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ABSTRACT

X-ray tomographic images were collected for polydimethylsiloxane (PDMS) foam material under

various levels of compression.  The goal was to implement a systematic analysis method of

correlating some aspect of these images to the cell morphology in order to enhance understanding

of the material characteristics.  X-ray attenuation of the cellular PDMS was clearly observed to

increase with the specimen density as the foam material was mechanically compressed.  The

stochastic data derived from the digital images was used to calculate macroscopic mechanical

properties at each foam compression. 
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INTRODUCTION

The permeation characteristics of a polymer foam are being studied, for determination of gas

permeation constants and tortuosity changes as the polymer undergoes compression.  The cell

geometry affects the responses of the foam when in use under compressive loads, and also gas

permeation properties.  A knowledge of foam variables, which include density, porosity, cell

geometry, and gas phase composition, enable one to model the material and its properties.  The

current study investigated x-ray tomography as a method for obtaining visual images of the

polymer at different stages of compression.  It then applied the interaction of soft x-ray photons

(20 keV) with the PDMS electronic structure to quantify foam features.  This unusual polymer

comprises Si,  O, C, and H atoms, which  have  mass attenuation coefficients that render good

contrast, and therefore a great deal of information.  Amorphous carbon-based polymers are

relatively transparent to this mode of x-ray examination and require crystalline structure in order

for x-ray diffraction patterns to be discerned.  The cellular PDMS in this study has an amorphous

microstructure and a foam macrostructure.  Therefore x-rays which scatter from the solid phase

of this material will be detected in proportion to the mass of polymer present, in contrast to void

space.  Furthermore, the elemental attenuation of x-rays by the polymer matrix provides

quantitative information about the foam content and compression.  

MATERIAL

The specimen was a cellular poly(dimethyl siloxane) or PDMS.  The foam morphology is open-

cell with a nominal density of 0.615 g/cm3.   Polydimethyl siloxanes ( [-Si(CH3)2O-]n) are

substituted siloxane chains, with the formula:
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      CH3                                       �
� � Si � O � �n                  |                             CH3

This polysiloxane type contains methyl groups, but even with more bulky R groups, the siloxane

chain remains relatively flexible.   This dynamic flexibility arises from the relatively long Si - O

bond length, 1.64� (vs. the C - C bond, 1.53�), which reduces steric interference and

�intramolecular congestion.�  This polymer contains silica filler and is crosslinked during the

foaming process.

The rectangular specimen, of dimensions 1.5-inch length, 0.5-inch width, and 0.3-inch height,

was cut from a 0.3-inch thickness foam slab.  The specimen was held in an acrylic holder of

internal dimensions 1.5 inch (length) x 0.5 inch (width) x 0.5 inch (height), and 0.1-inch wall

thickness.  Shims of this same material were used to compress the specimen, having various

thicknesses required in order to obtain compressions of 10%, 20%, 30%, 40%, 50%, and 60%. 

Three-dimensional images were built at each of these compressive states by obtaining two-

dimensional slices of 70 nm resolution.  For each compressive level, some 200 data slices were

collected from each of the x, y, and z planes, thus requiring 600 sets of data for each compression

(4200 total sets of 2-D data). The PDMS foam cells were approximately 0.065 - 0.070 mm in

diameter with open faces, as seen in the optical micrograph (Figure 1).  This material is easily

compressed with the cell walls folding into one another as force is applied.

Unixial compression is affected by insertion of increasingly wide shims into the sample holder,

thereby decreasing the length of the holder, up to 60% in 10% increments.  Even with this
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decrease in volume, the specimen volume does not decrease proportionally, but only by 45

percent at the maximum compression of 60%.  The decrease in material porosity is determined

by calculating the new density at each compression, since

(1)ρ foam
polymerm

V=

where the polymer mass (mpolymer) is constant, and a new polymer foam volume V can be

calculated for each compressive state.  Table I is a summary of the specimen dimensions, volume

and porosity, where the porosity is a dimension less quantity defined as the ratio of void volume

to the porous specimen volume. [1, 4], where

. (2)
V V

V
V

V
Porosityspecimen polymer

specimen

void

specimen

−
= =

EXPERIMENTAL

Computed x-ray tomography is a method used in the fields of medicine, biology, and geology,

due to its noninvasive and nondestructive capability to obtain two-dimensional and three-

dimensional images of complex structures.  Three-dimensional x-ray tomographic equipment

comprising the Oak Ridge National Laboratory (ORNL) Microcomputer Assisted Tomography

(MicroCAT) system was used to examine the foam structure.  The MicroCAT, developed for

imaging mice and other biological entities, used a 40 kVp x-ray source from a 75W tungsten

anode source, and a MedOptics Phospor screen/CCD array detector.  The x-ray energy has been

experimentally determined to be 20 keV as filtered with an aluminum sheet of 0.5 mm thickness. 

The system was controlled using Windows NT.

This method reconstructs x-ray detector signals from various paths through the specimen,
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comparing them to the initial beam intensity.  For each incident beam Io, passing through a

sample of thickness x, an outgoing beam I1 has been attenuated by the quantity µx, where µ is the

linear attenuation coefficient, or energy absorption amount for the atoms contained in that thin

layer ∆x.  Integrating over the entire x distance, each path generates an unknown value of µ:

, (3)
I
I

x dx
o

x1
= − �exp{ ( ) }µ

The detectors are located in a circular array around the specimen; using rotation and translational

motion along a z-axis, each point in the specimen is x-rayed across several paths. A large matrix

of intensity equations is then solved for unknown values of µ, using a reconstruction algorithm.

This provides linear attenuation coefficient values which correspond with specific elements and

their spatial locations in the specimen.  Consecutive slices of 35 µm resolution slices are

collected, resulting in a 3-D image which maps the set of x-ray linear coefficients. 

DATA COLLECTION AND ANALYSIS

Grayscale Images

Scion Image software has the capability to generate a profile plot of the grayscale intensity of the

image across a plane of the specimen.  It was noted that the overall intensity range correlates with

the degree of compression; for example, the uncompressed specimen of void volume 0.483 has

an average 200 points between the highest and lowest level of brightness of the image.  This can

be compared with the most compressed foam (60%), which has a void volume of 0.063.  In this

case, the difference in brightness range is only about 60, with the minimum brightness never

going below 98.  This indicates polymer matrix density across the entire image, whereas the

intensity of the uncompressed specimen reaches zero at several points where there is no matrix
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material, hence locate an open void where there is no attenuation.

The foam characterization methods developed by Delesse [7] and later carried forward by

Rhodes and Khaykin [8] use stereology to project two-dimensional feature information into a

three-dimensional space.  As described earlier, one can imagine a cube cut from the specimen

and a grid superimposed upon a bisecting plane (see Figure 2).  The area bounded by �irregular�

volume domains is the 2-D projection of the 3-D void volume.  In a similar fashion, one-

dimensional line sections are found to be proportional to the volume fraction of features.  In this

case, the fraction of line located on the void can be shown to estimate the area and volume of the

void phase  where:

(4)
L
L

A
A

V
V

i i i
= =

and Li, Ai, and Vi represent the lineal fraction, the areal fraction, and the volume fraction of the

void space, respectively [7].  This correlation carries even further to Pi, the fraction of points

located in phase i, as measured on a grid of points P. 

In this study, the grayscale indication quantifies the relative area of voids across a selected

specimen cross-sectional area.  While image resolution is not small enough to characterize single

cells or walls, a stochastic approach will be taken by correlating the grayscale to the CT numbers

(see section II).  These are the raw data collected by the detector, and are a direct measure of the

x-ray interaction with the material.  From a stochastic standpoint, this is the probability of finding

polymer material at a certain location in three-dimensional space.
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CT Numbers

By converting the grayscale values to CT numbers, quantification of the x-ray interaction with

the specimen can be achieved.  The CT number, an accepted standard in biological applications,

is reported in Hounsfield Units (HU) and is an indicator of the specimen�s electron density. One

of the specific set of CT numbers has a scale from -1000 HU for air to +1000 HU for bone, with

water equal to zero [10].  The number is based upon the linear x-ray coefficient value, µ, of the

specimen as compared to that of water, µΗ2Ο:

CT (5)number xH O

H O
=

−�

�
�

�

�
�

µ µ
µ

2

2
1000

where  µ is the linear x-ray attenuation coefficient of the material as a function of x-ray energy. 

For this work, the raw attenuation data was initially converted to CT numbers.  At an x-ray

energy of 20 keV, µΗ2Ο = 0.8096 cm-1, whereas at 22.5 keV, µΗ2Ο = 0.7 cm-1.  The need for the

latter calculation will be explained in the next section.

CT numbers obtained from specimen center slices of area 64 pixel x 64 pixel were plotted as a

function of pixel number across the width of the specimen.  Figure 3 shows plots obtained for

zero percent, 30%, and 60% compressions matched to a cross-sectional image for each.  The

fluctuation in CT number, as a result of void depth, matches to that of the grayscale data.  The

range between high and low CT numbers is large, in the case of the uncompressed sample; the

average CT number is smaller in this situation than at any other compressive state.  This indicates

that the x-ray interaction with silicon atoms is at its minimum since there is less surface area

(larger cell void space) available for scattering.  Figure 4 shows CT number value averages at

each compression.



10

  
X-ray Mass Attenuation Coefficients

At the highest compression, the CT curve appears to approach a limiting value, which one might

assume is the CT number for nonfoam PDMS.   In order to determine the limiting value of the

CT Number, it is necessary to obtain the mass attenuation coefficient from the literature.  From

the NIST reference, one can find the µ/ρ for elemental silicon, oxygen, carbon, and hydrogen at

an x-ray energy of 20 keV.  Based upon the relative masses of each element i present in the

polydimethylsiloxane polymer (which contains 25% of a silica filler), a nonfoam or resin µ/ρ

value can be obtained:

 . (6)
µ
ρ

µ
ρ

=
�

�
�

�

�
��wi

i
i

One then uses the density value of 1.19 g/cm3 [2] in order to determine the µ value for the PDMS

nonfoam material.  The limiting CT Number is then determined by substitution into Eq. 5.

Alternatively, the CT data can be transformed into the form more familiar to materials scientists

and engineers by using Eq. 3 above to determine µ, then dividing by the specimen density, ρ, to

obtain the mass attenuation coefficient, µ/ρ.  Data was obtained from the National Institute of

Standards and Technology web site http://physics.nist.gov/PhysRefData/XrayMassCoef/ where

NISTIR 5632 lists elemental x-ray attenuation coefficients for x-ray energies of range 10-3 to 102

MeV [6].

Based upon calculations of the polydimethylsiloxane specimen constituents, the elemental

content is calculated to be 38.5 wt% Si, 28.7 wt% O, 26.6 wt% C, and 6.2 wt% H.  Using these



11

elemental weight fractions, one uses the formula  (µ/ρ)foam = wSi(µ/ρ)Si + wO(µ/ρ)O + wC(µ/ρ)C +

wΗ(µ/ρ)Η with the attenuation coefficients for 20 keV photon energy to calculate that µ/ρ =  2.1

cm2/g for the polymer itself.  These numbers assume a homogeneous specimen, such as a

polymer resin with no void spaces.

The average experimental CT numbers are converted to x-ray attenuation measurements as

expressed in Eq. 3.  This data, based upon the 20 keV x-ray energy source,  is presented in Table

2, as a function of specimen location and compression.  The maximum attenuation coefficient

would be attained for the resin form of the polymer; this theoretical value has been included.  As

one would expect, the increasingly compressed cellular polymer has a µ/ρ approaching that of the

resin.  

It was further determined that the absorption of lower energy x-rays by the specimen required

recalculation of the average attenuation coefficients.    The average mass attenuation coefficients

are now extrapolated to a 22.5 keV photon energy, and the results shown as the final column in

Table 3,  a summary of compression-related foam characteristics.

Figure 5 plots relative density and mass attenuation coefficient behavior as the cellular PDMS is

compressed, and porosity of the foam is reduced.  Although these features trend in a similar

manner, the relative density data (left-hand y-axis) appears to exceed the expected value (ρ∗
/ρ=1)

by 10%.  The x-ray attenuation coefficient (right-hand y-axis) experimentally falls about 8%

short of its calculated value of 1.769 cm2/g.  There are plans to compile x-ray attenuation data

from a resin specimen.
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APPLICATION OF DATA TO MECHANICAL PROPERTY DETERMINATIONS

Polymeric foams offer mechanical advantages, due to their light weight and wide range of

properties, particularly their density, modulus, and compressive strength [5].   These attributes

are prescribed by the matrix polymer in combination with the cellular geometric structure.  

Recognizing that the  compressions obtained in the current study require a certain loading level,

the data obtained was used further in mechanical calculations.

Compression of a foam is described by the polymer modulus, E, foam modulus, Ef, compressive

strain, �, and a dimension less function of strain that describes strut buckling, Ψ(�).  The

compressive stress σ is expressed as

. (7)σ εΨ ε= E f ( )

Ef has a dependency on cellular structure related to E and to the fraction of polymer, �, residing

in the foam.  (It should be noted that the term � is equivalent to the relative density, ρ*/ρ, as

described by Gibson and Ashby [5].)  For sphere-shaped cells,

(8)( )E
E

CEf = + + =
ϕ

ϕ ϕ
12

2 7 3 2

It is appropriate that Ef approach E as � goes to 1.  The value of E for this particular PDMS

polymer is given as 275 psi [3] and an empirical value for flexible polyurethane foams will be

used allowing a strut buckling factor Ψ(�) ��0.28 [9].  

Applying these relationships and above data to the PDMS cellular polymer, Table 4 summarizes
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calculations made in order to obtain the foam modulus, stress, and compressive load at each

compression.  It would be fruitful to improve the strut buckling factor assumption, as one would

expect polydimethylsiloxane to behave differently than flexible polyurethane.  Figure 6 shows

the result of plotting the compressive stress (load per area) against the compressive strain; only

two of the deformation regions described by Gibson and Ashby [5] can be observed in this case,

the elastic buckling region and the densification region.  The absence of a linear bending region

may be due to the stepwise and static nature of these compressions, whereas typical loading tests

are dynamic.  Another conclusion is that cell wall bending is the primary response to foam

loading, with little deformation by cell wall compression.   Regardless, the data for each

compression agree with their general rule that

  (9)
E
E

f ≈
�

�
�

�

�
�

ρ
ρ
*

2

CONCLUSIONS

It has been shown that x-ray tomography is a useful nondestructive method for understanding the

compressive behavior of a loaded polymer foam.  As a general trend, the experimentally obtained

x-ray attenuation coefficient could be correlated with the effective density of the polymer foam,

ρ∗/ρ , where ρ* is the density of the original foam, and ρ is the resin (nonfoam) polymer density.

An added advantage of this method is that in-situ dimensional specimen measurements can be
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done during application of the compressive force.  The data acquired was used to characterize

certain mechanical properties of the cellular polysiloxane material.  Further analysis of these

results will elicit a better understanding of the cellular structure of this material, even as

improved resolution of the MicroCAT brings about higher resolution image data.
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Figure 1.  Optical micrograph of cellular
polydimethylsiloxane of 0.615 g/cm3 density (100x
magnification).
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Figure 2.  Example volume containing a dispersed void phase, the content of which can be determined by
cross-sectional lengths shown (from Kampf).
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Figure 3.  At left: x-ray images of 0%, 30%, and 60% compressed foam specimens across midsection.  At right:
respective grayscale variation plots of average CT number as a function of pixel number.  Specimen width of 
1.27 cm equates to 128 pixels.  Note that grayscale plots include data for specimen only, and not the specimen
holder (seen as a u-shape in the x-ray images). 
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Average CT Number as a Function of Compression
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Relative Density (ρ∗/ρ(ρ∗/ρ(ρ∗/ρ(ρ∗/ρ ) and Mass Attenuation Coeff. (µ/ρµ/ρµ/ρµ/ρ) as 
a function of compression
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Figure 5.  Comparison of relative cellular polymer density and mass attenuation coefficient for 22.5
keV x-rays, as foam is compressed.  Straight lines project values for solid polymer as the 100%
compressed foam.
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Compressive stress-strain behavior for .615 g/cm3 density polysiloxane open cell foam

0

20

40

60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Strain εεεε

C
om

pr
es

si
ve

 s
tr

es
s 

σ σ σ σ
 (

ps
i)

Figure 6.  Compressive stress-strain curve for open cell polysiloxane foam of density 0.615 g/cm3.
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Table 1.  Specimen dimensions at uniaxial compressive states.

Com-
pres-
sion

Shim
Length     

Specimen
Length     

Specimen
Width     

Specimen
Height

Specimen
Volume

Specimen
Density

Porosity
Vvoid/

Vspecimen
in cm in cm in cm in cm in3 cm3 lb/in3 g/cm3

0% 0 0 1.50 3.81 0.5 1.27 .307 .871 0.257 4.215 0.022 .615 0.483

10% 0.15 0.38 1.35 3.43 0.5 1.27 .353 .897 0.238 3.906 0.024 .664 0.442

20% 0.30 0.76 1.20 3.05 0.5 1.27 .375 .953 0.225 3.689 0.025 .703 0.410

30% 0.45 1.14 1.05 2.67 0.5 1.27 .386 .980 0.203 3.319 0.028 .781 0.344

40% 0.60 1.52 0.90 2.29 0.5 1.27 .396 1.01 0.178 2.921 0.032 .887 0.254

50% 0.75 1.91 0.75 1.91 0.5 1.27 .407 1.03 0.153 2.502 0.037 1.036 0.130

60% 0.90 2.29 0.60 1.52 0.5 1.27 .473 1.20 0.142 2.325 0.040 1.115 0.063
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Table 2.  X-Ray Attenuation Coefficients for Polysiloxane Foam as Calculated from CT Numbers
at Compressions Ranging from 0 to 60%, and Locations Along the Specimen Length.

Degree of
Compression

Attenuation Coefficients Based on 20 keV X-ray Energy
Along Relative Distances of Compressed Specimen Length

10% 25% 50% 75% 90% Average Value

0% 1.192 1.244 1.220 1.203 1.199 1.212

10% 1.315 1.303 1.287 1.21 1.190 1.261

20% 1.272 1.323 1.377 1.378 1.337 1.338

30% 1.467 1.491 1.500 1.466 1.385 1.462

40% 1.558 1.573 1.626 1.613 1.608 1.596

50% 1.730 1.740 1.739 1.730 1.722 1.732

60% 1.779 1.783 1.787 1.791 1.791 1.786

Resin (100%) 2.11 2.11 2.11 2.11 2.11 2.11
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   Table 3.  Data Summary for Polysiloxane Foam as a Function of Compression.
  

Level of
Compression

Foam
Density

ρ∗ρ∗ρ∗ρ∗

Porosity Relative
density

ρ∗/ρρ∗/ρρ∗/ρρ∗/ρ

X-ray Attenuation
Coefficient @ 22keV

µ/ρµ/ρµ/ρµ/ρavg (cm2/g)
0% 0.615 0.483 0.517 0.8807

         10% 0.664 0.442 0.558 0.9160
20% 0.703 0.410 0.591 0.9723
30% 0.781 0.344 0.656 1.0622
40% 0.887 0.254 0.745 1.1597
50% 1.036 0.130 0.871 1.2588
60% 1.115 0.063 0.937 1.2974

Resin ρ = 1.19 0 1.000 1.769
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Table 4.  Mechanical Properties of Polysiloxane Foam of 48% Porosity.

����z ���� or ρ*/ρ C Ef (psi) Ψ(����) σ (psi) area
(in2)

F (lb)

0 0.517 0.277 76.074 0.831 0.000 0.154 0.000

0.1 0.558 0.318 87.468 0.849 7.429 0.177 1.311

0.2 0.591 0.354 97.310 0.863 16.797 0.188 3.149

0.3 0.656 0.431 118.508 0.889 31.594 0.193 6.098

0.4 0.745 0.551 151.609 0.921 55.845 0.198 11.057

0.5 0.871 0.753 207.048 0.962 99.597 0.204 20.268

0.6 0.937 0.874 240.344 0.982 141.603 0.237 33.489
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