate MCL must provide notice to 
persons served according to the requirements for a Tier 1 notice under 
Sec. 141.202(a) and (b).
    (b) What is the form and manner of the special notice? Non-community 
water systems granted permission by the primacy agency to exceed the 
nitrate MCL under Sec. 141.11(d) must provide continuous posting of the 
fact that nitrate levels exceed 10 mg/l and the potential health effects 
of exposure, according to the requirements for Tier 1 notice delivery 
under Sec. 141.202(c) and the content requirements under Sec. 141.205.
 
 
 
[Code of Federal Regulations]
[Title 40, Volume 19]
[Revised as of July 1, 2001]
From the U.S. Government Printing Office via GPO Access
[CITE: 40CFR141.210]
 
[Page 538-553]
 
                   TITLE 40--PROTECTION OF ENVIRONMENT
 
                   CHAPTER I--ENVIRONMENTAL PROTECTION
                           AGENCY (CONTINUED)
 
PART 141--NATIONAL PRIMARY DRINKING WATER REGULATIONS--Table of Contents
 
       Subpart Q--Public Notification of Drinking Water Violations
 
Sec. 141.210  Notice by primacy agency on behalf of the public water system.
 
    (a) May the primacy agency give the notice on behalf of the public 
water system? The primacy agency may give the notice required by this 
subpart on behalf of the owner and operator of the public water system 
if the primacy agency complies with the requirements of this subpart.
    (b) What is the responsibility of the public water system when 
notice is given by the primacy agency? The owner or operator of the 
public water system remains responsible for ensuring that the 
requirements of this subpart are met.
       Appendix A to Subpart Q of Part 141--NPDWR Violations and 
             Other Situations Requiring Public Notice \1\
 
[[Page 539]]
 
 
----------------------------------------------------------------------------------------------------------------
                                           MCL/MRDL/TT violations \2\          Monitoring & testing procedure
                                     --------------------------------------              violations
             Contaminant                                                   -------------------------------------
                                        Tier of public        Citation        Tier of public
                                       notice required                       notice required        Citation
----------------------------------------------------------------------------------------------------------------
I. Violations of National Primary
 Drinking Water Regulations (NPDWR):
 \3\
A. Microbiological Contaminants
    1. Total coliform...............                  2          141.63(a)                  3      141.21(a)-(e)
    2. Fecal coliform/E. coli.......                  1          141.63(b)           \4\ 1, 3          141.21(e)
    3. Turbidity MCL................                  2          141.13(a)                  3             141.22
    4. Turbidity MCL (average of 2             \5\ 2, 1          141.13(b)                  3             141.22
     days' samples >5 NTU)..........
    5. Turbidity (for TT violations            \6\ 2, 1      141.71(a)(2),                  3      141.74(a)(1),
     resulting from a single                              141.71(c)(2)(i),                         141.74(b)(2),
     exceedance of maximum allowable                         141.73(a)(2),                         141.74(c)(1),
     turbidity level)...............                         141.73(b)(2),                               141.174
                                                             141.73(c)(2),
                                                                141.73(d),
                                                            141.173(a)(2),
                                                                141.173(b)
    6. Surface Water Treatment Rule                   2      141.70-141.73                  3             141.74
     violations, other than
     violations resulting from
     single exceedance of max.
     allowable turbidity level (TT).
    7. Interim Enhanced Surface                       2  <SUP>7</SUP> 141.170-141.173                  3   141.172, 141.174
     Water Treatment Rule
     violations, other than
     violations resulting from
     single exceedance of max.
     turbidity level (TT)...........
B. Inorganic Chemicals (IOCs)
    1. Antimony.....................                  2          141.62(b)                  3     141.23(a), (c)
    2. Arsenic......................                  2         141.11(b),                  3    141.23(a), (l),
                                                                 141.23(n)                                   (m)
    3. Asbestos (fibers >10 <greek-                   2          141.62(b)                  3      141.23(a)-(b)
     m>m)...........................
    4. Barium.......................                  2          141.62(b)                  3     141.23(a), (c)
    5. Beryllium....................                  2          141.62(b)                  3     141.23(a), (c)
    6. Cadmium......................                  2          141.62(b)                  3     141.23(a), (c)
    7. Chromium (total).............                  2          141.62(b)                  3     141.23(a), (c)
    8. Cyanide......................                  2          141.62(b)                  3     141.23(a), (c)
    9. Fluoride.....................                  2          141.62(b)                  3     141.23(a), (c)
    10. Mercury (inorganic).........                  2          141.62(b)                  3     141.23(a), (c)
    11. Nitrate.....................                  1          141.62(b)           \8\ 1, 3    141.23(a), (d),
                                                                                                    141.23(f)(2)
    12. Nitrite.....................                  1          141.62(b)           \8\ 1, 3    141.23(a), (e),
                                                                                                    141.23(f)(2)
    13. Total Nitrate and Nitrite...                  1          141.62(b)                  3          141.23(a)
    14. Selenium....................                  2          141.62(b)                  3     141.23(a), (c)
    15. Thallium....................                  2          141.62(b)                  3     141.23(a), (c)
C. Lead and Copper Rule (Action
 Level for lead is 0.015 mg/L, for
 copper is 1.3 mg/L)
    1. Lead and Copper Rule (TT)....                  2      141.80-141.85                  3      141.86-141.89
D. Synthetic Organic Chemicals
 (SOCs)
    1. 2,4-D........................                  2          141.61(c)                  3          141.24(h)
    2. 2,4,5-TP (Silvex)............                  2          141.61(c)                  3          141.24(h)
    3. Alachlor.....................                  2          141.61(c)                  3          141.24(h)
    4. Atrazine.....................                  2          141.61(c)                  3          141.24(h)
    5. Benzo(a)pyrene (PAHs)........                  2          141.61(c)                  3          141.24(h)
 
[[Page 540]]
 
 
    6. Carbofuran...................                  2          141.61(c)                  3          141.24(h)
    7. Chlordane....................                  2          141.61(c)                  3          141.24(h)
    8. Dalapon......................                  2          141.61(c)                  3          141.24(h)
    9. Di (2-ethylhexyl) adipate....                  2          141.61(c)                  3          141.24(h)
    10. Di (2-ethylhexyl) phthalate.                  2          141.61(c)                  3          141.24(h)
    11. Dibromochloropropane........                  2          141.61(c)                  3          141.24(h)
    12. Dinoseb.....................                  2          141.61(c)                  3          141.24(h)
    13. Dioxin (2,3,7,8-TCDD).......                  2          141.61(c)                  3          141.24(h)
    14. Diquat......................                  2          141.61(c)                  3          141.24(h)
    15. Endothall...................                  2          141.61(c)                  3          141.24(h)
    16. Endrin......................                  2          141.61(c)                  3          141.24(h)
    17. Ethylene dibromide..........                  2          141.61(c)                  3          141.24(h)
    18. Glyphosate..................                  2          141.61(c)                  3          141.24(h)
    19. Heptachlor..................                  2          141.61(c)                  3          141.24(h)
    20. Heptachlor epoxide..........                  2          141.61(c)                  3          141.24(h)
    21. Hexachlorobenzene...........                  2          141.61(c)                  3          141.24(h)
    22. Hexachlorocyclo-pentadiene..                  2          141.61(c)                  3          141.24(h)
    23. Lindane.....................                  2          141.61(c)                  3          141.24(h)
    24. Methoxychlor................                  2          141.61(c)                  3          141.24(h)
    25. Oxamyl (Vydate).............                  2          141.61(c)                  3          141.24(h)
    26. Pentachlorophenol...........                  2          141.61(c)                  3          141.24(h)
    27. Picloram....................                  2          141.61(c)                  3          141.24(h)
    28. Polychlorinated biphenyls                     2          141.61(c)                  3          141.24(h)
     (PCBs).........................
    29. Simazine....................                  2          141.61(c)                  3          141.24(h)
    30. Toxaphene...................                  2          141.61(c)                  3          141.24(h)
E. Volatile Organic Chemicals (VOCs)
    1. Benzene......................                  2          141.61(a)                  3          141.24(f)
    2. Carbon tetrachloride.........                  2          141.61(a)                  3          141.24(f)
    3. Chlorobenzene                                  2          141.61(a)                  3          141.24(f)
     (monochlorobenzene)............
    4. o-Dichlorobenzene............                  2          141.61(a)                  3          141.24(f)
    5. p-Dichlorobenzene............                  2          141.61(a)                  3          141.24(f)
    6. 1,2-Dichloroethane...........                  2          141.61(a)                  3          141.24(f)
    7. 1,1-Dichloroethylene.........                  2          141.61(a)                  3          141.24(f)
    8. cis-1,2-Dichloroethylene.....                  2          141.61(a)                  3          141.24(f)
    9. trans-1,2-Dichloroethylene...                  2          141.61(a)                  3          141.24(f)
    10. Dichloromethane.............                  2          141.61(a)                  3          141.24(f)
    11. 1,2-Dichloropropane.........                  2          141.61(a)                  3          141.24(f)
    12. Ethylbenzene................                  2          141.61(a)                  3          141.24(f)
    13. Styrene.....................                  2          141.61(a)                  3          141.24(f)
    14. Tetrachloroethylene.........                  2          141.61(a)                  3          141.24(f)
    15. Toluene.....................                  2          141.61(a)                  3          141.24(f)
    16. 1,2,4-Trichlorobenzene......                  2          141.61(a)                  3          141.24(f)
    17. 1,1,1-Trichloroethane.......                  2          141.61(a)                  3          141.24(f)
    18. 1,1,2-Trichloroethane.......                  2          141.61(a)                  3          141.24(f)
    19. Trichloroethylene...........                  2          141.61(a)                  3          141.24(f)
 
[[Page 541]]
 
 
    20. Vinyl chloride..............                  2          141.61(a)                  3          141.24(f)
    21. Xylenes (total).............                  2          141.61(a)                  3          141.24(f)
F. Radioactive Contaminants
    1. Beta/photon emitters.........                  2             141.16                  3         141.25(a),
                                                                                                       141.26(b)
    2. Alpha emitters...............                  2          141.15(b)                  3         141.25(a),
                                                                                                       141.26(a)
    3. Combined radium (226 & 228)..                  2          141.15(a)                  3         141.25(a),
                                                                                                       141.26(a)
G. Disinfection Byproducts (DBPs),
 Byproduct Precursors, Disinfectant
 Residuals. Where disinfection is
 used in the treatment of drinking
 water, disinfectants combine with
 organic and inorganic matter
 present in water to form chemicals
 called disinfection byproducts
 (DBPs). EPA sets standards for
 controlling the levels of
 disinfectants and DBPs in drinking
 water, including trihalomethanes
 (THMs) and haloacetic acids
 (HAAs).\9\
    1. Total trihalomethanes (TTHMs)                  2       \10\ 141.12,                  3            141.30,
                                                                 141.64(a)                        141.132(a)-(b)
    2. Haloacetic Acids (HAA5)......                  2          141.64(a)                  3     141.132(a)-(b)
    3. Bromate......................                  2          141.64(a)                  3     141.132(a)-(b)
    4. Chlorite.....................                  2          141.64(a)                  3     141.132(a)-(b)
    5. Chlorine (MRDL)..............                  2          141.65(a)                  3    141.132(a), (c)
    6. Chloramine (MRDL)............                  2          141.65(a)                  3    141.132(a), (c)
    7. Chlorine dioxide (MRDL),                       2         141.65(a),          2 \11\, 3   141.132(a), (c),
     where any 2 consecutive daily                           141.133(c)(3)                         141.133(c)(2)
     samples at entrance to
     distribution system only are
     above MRDL.....................
    8. Chlorine dioxide (MRDL),                  \12\ 1         141.65(a),                  1   141.132(a), (c),
     where sample(s) in distribution                         141.133(c)(3)                         141.133(c)(2)
     system the next day are also
     above MRDL.....................
    9. Control of DBP precursors--                    2     141.135(a)-(b)                  3    141.132(a), (d)
     TOC (TT).......................
    10. Bench marking and                           N/A                N/A                  3            141.172
     disinfection profiling.........
    11. Development of monitoring                   N/A                N/A                  3         141.132(f)
     plan...........................
H. Other Treatment Techniques
    1. Acrylamide (TT)..............                  2            141.111                N/A                N/A
    2. Epichlorohydrin (TT).........                  2            141.111                N/A                N/A
II. Unregulated Contaminant
 Monitoring: \13\
A. Unregulated contaminants.........                N/A                N/A                  3             141.40
B. Nickel...........................                N/A                N/A                  3     141.23(c), (k)
III. Public Notification for
 Variances and Exemptions:
A. Operation under a variance or                      3   \14\ 1415, 1416,                N/A                N/A
 exemption..........................
B. Violation of conditions of a                       2   1415, 1416, \15\                N/A                N/A
 variance or exemption..............                               142.307
IV. Other Situations Requiring
 Public Notification:
A. Fluoride secondary maximum                         3              143.3                N/A                N/A
 contaminant level (SMCL) exceedance
B. Exceedance of nitrate MCL for non-                 1          141.11(d)                N/A                N/A
 community systems, as allowed by
 primacy agency.....................
C. Availability of unregulated                        3             141.40                N/A                N/A
 contaminant monitoring data........
D. Waterborne disease outbreak......                  1             141.2,                N/A                N/A
                                                          141.71(c)(2)(ii)
E. Other waterborne emergency \16\..                  1                N/A                N/A                N/A
F. Other situations as determined by       \17\ 1, 2, 3                N/A                N/A                N/A
 primacy agency.....................
----------------------------------------------------------------------------------------------------------------
 
 
[[Page 542]]
 
                          Appendix A--Endnotes
 
    1. Violations and other situations not listed in this table (e.g., 
reporting violations and failure to prepare Consumer Confidence 
Reports), do not require notice, unless otherwise determined by the 
primary agency. Primacy agencies may, at their option, also require a 
more stringent public notice tier (e.g., Tier 1 instead of Tier 2 or 
Tier 2 instead of Tier 3) for specific violations and situations listed 
in this Appendix, as authorized under Sec. 141.202(a) and 
Sec. 141.203(a).
    2. MCL--Maximum contaminant level, MRDL--Maximum residual 
disinfectant level, TT--Treatment technique
    3. The term Violations of National Primary Drinking Water 
Regulations (NPDWR) is used here to include violations of MCL, MRDL, 
treatment technique, monitoring, and testing procedure requirements.
    4. Failure to test for fecal coliform or E. coli is a Tier 1 
violation if testing is not done after any repeat sample tests positive 
for coliform. All other total coliform monitoring and testing procedure 
violations are Tier 3.
    5. Systems that violate the turbidity MCL of 5 NTU based on an 
average of measurements over two consecutive days must consult with the 
primacy agency within 24 hours after learning of the violation. Based on 
this consultation, the primacy agency may subsequently decide to elevate 
the violation to Tier 1. If a system is unable to make contact with the 
primacy agency in the 24-hour period, the violation is automatically 
elevated to Tier 1.
    6. Systems with treatment technique violations involving a single 
exceedance of a maximum turbidity limit under the Surface Water 
Treatment Rule (SWTR) or the Interim Enhanced Surface Water Treatment 
Rule (IESWTR) are required to consult with the primacy agency within 24 
hours after learning of the violation. Based on this consultation, the 
primacy agency may subsequently decide to elevate the violation to Tier 
1. If a system is unable to make contact with the primacy agency in the 
24-hour period, the violation is automatically elevated to Tier 1.
    7. Most of the requirements of the Interim Enhanced Surface Water 
Treatment Rule (63 FR 69477) (Secs. 141.170-141.171, 141.173-141.174) 
become effective January 1, 2002 for Subpart H systems (surface water 
systems and ground water systems under the direct influence of surface 
water) serving at least 10,000 persons. However, Sec. 141.172 has some 
requirements that become effective as early as April 16, 1999. The 
Surface Water Treatment Rule remains in effect for systems serving at 
least 10,000 persons even after 2002; the Interim Enhanced Surface Water 
Treatment Rule adds additional requirements and does not in many cases 
supercede the SWTR.
    8. Failure to take a confirmation sample within 24 hours for nitrate 
or nitrite after an initial sample exceeds the MCL is a Tier 1 
violation. Other monitoring violations for nitrate are Tier 3.
    9. Subpart H community and non-transient non-community systems 
serving 10,000 must comply with new DBP MCLs, disinfectant 
MRDLs, and related monitoring requirements beginning January 1, 2002. 
All other community and non-transient non-community systems must meet 
the MCLs and MRDLs beginning January 1, 2004. Subpart H transient non-
community systems serving 10,000 or more persons and using chlorine 
dioxide as a disinfectant or oxidant must comply with the chlorine 
dioxide MRDL beginning January 1, 2002. Subpart H transient non-
community systems serving fewer than 10,000 persons and using only 
ground water not under the direct influence of surface water and using 
chlorine dioxide as a disinfectant or oxidant must comply with the 
chlorine dioxide MRDL beginning January 1, 2004.
    10. Sec. 141.12 will no longer apply after January 1, 2004.
    11. Failure to monitor for chlorine dioxide at the entrance to the 
distribution system the day after exceeding the MRDL at the entrance to 
the distribution system is a Tier 2 violation.
    12. If any daily sample taken at the entrance to the distribution 
system exceeds the MRDL for chlorine dioxide and one or more samples 
taken in the distribution system the next day exceed the MRDL, Tier 1 
notification is required. Failure to take the required samples in the 
distribution system after the MRDL is exceeded at the entry point also 
triggers Tier 1 notification.
    13. Some water systems must monitor for certain unregulated 
contaminants listed in Sec. 141.40.
    14. This citation refers to Secs. 1415 and 1416 of the Safe Drinking 
Water Act. Secs. 1415 and 1416 require that "a schedule prescribed. . . 
for a public water system granted a variance [or exemption] shall 
require compliance by the system. . ."
    15. In addition to Secs. 1415 and 1416 of the Safe Drinking Water 
Act, 40 CFR 142.307 specifies the items and schedule milestones that 
must be included in a variance for small systems.
    16. Other waterborne emergencies require a Tier 1 public notice 
under Sec. 141.202(a) for situations that do not meet the definition of 
a waterborne disease outbreak given in 40 CFR 141.2 but that still have 
the potential to have serious adverse effects on health as a result of 
short-term exposure. These could include outbreaks not related to 
treatment deficiencies, as well as situations that have the potential to 
cause outbreaks, such as failures or significant interruption in water 
treatment processes, natural disasters that
 
[[Page 543]]
 
disrupt the water supply or distribution system, chemical spills, or 
unexpected loading of possible pathogens into the source water.
    17. Primacy agencies may place other situations in any tier they 
believe appropriate, based on threat to public health.
 
    Effective Date Note 1: At 65 FR 76750, Dec. 7, 2000, the table in 
appendix A to subpart Q was amended under I.F. "Radioactive 
contaminants" by revising entries 1, 2, and 3, and by adding entry 4; 
by redesignating table endnotes 9 through 17 as 11 through 19; and by 
adding new endnotes 9 and 10, effective Dec. 8, 2003. For the 
convenience of the user, the revised and added text is set forth as 
follows:
 
    Appendix A to Subpart Q to Part 141--NPDWR Violations and Other 
                 Situations Requiring Public Notice \1\
 
----------------------------------------------------------------------------------------------------------------
                                                      MCL/MRDL/TT Violations \2\       Monitoring and testing
                                                   -------------------------------      procedure violations
                    Contaminant                                                   ------------------------------
                                                      Tier of public    Citation     Tier of public
                                                     notice  required               notice  required   Citation
----------------------------------------------------------------------------------------------------------------
 
                    I. Violations of National Primary Drinking Water Regulations (NPDWR) \3\
 
 
*                  *                  *                  *                  *                  *
                                                        *
F. Radioactive contaminants
 
1. Beta/photon emitters...........................                  2   141.66(d)                  3   141.25(a)
                                                                                                       141.26(b)
2. Alpha emitters.................................                  2   141.66(c)                  3   141.25(a)
                                                                                                       141.26(a)
3. Combined radium (226 and 228)..................                  2   141.66(b)                  3   141.25(a)
                                                                                                       141.26(a)
4. Uranium........................................              \9\ 2   141.66(e)             \10\ 3   141.25(a)
                                                                                                       141.26(a)
 
*                  *                  *                  *                  *                  *
                                                        *
----------------------------------------------------------------------------------------------------------------
 
                          Appendix A--Endnotes
 
                                * * * * *
 
    1. Violations and other situations not listed in this table (e.g., 
reporting violations and failure to prepare Consumer Confidence 
Reports), do not require notice, unless otherwise determined by the 
primary agency. Primacy agencies may, at their option, also require a 
more stringent public notice tier (e.g., Tier 1 instead of Tier 2 or 
Tier 2 instead of Tier 3) for specific violations and situations listed 
in this Appendix, as authorized under Sec. 141.202(a) and Sec. 
141.203(a).
    2. MCL--Maximum contaminant level, MRDL--Maximum residual 
disinfectant level, TT--Treatment technique.
    3. The term Violations of National Primary Drinking Water 
Regulations (NPDWR) is used here to include violations of MCL, MRDL, 
treatment technique, monitoring, and testing procedure requirements.
 
                                * * * * *
 
    9. The uranium MCL Tier 2 violation citations are effective December 
8, 2003 for all community water systems.
    10. The uranium Tier 3 violation citations are effective December 8, 
2000 for all community water systems.
 
                                * * * * *
 
    Effective Date Note 2: At 66 FR 7065, Jan. 22, 2001, Appendix A to 
Subpart Q was amended by revising the entry for "2. Arsenic" under 
"B. Inorganic Chemicals (IOCs)"; redesignating endnotes 8 through 17 
as endnotes 10 through 19 in the table and at the end of the table; and 
adding endnotes 8 and 9, effective Mar. 23, 2001. At 66 FR 16134, Mar. 
23, 2001, the effective date was delayed until May 22, 2001. At 66 FR 
28350, May 22, 2001, the effective date was further delayed until Feb. 
22, 2002. For the convenience of the user, the revised and added text is 
set forth as follows:
 
Appendix A to Subpart Q--NPDWR Violations and Other Situations Requiring 
                            Public Notice \1\
 
[[Page 544]]
 
 
 
----------------------------------------------------------------------------------------------------------------
                                               MCL/MRDL/TT violations \2\      Monitoring & testing procedure
                                            -------------------------------              violations
                Contaminant                                                -------------------------------------
                                               Tier of public    Citation     Tier of public
                                              notice required                notice required        Citation
----------------------------------------------------------------------------------------------------------------
*                  *                  *                  *                  *                  *
                                               *
B. Inorganic Chemicals (IOCs)..............
*                  *                  *                  *                  *                  *
                                               *
2. Arsenic.................................                  2  \8\ 141.62                  3     \9\ 141.23(a),
                                                                       (b)                                   (c)
*                  *                  *                  *                  *                  *
                                               *
----------------------------------------------------------------------------------------------------------------
 
                          Appendix A--Endnotes
 
    1. Violations and other situations not listed in this table (e.g., 
reporting violations and failure to prepare Consumer Confidence 
Reports), do not require notice, unless otherwise determined by the 
primacy agency. Primacy agencies may, at their option, also require a 
more stringent public notice tier (e.g., Tier 1 instead of Tier 2 or 
Tier 2 instead of Tier 3) for specific violations and situations listed 
in this Appendix, as authorized under Sec. 141.202(a) and 
Sec. 141.203(a).
    2. MCL-Maximum contaminant level, MRDL-Maximum residual disinfectant 
level, TT-Treatment technique.
 
                                * * * * *
 
    8. The arsenic MCL citations are effective January 23, 2006. Until 
then, the citations are Sec. 141.11(b) and Sec. 141.23(n).
    9. The arsenic Tier 3 violation MCL citations are effective January 
23, 2006. Until then, the citations are Sec. 141.23(a), (l).
 
                                * * * * *
 
    Effective Date Note 3: At 66 FR 31104, June 8, 2001, Appendix A to 
subpart Q of part 141 was amended by adding a new entry "8." in 
numerical order under I.A., effective Aug. 7, 2001. For the convenience 
of the user, the added text is set forth as follows:
 
    Appendix A to Subpart Q of Part 141.--NPDWR Violations and Other 
                 Situations Requiring Public Notice \1\
 
 
----------------------------------------------------------------------------------------------------------------
                                                      MCL/MRDL/TT violations \2\       Monitoring and testing
                                                   -------------------------------      procedure violations
                    Contaminant                                                   ------------------------------
                                                      Tier of public    Citation     Tier of public
                                                     notice required                notice required    Citation
----------------------------------------------------------------------------------------------------------------
 I. Violations of National Primary Drinking Water
             Regulations (NPDWR): \3\
A. Microbiological Contaminants
 
*                  *                  *                  *                  *                  *
                                                        *
    8. Filter Backwash Recycling Rule violations..                  2      141.76                  3      141.76
 
*                  *                  *                  *                  *                  *
                                                        *
----------------------------------------------------------------------------------------------------------------
Appendix A--Endnotes
1. Violations and other situations not listed in this table (e.g., reporting violations and failure to prepare
  Consumer Confidence Reports), do not require notice, unless otherwise determined by the primacy agency.
  Primacy agencies may, at their option, also require a more stringent public notice tier (e.g., Tier 1 instead
  of Tier 2 or Tier 2 instead of Tier 3) for specific violations and situations listed in this Appendix, as
  authorized under Sec.  141.202(a) and Sec.  141.203(a).
2. MCL--Maximum contaminant level, MRDL--Maximum residual disinfectant level, TT--Treatment technique.
3. The term Violations of National Primary Drinking Water Regulations (NPDWR) is used here to include violations
  of MCL, MRDL, treatment technique, monitoring, and testing procedure requirements.
 
                                * * * * *
 
 Appendix B to Subpart Q of Part 141--Standard Health Effects Language 
                         for Public Notification
 
[[Page 545]]
 
 
 
----------------------------------------------------------------------------------------------------------------
                                                                          Standard health effects language for
          Contaminant              MCLG \1\ mg/L       MCL \2\ mg/L               public notification
----------------------------------------------------------------------------------------------------------------
                               National Primary Drinking Water Regulations (NPDWR)
                                         A. Microbiological Contaminants
----------------------------------------------------------------------------------------------------------------
1a. Total coliform............  Zero                See footnote \3\   Coliforms are bacteria that are naturally
                                                                        present in the environment and are used
                                                                        as an indicator that other, potentially-
                                                                        harmful, bacteria may be present.
                                                                        Coliforms were found in more samples
                                                                        than allowed and this was a warning of
                                                                        potential problems.
1b. Fecal coliform/E. coli....  Zero                Zero               Fecal coliforms and E. coli are bacteria
                                                                        whose presence indicates that the water
                                                                        may be contaminated with human or animal
                                                                        wastes. Microbes in these wastes can
                                                                        cause short-term effects, such as
                                                                        diarrhea, cramps, nausea, headaches, or
                                                                        other symptoms. They may pose a special
                                                                        health risk for infants, young children,
                                                                        some of the elderly, and people with
                                                                        severely compromised immune systems.
2a. Turbidity (MCL) \4\.......  None                1 NTU \5\/5 NTU    Turbidity has no health effects. However,
                                                                        turbidity can interfere with
                                                                        disinfection and provide a medium for
                                                                        microbial growth. Turbidity may indicate
                                                                        the presence of disease-causing
                                                                        organisms. These organisms include
                                                                        bacteria, viruses, and parasites that
                                                                        can cause symptoms such as nausea,
                                                                        cramps, diarrhea and associated
                                                                        headaches.
2b. Turbidity (SWTR TT) \6\...  None                TT \7\             Turbidity has no health effects. However,
                                                                        turbidity can interfere with
                                                                        disinfection and provide a medium for
                                                                        microbial growth. Turbidity may indicate
                                                                        the presence of disease-causing
                                                                        organisms. These organisms include
                                                                        bacteria, viruses, and parasites that
                                                                        can cause symptoms such as nausea,
                                                                        cramps, diarrhea and associated
                                                                        headaches.
2c. Turbidity (IESWTR TT) \8\.  None                TT                 Turbidity has no health effects. However,
                                                                        turbidity can interfere with
                                                                        disinfection and provide a medium for
                                                                        microbial growth. Turbidity may indicate
                                                                        the presence of disease-causing
                                                                        organisms. These organisms include
                                                                        bacteria, viruses, and parasites that
                                                                        can cause symptoms such as nausea,
                                                                        cramps, diarrhea and associated
                                                                        headaches.
----------------------------------------------------------------------------------------------------------------
  B. Surface Water Treatment Rule (SWTR) and Interim Enhanced Surface Water Treatment Rule (IESWTR) violations
----------------------------------------------------------------------------------------------------------------
3. Giardia lamblia (SWTR/       Zero                TT \10\            Inadequately treated water may contain
 IESWTR).                                                               disease-causing organisms. These
                                                                        organisms include bacteria, viruses, and
                                                                        parasites which can cause symptoms such
                                                                        as nausea, cramps, diarrhea, and
                                                                        associated headaches.
4. Viruses (SWTR/IESWTR)......
5. Heterotrophic plate count
 (HPC) bacteria \9\ (SWTR/
 IESWTR).
6. Legionella (SWTR/IESWTR)...
7. Cryptosporidium (IESWTR) ..
                                          C. Inorganic Chemicals (IOCs)
----------------------------------------------------------------------------------------------------------------
8. Antimony...................  0.006               0.006              Some people who drink water containing
                                                                        antimony well in excess of the MCL over
                                                                        many years could experience increases in
                                                                        blood cholesterol and decreases in blood
                                                                        sugar.
9. Arsenic....................  None                0.05               Some people who drink water containing
                                                                        arsenic in excess of the MCL over many
                                                                        years could experience skin damage or
                                                                        problems with their circulatory system,
                                                                        and may have an increased risk of
                                                                        getting cancer.
10. Asbestos (10 <greek-m>m)..  7 MFL \11\          7 MFL              Some people who drink water containing
                                                                        asbestos in excess of the MCL over many
                                                                        years may have an increased risk of
                                                                        developing benign intestinal polyps.
11. Barium....................  2                   2                  Some people who drink water containing
                                                                        barium in excess of the MCL over many
                                                                        years could experience an increase in
                                                                        their blood pressure.
12. Beryllium.................  0.004               0.004              Some people who drink water containing
                                                                        beryllium well in excess of the MCL over
                                                                        many years could develop intestinal
                                                                        lesions.
 
[[Page 546]]
 
 
13. Cadmium...................  0.005               0.005              Some people who drink water containing
                                                                        cadmium in excess of the MCL over many
                                                                        years could experience kidney damage.
14. Chromium (total)..........  0.1                 0.1                Some people who use water containing
                                                                        chromium well in excess of the MCL over
                                                                        many years could experience allergic
                                                                        dermatitis.
15. Cyanide...................  0.2                 0.2                Some people who drink water containing
                                                                        cyanide well in excess of the MCL over
                                                                        many years could experience nerve damage
                                                                        or problems with their thyroid.
16. Fluoride..................  4.0                 4.0                Some people who drink water containing
                                                                        fluoride in excess of the MCL over many
                                                                        years could get bone disease, including
                                                                        pain and tenderness of the bones.
                                                                        Fluoride in drinking water at half the
                                                                        MCL or more may cause mottling of
                                                                        children's teeth, usually in children
                                                                        less than nine years old. Mottling, also
                                                                        known as dental fluorosis, may include
                                                                        brown staining and/or pitting of the
                                                                        teeth, and occurs only in developing
                                                                        teeth before they erupt from the gums.
17. Mercury (inorganic).......  0.002               0.002              Some people who drink water containing
                                                                        inorganic mercury well in excess of the
                                                                        MCL over many years could experience
                                                                        kidney damage.
18. Nitrate...................  10                  10                 Infants below the age of six months who
                                                                        drink water containing nitrate in excess
                                                                        of the MCL could become seriously ill
                                                                        and, if untreated, may die. Symptoms
                                                                        include shortness of breath and blue
                                                                        baby syndrome.
19. Nitrite...................  1                   1                  Infants below the age of six months who
                                                                        drink water containing nitrite in excess
                                                                        of the MCL could become seriously ill
                                                                        and, if untreated, may die. Symptoms
                                                                        include shortness of breath and blue
                                                                        baby syndrome.
20. Total Nitrate and Nitrite.  10                  10                 Infants below the age of six months who
                                                                        drink water containing nitrate and
                                                                        nitrite in excess of the MCL could
                                                                        become seriously ill and, if untreated,
                                                                        may die. Symptoms include shortness of
                                                                        breath and blue baby syndrome.
21. Selenium..................  0.05                0.05               Selenium is an essential nutrient.
                                                                        However, some people who drink water
                                                                        containing selenium in excess of the MCL
                                                                        over many years could experience hair or
                                                                        fingernail losses, numbness in fingers
                                                                        or toes, or problems with their
                                                                        circulation.
22. Thallium..................  0.0005              0.002              Some people who drink water containing
                                                                        thallium in excess of the MCL over many
                                                                        years could experience hair loss,
                                                                        changes in their blood, or problems with
                                                                        their kidneys, intestines, or liver.
----------------------------------------------------------------------------------------------------------------
                                             D. Lead and Copper Rule
----------------------------------------------------------------------------------------------------------------
23. Lead......................  Zero                TT \12\            Infants and children who drink water
                                                                        containing lead in excess of the action
                                                                        level could experience delays in their
                                                                        physical or mental development. Children
                                                                        could show slight deficits in attention
                                                                        span and learning abilities. Adults who
                                                                        drink this water over many years could
                                                                        develop kidney problems or high blood
                                                                        pressure.
24. Copper....................  1.3                 TT \13\            Copper is an essential nutrient, but some
                                                                        people who drink water containing copper
                                                                        in excess of the action level over a
                                                                        relatively short amount of time could
                                                                        experience gastrointestinal distress.
                                                                        Some people who drink water containing
                                                                        copper in excess of the action level
                                                                        over many years could suffer liver or
                                                                        kidney damage. People with Wilson's
                                                                        Disease should consult their personal
                                                                        doctor.
----------------------------------------------------------------------------------------------------------------
                                      E. Synthetic Organic Chemicals (SOCs)
----------------------------------------------------------------------------------------------------------------
25. 2,4-D.....................  0.07                0.07               Some people who drink water containing
                                                                        the weed killer 2,4-D well in excess of
                                                                        the MCL over many years could experience
                                                                        problems with their kidneys, liver, or
                                                                        adrenal glands.
26. 2,4,5-TP (Silvex).........  0.05                0.05               Some people who drink water containing
                                                                        silvex in excess of the MCL over many
                                                                        years could experience liver problems.
 
[[Page 547]]
 
 
27. Alachlor..................  Zero                0.002              Some people who drink water containing
                                                                        alachlor in excess of the MCL over many
                                                                        years could have problems with their
                                                                        eyes, liver, kidneys, or spleen, or
                                                                        experience anemia, and may have an
                                                                        increased risk of getting cancer.
28. Atrazine..................  0.003               0.003              Some people who drink water containing
                                                                        atrazine well in excess of the MCL over
                                                                        many years could experience problems
                                                                        with their cardiovascular system or
                                                                        reproductive difficulties.
29. Benzo(a)pyrene (PAHs).....  Zero                0.0002             Some people who drink water containing
                                                                        benzo(a)pyrene in excess of the MCL over
                                                                        many years may experience reproductive
                                                                        difficulties and may have an increased
                                                                        risk of getting cancer.
30. Carbofuran................  0.04                0.04               Some people who drink water containing
                                                                        carbofuran in excess of the MCL over
                                                                        many years could experience problems
                                                                        with their blood, or nervous or
                                                                        reproductive systems.
31. Chlordane.................  Zero                0.002              Some people who drink water containing
                                                                        chlordane in excess of the MCL over many
                                                                        years could experience problems with
                                                                        their liver or nervous system, and may
                                                                        have an increased risk of getting
                                                                        cancer.
32. Dalapon...................  0.2                 0.2                Some people who drink water containing
                                                                        dalapon well in excess of the MCL over
                                                                        many years could experience minor kidney
                                                                        changes.
33. Di (2-ethylhexyl) adipate.  0.4                 0.4                Some people who drink water containing di
                                                                        (2-ethylhexyl) adipate well in excess of
                                                                        the MCL over many years could experience
                                                                        general toxic effects or reproductive
                                                                        difficulties.
34. Di (2-ethylhexyl)           Zero                0.006              Some people who drink water containing di
 phthalate.                                                             (2-ethylhexyl) phthalate in excess of
                                                                        the MCL over many years may have
                                                                        problems with their liver, or experience
                                                                        reproductive difficulties, and may have
                                                                        an increased risk of getting cancer.
35. Dibromochloropropane        Zero                0.0002             Some people who drink water containing
 (DBCP).                                                                DBCP in excess of the MCL over many
                                                                        years could experience reproductive
                                                                        difficulties and may have an increased
                                                                        risk of getting cancer.
36. Dinoseb...................  0.007               0.007              Some people who drink water containing
                                                                        dinoseb well in excess of the MCL over
                                                                        many years could experience reproductive
                                                                        difficulties.
37. Dioxin (2,3,7,8-TCDD).....  Zero                3 x 10 <SUP>-8</SUP>          Some people who drink water containing
                                                                        dioxin in excess of the MCL over many
                                                                        years could experience reproductive
                                                                        difficulties and may have an increased
                                                                        risk of getting cancer.
38. Diquat....................  0.02                0.02               Some people who drink water containing
                                                                        diquat in excess of the MCL over many
                                                                        years could get cataracts.
39. Endothall.................  0.1                 0.1                Some people who drink water containing
                                                                        endothall in excess of the MCL over many
                                                                        years could experience problems with
                                                                        their stomach or intestines.
40. Endrin....................  0.002               0.002              Some people who drink water containing
                                                                        endrin in excess of the MCL over many
                                                                        years could experience liver problems.
41. Ethylene dibromide........  Zero                0.00005            Some people who drink water containing
                                                                        ethylene dibromide in excess of the MCL
                                                                        over many years could experience
                                                                        problems with their liver, stomach,
                                                                        reproductive system, or kidneys, and may
                                                                        have an increased risk of getting
                                                                        cancer.
42. Glyphosate................  0.7                 0.7                Some people who drink water containing
                                                                        glyphosate in excess of the MCL over
                                                                        many years could experience problems
                                                                        with their kidneys or reproductive
                                                                        difficulties.
43. Heptachlor................  Zero                0.0004             Some people who drink water containing
                                                                        heptachlor in excess of the MCL over
                                                                        many years could experience liver damage
                                                                        and may have an increased risk of
                                                                        getting cancer.
44. Heptachlor epoxide........  Zero                0.0002             Some people who drink water containing
                                                                        heptachlor epoxide in excess of the MCL
                                                                        over many years could experience liver
                                                                        damage, and may have an increased risk
                                                                        of getting cancer.
45. Hexachlorobenzene.........  Zero                0.001              Some people who drink water containing
                                                                        hexachlorobenzene in excess of the MCL
                                                                        over many years could experience
                                                                        problems with their liver or kidneys, or
                                                                        adverse reproductive effects, and may
                                                                        have an increased risk of getting
                                                                        cancer.
46. Hexachlorocyclo-pentadiene  0.05                0.05               Some people who drink water containing
                                                                        hexachlorocyclopentadiene well in excess
                                                                        of the MCL over many years could
                                                                        experience problems with their kidneys
                                                                        or stomach.
47. Lindane...................  0.0002              0.0002             Some people who drink water containing
                                                                        lindane in excess of the MCL over many
                                                                        years could experience problems with
                                                                        their kidneys or liver.
48. Methoxychlor..............  0.04                0.04               Some people who drink water containing
                                                                        methoxychlor in excess of the MCL over
                                                                        many years could experience reproductive
                                                                        difficulties.
 
[[Page 548]]
 
 
49. Oxamyl (Vydate)...........  0.2                 0.2                Some people who drink water containing
                                                                        oxamyl in excess of the MCL over many
                                                                        years could experience slight nervous
                                                                        system effects.
50. Pentachlorophenol.........  Zero                0.001              Some people who drink water containing
                                                                        pentachlorophenol in excess of the MCL
                                                                        over many years could experience
                                                                        problems with their liver or kidneys,
                                                                        and may have an increased risk of
                                                                        getting cancer.
51. Picloram..................  0.5                 0.5                Some people who drink water containing
                                                                        picloram in excess of the MCL over many
                                                                        years could experience problems with
                                                                        their liver.
52. Polychlorinated biphenyls   Zero                0.0005             Some people who drink water containing
 (PCBs).                                                                PCBs in excess of the MCL over many
                                                                        years could experience changes in their
                                                                        skin, problems with their thymus gland,
                                                                        immune deficiencies, or reproductive or
                                                                        nervous system difficulties, and may
                                                                        have an increased risk of getting
                                                                        cancer.
53. Simazine..................  0.004               0.004              Some people who drink water containing
                                                                        simazine in excess of the MCL over many
                                                                        years could experience problems with
                                                                        their blood.
54. Toxaphene.................  Zero                0.003              Some people who drink water containing
                                                                        toxaphene in excess of the MCL over many
                                                                        years could have problems with their
                                                                        kidneys, liver, or thyroid, and may have
                                                                        an increased risk of getting cancer.
----------------------------------------------------------------------------------------------------------------
                                      F. Volatile Organic Chemicals (VOCs)
----------------------------------------------------------------------------------------------------------------
55. Benzene...................  Zero                0.005              Some people who drink water containing
                                                                        benzene in excess of the MCL over many
                                                                        years could experience anemia or a
                                                                        decrease in blood platelets, and may
                                                                        have an increased risk of getting
                                                                        cancer.
56. Carbon tetrachloride......  Zero                0.005              Some people who drink water containing
                                                                        carbon tetrachloride in excess of the
                                                                        MCL over many years could experience
                                                                        problems with their liver and may have
                                                                        an increased risk of getting cancer.
57. Chlorobenzene (monochloro-  0.1                 0.1                Some people who drink water containing
 benzene).                                                              chlorobenzene in excess of the MCL over
                                                                        many years could experience problems
                                                                        with their liver or kidneys.
58. o-Dichlorobenzene.........  0.6                 0.6                Some people who drink water containing o-
                                                                        dichlorobenzene well in excess of the
                                                                        MCL over many years could experience
                                                                        problems with their liver, kidneys, or
                                                                        circulatory systems.
59. p-Dichlorobenzene.........  0.075               0.075              Some people who drink water containing p-
                                                                        dichlorobenzene in excess of the MCL
                                                                        over many years could experience anemia,
                                                                        damage to their liver, kidneys, or
                                                                        spleen, or changes in their blood.
60. 1,2-Dichloroethane........  Zero                0.005              Some people who drink water containing
                                                                        1,2-dichloroethane in excess of the MCL
                                                                        over many years may have an increased
                                                                        risk of getting cancer.
61. 1,1-Dichloroethylene......  0.007               0.007              Some people who drink water containing
                                                                        1,1-dichloroethylene in excess of the
                                                                        MCL over many years could experience
                                                                        problems with their liver.
62. cis-1,2-Dichloroethylene..  0.07                0.07               Some people who drink water containing
                                                                        cis-1,2-dichloroethylene in excess of
                                                                        the MCL over many years could experience
                                                                        problems with their liver.
63. trans-1,2-Dichloroethylene  0.1                 0.1                Some people who drink water containing
                                                                        trans-1,2-dichloroethylene well in
                                                                        excess of the MCL over many years could
                                                                        experience problems with their liver.
64. Dichloromethane...........  Zero                0.005              Some people who drink water containing
                                                                        dichloromethane in excess of the MCL
                                                                        over many years could have liver
                                                                        problems and may have an increased risk
                                                                        of getting cancer.
65. 1,2-Dichloropropane.......  Zero                0.005              Some people who drink water containing
                                                                        1,2-dichloropropane in excess of the MCL
                                                                        over many years may have an increased
                                                                        risk of getting cancer.
66. Ethylbenzene..............  0.7                 0.7                Some people who drink water containing
                                                                        ethylbenzene well in excess of the MCL
                                                                        over many years could experience
                                                                        problems with their liver or kidneys.
67. Styrene...................  0.1                 0.1                Some people who drink water containing
                                                                        styrene well in excess of the MCL over
                                                                        many years could have problems with
                                                                        their liver, kidneys, or circulatory
                                                                        system.
 
[[Page 549]]
 
 
68. Tetrachloroethylene.......  Zero                0.005              Some people who drink water containing
                                                                        tetrachloroethylene in excess of the MCL
                                                                        over many years could have problems with
                                                                        their liver, and may have an increased
                                                                        risk of getting cancer.
69. Toluene...................  1                   1                  Some people who drink water containing
                                                                        toluene well in excess of the MCL over
                                                                        many years could have problems with
                                                                        their nervous system, kidneys, or liver.
70. 1,2,4-Trichlorobenzene....  0.07                0.07               Some people who drink water containing
                                                                        1,2,4-trichlorobenzene well in excess of
                                                                        the MCL over many years could experience
                                                                        changes in their adrenal glands.
71. 1,1,1-Trichloroethane.....  0.2                 0.2                Some people who drink water containing
                                                                        1,1,1-trichloroethane in excess of the
                                                                        MCL over many years could experience
                                                                        problems with their liver, nervous
                                                                        system, or circulatory system.
72. 1,1,2-Trichloroethane.....  0.003               0.005              Some people who drink water containing
                                                                        1,1,2-trichloroethane well in excess of
                                                                        the MCL over many years could have
                                                                        problems with their liver, kidneys, or
                                                                        immune systems.
73. Trichloroethylene.........  Zero                0.005              Some people who drink water containing
                                                                        trichloroethylene in excess of the MCL
                                                                        over many years could experience
                                                                        problems with their liver and may have
                                                                        an increased risk of getting cancer.
74. Vinyl chloride............  Zero                0.002              Some people who drink water containing
                                                                        vinyl chloride in excess of the MCL over
                                                                        many years may have an increased risk of
                                                                        getting cancer.
75. Xylenes (total)...........  10                  10                 Some people who drink water containing
                                                                        xylenes in excess of the MCL over many
                                                                        years could experience damage to their
                                                                        nervous system.
----------------------------------------------------------------------------------------------------------------
                                           G. Radioactive Contaminants
----------------------------------------------------------------------------------------------------------------
76. Beta/photon emitters......  Zero                4 mrem/yr \14\     Certain minerals are radioactive and may
                                                                        emit forms of radiation known as photons
                                                                        and beta radiation. Some people who
                                                                        drink water containing beta and photon
                                                                        emitters in excess of the MCL over many
                                                                        years may have an increased risk of
                                                                        getting cancer.
77. Alpha emitters............  Zero                15 pCi/L \15\      Certain minerals are radioactive and may
                                                                        emit a form of radiation known as alpha
                                                                        radiation. Some people who drink water
                                                                        containing alpha emitters in excess of
                                                                        the MCL over many years may have an
                                                                        increased risk of getting cancer.
78. Combined radium (226 &      Zero                5 pCi/L            Some people who drink water containing
 228).                                                                  radium 226 or 228 in excess of the MCL
                                                                        over many years may have an increased
                                                                        risk of getting cancer.
----------------------------------------------------------------------------------------------------------------
 H. Disinfection Byproducts (DBPs), Byproduct Precursors, and Disinfectant Residuals: Where disinfection is used
 in the treatment of drinking water, disinfectants combine with organic and inorganic matter present in water to
     form chemicals called disinfection byproducts (DBPs). EPA sets standards for controlling the levels of
   disinfectants and DBPs in drinking water, including trihalomethanes (THMs) and haloacetic acids (HAAs) \16\
----------------------------------------------------------------------------------------------------------------
79. Total trihalomethanes       N/A                 0.10/0.080<SUP>17</SUP> <SUP>18</SUP>    Some people who drink water containing
 (TTHMs).                                                               trihalomethanes in excess of the MCL
                                                                        over many years may experience problems
                                                                        with their liver, kidneys, or central
                                                                        nervous system, and may have an
                                                                        increased risk of getting cancer.
80. Haloacetic Acids (HAA)....  N/A                 0.060 \19\         Some people who drink water containing
                                                                        haloacetic acids in excess of the MCL
                                                                        over many years may have an increased
                                                                        risk of getting cancer.
81. Bromate...................  Zero                0.010              Some people who drink water containing
                                                                        bromate in excess of the MCL over many
                                                                        years may have an increased risk of
                                                                        getting cancer.
82. Chlorite..................  0.08                1.0                Some infants and young children who drink
                                                                        water containing chlorite in excess of
                                                                        the MCL could experience nervous system
                                                                        effects. Similar effects may occur in
                                                                        fetuses of pregnant women who drink
                                                                        water containing chlorite in excess of
                                                                        the MCL. Some people may experience
                                                                        anemia.
83. Chlorine..................  4 (MRDLG) \20\      4.0 (MRDL) \21\    Some people who use water containing
                                                                        chlorine well in excess of the MRDL
                                                                        could experience irritating effects to
                                                                        their eyes and nose. Some people who
                                                                        drink water containing chlorine well in
                                                                        excess of the MRDL could experience
                                                                        stomach discomfort.
 
[[Page 550]]
 
 
84. Chloramines...............  4 (MRDLG)           4.0 (MRDL)         Some people who use water containing
                                                                        chloramines well in excess of the MRDL
                                                                        could experience irritating effects to
                                                                        their eyes and nose. Some people who
                                                                        drink water containing chloramines well
                                                                        in excess of the MRDL could experience
                                                                        stomach discomfort or anemia.
85a. Chlorine dioxide, where    0.8 (MRDLG)         0.8 (MRDL)         Some infants and young children who drink
 any 2 consecutive daily                                                water containing chlorine dioxide in
 samples taken at the entrance                                          excess of the MRDL could experience
 to the distribution system                                             nervous system effects. Similar effects
 are above the MRDL.                                                    may occur in fetuses of pregnant women
                                                                        who drink water containing chlorine
                                                                        dioxide in excess of the MRDL. Some
                                                                        people may experience anemia.
                                                                       Add for public notification only: The
                                                                        chlorine dioxide violations reported
                                                                        today are the result of exceedances at
                                                                        the treatment facility only, not within
                                                                        the distribution system which delivers
                                                                        water to consumers. Continued compliance
                                                                        with chlorine dioxide levels within the
                                                                        distribution system minimizes the
                                                                        potential risk of these violations to
                                                                        consumers.
85b. Chlorine dioxide, where    0.8 (MRDLG)         0.8 (MRDL)         Some infants and young children who drink
 one or more distribution                                               water containing chlorine dioxide in
 system samples are above the                                           excess of the MRDL could experience
 MRDL.                                                                  nervous system effects. Similar effects
                                                                        may occur in fetuses of pregnant women
                                                                        who drink water containing chlorine
                                                                        dioxide in excess of the MRDL. Some
                                                                        people may experience anemia.
                                                                       Add for public notification only: The
                                                                        chlorine dioxide violations reported
                                                                        today include exceedances of the EPA
                                                                        standard within the distribution system
                                                                        which delivers water to consumers.
                                                                        Violations of the chlorine dioxide
                                                                        standard within the distribution system
                                                                        may harm human health based on short-
                                                                        term exposures. Certain groups,
                                                                        including fetuses, infants, and young
                                                                        children, may be especially susceptible
                                                                        to nervous system effects from excessive
                                                                        chlorine dioxide exposure.
86. Control of DBP precursors   None                TT                 Total organic carbon (TOC) has no health
 (TOC).                                                                 effects. However, total organic carbon
                                                                        provides a medium for the formation of
                                                                        disinfection byproducts. These
                                                                        byproducts include trihalomethanes
                                                                        (THMs) and haloacetic acids (HAAs).
                                                                        Drinking water containing these
                                                                        byproducts in excess of the MCL may lead
                                                                        to adverse health effects, liver or
                                                                        kidney problems, or nervous system
                                                                        effects, and may lead to an increased
                                                                        risk of getting cancer.
----------------------------------------------------------------------------------------------------------------
                                          I. Other Treatment Techniques
----------------------------------------------------------------------------------------------------------------
87. Acrylamide................  Zero                TT                 Some people who drink water containing
                                                                        high levels of acrylamide over a long
                                                                        period of time could have problems with
                                                                        their nervous system or blood, and may
                                                                        have an increased risk of getting
                                                                        cancer.
88. Epichlorohydrin...........  Zero                TT                 Some people who drink water containing
                                                                        high levels of epichlorohydrin over a
                                                                        long period of time could experience
                                                                        stomach problems, and may have an
                                                                        increased risk of getting cancer.
----------------------------------------------------------------------------------------------------------------
 
 
[[Page 551]]
 
                          Appendix B--Endnotes
 
    1. MCLG--Maximum contaminant level goal
    2. MCL--Maximum contaminant level
    3. For water systems analyzing at least 40 samples per month, no 
more than 5.0 percent of the monthly samples may be positive for total 
coliforms. For systems analyzing fewer than 40 samples per month, no 
more than one sample per month may be positive for total coliforms.
    4. There are various regulations that set turbidity standards for 
different types of systems, including 40 CFR 141.13, the 1989 Surface 
Water Treatment Rule, and the 1998 Interim Enhanced Surface Water 
Treatment Rule. The MCL for the monthly turbidity average is 1 NTU; the 
MCL for the 2-day average is 5 NTU for systems that are required to 
filter but have not yet installed filtration (40 CFR 141.13).
    5. NTU--Nephelometric turbidity unit
    6. There are various regulations that set turbidity standards for 
different types of systems, including 40 CFR 141.13, the 1989 Surface 
Water Treatment Rule (SWTR), and the 1998 Interim Enhanced Surface Water 
Treatment Rule (IESWTR). Systems subject to the Surface Water Treatment 
Rule (both filtered and unfiltered) may not exceed 5 NTU. In addition, 
in filtered systems, 95 percent of samples each month must not exceed 
0.5 NTU in systems using conventional or direct filtration and must not 
exceed 1 NTU in systems using slow sand or diatomaceous earth filtration 
or other filtration technologies approved by the primacy agency.
    7. TT--Treatment technique
    8. There are various regulations that set turbidity standards for 
different types of systems, including 40 CFR 141.13, the 1989 Surface 
Water Treatment Rule (SWTR), and the 1998 Interim Enhanced Surface Water 
Treatment Rule (IESWTR). For systems subject to the IESWTR (systems 
serving at least 10,000 people, using surface water or ground water 
under the direct influence of surface water), that use conventional 
filtration or direct filtration, after January 1, 2002, the turbidity 
level of a system's combined filter effluent may not exceed 0.3 NTU in 
at least 95 percent of monthly measurements, and the turbidity level of 
a system's combined filter effluent must not exceed 1 NTU at any time. 
Systems subject to the IESWTR using technologies other than 
conventional, direct, slow sand, or diatomaceous earth filtration must 
meet turbidity limits set by the primacy agency.
    9. The bacteria detected by heterotrophic plate count (HPC) are not 
necessarily harmful. HPC is simply an alternative method of determining 
disinfectant residual levels. The number of such bacteria is an 
indicator of whether there is enough disinfectant in the distribution 
system.
    10. SWTR and IESWTR treatment technique violations that involve 
turbidity exceedances may use the health effects language for turbidity 
instead.
    11. Millions fibers per liter.
    12. Action Level = 0.015 mg/L
    13. Action Level = 1.3 mg/L
    14. Millirems per years
    15. Picocuries per liter
    16. Surface water systems and ground water systems under the direct 
influence of surface water are regulated under Subpart H of 40 CFR 141. 
Supbart H community and non-transient non-community systems serving 
 10,000 must comply with DBP MCLs and disinfectant maximum 
residual disinfectant levels (MRDLs) beginning January 1, 2002. All 
other community and non-transient noncommunity systems must meet the 
MCLs and MRDLs beginning January 1, 2004. Subpart H transient non-
community systems serving 10,000 or more persons and using chlorine 
dioxide as a disinfectant or oxidant must comply with the chlorine 
dioxide MRDL beginning January 1, 2002. Subpart H transient non-
community systems serving fewer than 10,000 persons and systems using 
only ground water not under the direct influence of surface water and 
using chlorine dioxide as a disinfectant or oxidant must comply with the 
chlorine dioxide MRDL beginning January 1, 2004.
    17. The MCL of 0.10 mg/l for TTHMs is in effect until January 1, 
2002 for Subpart H community water systems serving 10,000 or more. This 
MCL is in effect until January 1, 2004 for community water systems with 
a population of 10,000 or more using only ground water not under the 
direct influence of surface water. After these deadlines, the MCL will 
be 0.080 mg/l. On January 1, 2004, all systems serving less than 10,000 
will have to comply with the new MCL as well.
    18. The MCL for total trihalomethanes is the sum of the 
concentrations of the individual trihalomethanes.
    19. The MCL for haloacetic acids is the sum of the concentrations of 
the individual haloacetic acids.
    20. MRDLG--Maximum residual disinfectant level goal.
    21. MRDL--Maximum residual disinfectant level.
 
[65 FR 26043, May 4, 2000; 65 FR 38629, June 21, 2000; 65 FR 40521, 
40522, June 30, 2000]
 
    Effective Date Note 1: At 65 FR 76751, Dec. 7, 2000, appendix B to 
subpart Q of part 141 was amended by redesignating table entries 79 
through 84 and 86 through 88 as 80 through 85 and 87 through 89, 
respectively, and entries 85a and 85b as 86a and 86b, respectively; by 
adding a new entry 79 for uranium under "G. Radioactive contaminants"; 
by redesignating table endnote entries 16 through 21 as 17 through 22; 
and by adding a new endnote 16, effective Dec. 8, 2003. For the
 
[[Page 552]]
 
convenience of the user, the added text is set forth as follows:
 
 Appendix B to Subpart Q of Part 141--Standard Health Effects Language 
                         for Public Notification
 
------------------------------------------------------------------------
                                                      Standard health
          Contaminant            MCLG\1\   MCL\2\   effects language for
                                  mg/L      mg/L    public notification
------------------------------------------------------------------------
National Primary Drinking
 Water Regulations (NPDWR)
 
 
*                  *                  *                  *
                  *                  *                  *
G. Radioactive contaminants
 
 
*                  *                  *                  *
                  *                  *                  *
79. Uranium\16\...............  Zero      30       Some people who drink
                                           <greek   water containing
                                           -/L      uranium in excess of
                                                    the MCL over many
                                                    years may have an
                                                    increased risk of
                                                    getting cancer and
                                                    kidney toxicity.
 
*                  *                  *                  *
                  *                  *                  *
------------------------------------------------------------------------
 
                          Appendix B--Endnotes
 
                                * * * * *
 
    16. The uranium MCL is effective December 8, 2003 for all community 
water systems.
 
                                * * * * *
 
    Effective Date Note 2: At 66 FR 7065, Jan. 22, 2001, Appendix B to 
Subpart Q was amended by revising entry "9. Arsenic" under "C. 
Inorganic chemicals (IOCs)"; redesignating endnotes 11 through 21 as 
endnotes 12 through 22 in the table and at the end of the table; and 
adding endnote 11, effective Mar. 23, 2001. At 66 FR 16134, Mar. 23, 
2001, the effective date was delayed until May 22, 2001. At 66 FR 28350, 
May 22, 2001, the effective date was further delayed until Feb. 22, 
2002. For the convenience of the user, the revised and added text is set 
forth as follows:
 
  Appendix B to Subpart Q--Standard Health Effects Language for Public 
                              Notification
 
----------------------------------------------------------------------------------------------------------------
                                                                               Standard health effects language
                Contaminant                   MCLG \1\ mg/L   MCL \2\ mg/L         for public notification
----------------------------------------------------------------------------------------------------------------
*                  *                  *                  *                  *                  *
                                               *
9. Arsenic \11\............................               0            0.01  Some people who drink water
                                                                              containing arsenic in excess of
                                                                              the MCL over many years could
                                                                              experience skin damage or problems
                                                                              with their circulatory system, and
                                                                              may have an increased risk of
                                                                              getting cancer.
*                  *                  *                  *                  *                  *
                                               *
----------------------------------------------------------------------------------------------------------------
 
                          Appendix B--Endnotes
 
    1. MCLG-Maximum contaminant level goal.
    2. MCL-Maximum contaminant level.
 
                                * * * * *
 
    11. These arsenic values are effective January 23, 2006. Until then, 
the MCL is 0.05 mg/L and there is no MCLG.
 
                                * * * * *
 
    Effective Date Note 3: At 66 FR 31104, June 8, 2001, Appendix B to 
subpart Q of part 141 was amended by revising B. and entry "7." under 
B., effective Aug. 7, 2001. For the convenience of the user, the revised 
text is set forth as follows:
 
 Appendix B to Subpart Q of Part 141.--Standard Health Effects Language 
                         for Public Notification
 
[[Page 553]]
 
 
 
 
----------------------------------------------------------------------------------------------------------------
                                                                                                Standard health
                                                                                               effects language
                         Contaminant                           MCLG \1\ mg/L   MCL \2\ mg/L       for public
                                                                                                 notification
----------------------------------------------------------------------------------------------------------------
National Primary Drinking Water Regulations (NPDWR):
 
*                  *                  *                  *                  *                  *
                                                        *
B. Surface Water Treatment Rule (SWTR), Interim Enhanced
 Surface Water Treatment Rule (IESWTR) and Filter Backwash
 Recycling Rule (FBRR) violations:
 
*                  *                  *                  *                  *                  *
                                                        *
    7. Cryptosporidium (IESWTR/FBRR)........................
 
*                  *                  *                  *                  *                  *
                                                        *
----------------------------------------------------------------------------------------------------------------
Appendix B--Endnotes
1. MCLG--Maximum contaminant level goal.
2. MCL--Maximum contaminant level.
 
                                * * * * *
 
  Appendix C to Subpart Q of Part 141--List of Acronyms Used in Public 
                         Notification Regulation
 
CCR  Consumer Confidence Report
CWS  Community Water System
DBP  Disinfection Byproduct
EPA  Environmental Protection Agency
HPC  Heterotrophic Plate Count
IESWTR  Interim Enhanced Surface Water Treatment Rule
IOC  Inorganic Chemical
LCR  Lead and Copper Rule
MCL  Maximum Contaminant Level
MCLG  Maximum Contaminant Level Goal
MRDL  Maximum Residual Disinfectant Level
MRDLG  Maximum Residual Disinfectant Level Goal
NCWS  Non-Community Water System
NPDWR  National Primary Drinking Water Regulation
NTNCWS  Non-Transient Non-Community Water System
NTU  Nephelometric Turbidity Unit
OGWDW  Office of Ground Water and Drinking Water
OW  Office of Water
PN  Public Notification
PWS  Public Water System
SDWA  Safe Drinking Water Act
SMCL  Secondary Maximum Contaminant Level
SOC  Synthetic Organic Chemical
SWTR  Surface Water Treatment Rule
TCR  Total Coliform Rule
TT  Treatment Technique
TWS  Transient Non-Community Water System
VOC  Volatile Organic Chemical
 
 
 
horizontal rule
horizontal rule