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Abstract: Regional Landsat applications 
often rely on clear and near cloud-free 
images. With the spectral value being 
represented by digital number (DN), 
however, such images contain substantial 
noises. A significant proportion of such 
noises can be normalized by converting the 
DN to at-satellite reflectance value. Being 
physically based and ready to automate, the 
conversion method can serve as a first order 
normalization of Landsat 7 images, making 
it possible to derive land surface information 
from such images more consistently. 
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1. Introduction 
One of the challenges to satellite-based 

land cover characterization is removing or 
normalizing the noises arising from 
atmospheric effect, changing view and 
illumination geometry, and instrument errors 
(Wharton 1989). Such noises hinder the 
ability to derive land surface information 
reliably and consistently. Great efforts have 
been made to minimize instrument errors for 
standard image products of Landsat 7 
Enhanced Thematic Mapper Plus (ETM+) 
(Irish 2000). Noises due to the impact of the 
atmospheric and illumination geometry can 
be normalized in several approaches. One is 
atmospheric correction (e.g. Moran et al. 
1992, Liang et al. 1997), the applicability of 
which to large area applications is limited 
due to lack of in-situ measurements of 
atmospheric conditions for many 
applications and uncertainties associated 
with current atmospheric correction 
algorithms. Another approach relies on 
pseudo-invariant objects (Schott et al. 1988, 
Heo and FitzHugh 2000). This approach 
assumes that the spectral properties of 

pseudo-invariant objects do not change 
significantly over time. Their spectral values 
are used to normalize scenes to a base image 
using regression techniques. A problem with 
this approach is the difficulty to automate 
because pseudo-invariant objects have to be 
identified manually. Besides, results of this 
approach can be biased when the selected 
pseudo-invariant objects are not rigorously 
invariant.  

In this study, we demonstrate that for 
clear and near cloud-free ETM+ images, a 
first order normalization can be achieved by 
converting the raw digital number (DN) to 
at-satellite reflectance. The conversion 
algorithm is physically based, ready to 
automate, and does not introduce errors to 
the data.  

 

2. Data and methods 

2.1 Image data 
A set of 10 ETM+ near cloud-free 

scenes representing a range of landscapes of 
the mid-latitude United States were used to 
test the robustness of the conversion method 
for image normalization (table 1). Five of 
the images were acquired during summer 
and five during fall or winter, representing 
leaf-on and leaf-off conditions, respectively. 
These images were radiometrically and 
geometrically corrected in the EROS Data 
Center of the U.S. Geological Survey 
(USGS) using standard methods (Irish 
2000). 

2.2 Converting DN to at-satellite 
reflectance 
Without considering the impact of 

topography (Ekstrand 1996) and the 
atmosphere (Liang et al. 1997), Markham 
and Barker (1986) gave the two equations 
for converting DN to at-satellite reflectance:  
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where L and � are at-satellite radiance and 
reflectance respectively. The subscript � 
refers to spectral band �. For each Landsat7 
ETM+ image the gains, biases and sun 
elevation (�) are provided in the header file 
that accompanies the image. The Solar 
irradiance ESUN� is given in the Landsat 7 
Science Data Users Handbook (Irish 2000). 
The normalized Sun-Earth distance d for any 
day of the year can be calculated from the 
eccentricity correction factor E0: 

0
2 /1 Ed �        (3) 

 
E0 can be found from table 1.2.1 or 
calculated according to equations (1.2.1) and 
(1.2.2) of Iqbal (1983).  

2.3 Noise quantification 
The absolute value of the noise in an 

image is difficult to quantify because 
simultaneous ground measurements are 
often unavailable. Relevant to many regional 
Landsat applications is the relative 
magnitude of the noise, referred to as 
relative noise hereafter, among the scenes 
used. For a pair of images of the same 
location, one acquired during leaf-on season 
and the other during leaf-off season, the 
relative noise between them can be 
measured using pseudo-invariant objects 
whose reflective properties are relatively 
stable over time: 
(4) 
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where N is the number of pseudo-invariant 
pixels identified in the image pair, and d1 
and d2 their spectral values (DN or at-
satellite reflectance) in the leaf-on and leaf-
off images respectively. The relative noises 
between the pair of DN images (NOISEDN) 
and at-satellite reflectance images 
(NOISEref) should be roughly comparable, 
because the magnitude of the noise 
measured by the numerator of equation (4) 
is normalized by the range of the spectral 
value of the pseudo-invariant objects.  

Examples of pseudo-invariant objects 
used in this study include large flat building 
roofs, airport runways, deep water and stable 
sand hills. Depending on availability, up to 
more than one hundred pseudo-invariant 
objects were manually identified from each 
of the 5 ETM+ image pairs. Where 
necessary, 1 meter digital orthophoto 
quadrangles (DOQ) developed by the USGS 
were used to aid the selection of those 
objects.  

 

3. Results and discussion 
Figure 1 compares the spectral value of 

pseudo-invariant objects as measured by the 
Landsat 7 ETM+ sensor during leaf-on and 
leaf-off seasons. These objects were selected 
from the northern Nebraska image pair (path 
31/row 30). Due to length limitation, figures 
generated using the pseudo-invariant objects 
from the other four image pairs are not 
presented. They were generally similar to 
figure 1, though the magnitude of the 
difference between leaf-on and leaf-off 
values varied. In general, the pseudo-
invariant objects were not temporally 
invariant when measured by DN (figure 
1(a)). The bright objects had substantially 
higher DN values during the leaf-on season 
than during the leaf-off season. While some 
of the pseudo-invariant objects might not be 
rigorously invariant over time, the majority 
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of the temporal variations of their DN value 
should not arise from ground targets, but 
from changes in other factors including 
atmospheric effect and illumination angle 
(table 1). The variations were substantially 
reduced after the DN values were converted 
to at-satellite reflectance (figure 1(b)). 
Similar observations were made for the 
other four image pairs. 

 
Figure 2 gives the NOISEs for the six 

spectral bands of the 5 image pairs. In 
general, NOISEref was about 50% or even 
less of the corresponding NOISEDN, 
suggesting that more than half of the relative 
noises between clear and cloud-free leaf-on 
and leaf-off images can be removed by 
converting DN to at-satellite reflectance. 
These observations should be valid for 
previous Landsat systems, provided the 
appropriate parameters for equations (1) and 
(2) are available. 

 
Figure 2 suggests that without 

performing atmospheric correction, 
substantial relative noises among clear and 
near cloud-free images can be removed by 
converting DN to at-satellite reflectance. 
This can enhance the consistency of land 
cover characterization in many ways. For 
regional applications, scene mosaics can be 
substantially improved by converting DN to 
at-satellite reflectance (figure 3). At-satellite 
reflectance images should be more 
appropriate for land cover and land cover 
change analysis than DN images (Huang et 
al. 1998), because the temporal information 
contained in at-satellite reflectance images is 
more relevant to the concerned targets than 
that contained in DN images. At-satellite 
reflectance also allows the development of a 
regionally applicable tasseled cap 
transformation using physically based 
measurement (Huang et al. 2001).  

 

Further image normalization can be 
achieved by considering the impact of 
topographic effect on view and illumination 
geometry. Due to time limitations we only 
tried the Lambertian cosine correction 
method for topographic normalization 
(Smith et al. 1980), and would not 
recommend it over areas with high relief 
because it does not handle extremely low 
incidence angles adequately. Use of more 
complex algorithms needs to be further 
investigated (Ekstrand 1996). 

 

4. Conclusions 
 Using pseudo-invariant objects, we 
demonstrated that a significant proportion of 
the relative noise exists among multi-
temporal clear and near cloud-free ETM+ 
DN images can be removed by converting 
DN to at-satellite reflectance. Unlike many 
other normalization algorithms, this method 
is physically based, ready to automate and 
does not introduce noise to the normalized 
images. It can substantially improve the 
quality of mosaicked imagery, making 
multi-scene land cover characterization 
more consistent. These observations should 
also be valid for previous Landsat systems if 
appropriate parameters for equations (1) and 
(2) are available. This method can be further 
improved by considering the impact of 
topography on illumination and view 
geometry.  
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Table 1 Landsat 7 ETM+ images used in this study 

Path Row Geographic location Acquisition date Sun elevation � (�) 
15 34 Virginia, east Jul. 28, 1999 63 
15 34 Virginia, east Nov. 17, 1999 32 
16 34 Virginia, west Jul. 19, 1999 64 
16 34 Virginia, west Nov. 8, 1999 34 
31 30 Northern Nebraska Jul. 12, 1999 63 
31 30 Northern Nebraska Nov. 17, 1999 26 
38 31 Northeastern Utah Aug. 14, 1999 57 
38 31 Northeastern Utah Oct. 17, 1999 37 
46 29 Western Oregon Aug. 22, 1999 53 
46 29 Western Oregon Dec. 28, 1999 20 
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Figure captions 
 
Figure 1 A comparison of the spectral value of pseudo-invariant objects identified from the 
Northern Nebraska scene (path 31/row 30). Each point represents a pseudo-invariant object. The 
units for both x- and y-axis are DN value for (a) and at-satellite reflectance � 100 (%) for (b). 
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Figure 2 Relative noises between leaf-on and leaf-off images calculated from pseudo-invariant 
objects using equation (4). 
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Figure 2  

-- NO ISE ref 
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 Figure 3 Improvement of at-satellite reflectance over DN in image mosaic. For both (a) and (b) 
the left mosaics were from DN images and right mosaics from at-satellite reflectance images, 
and the left scene (path 31/row 30) of each mosaic was acquired on July 12, 1999 and the right 
scene (path 30/row 30) on August 8, 2000.  
(a) In areas where the ground conditions on the scenes to be mosaicked were different, the 
difference was reduced but did not disappear when DN was converted to at-satellite reflectance. 
(b) In areas where the ground conditions on the scenes to be mosaicked were similar, the seam 
line seen in the DN image mosaic was almost invisible in the at-satellite reflectance image 
mosaic. 

e DN image 
 

(a) 

(b) 
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