The Large Millimeter Telescope

David Hughes

Project Scientist LMT

Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) Tonantzintla, Mexico

<u>Overview</u>

- LMT & specifications
- first-light instrumentation
- LMT cosmology key projects (high-resolution studies of CMB anisotropies and LSS)

www.Imtgtm.org

Funding Mexico: CONACYT, INAOE USA: NSF, DARPA, UMASS

The LMT/GTM project

The LMT book

http://www.lmtgtm.org/book/lmtbook.html

El libro del GTM

El Gran Telescopio Milimétrico

Dos países vecinos exploran juntos el cosmos

Esperanza Carrasco • Itziar Aretxaga • William M. Irvine (coordinadores)

http://www.lmtgtm.org/gtm/book/librogtm.pdf

Primary Science with the LMT The formation & evolution of structure in the Universe

Cosmology at millimeter-wavelengths

- can detect the earliest evolutionary stages of structure formation in planet-forming and star-forming regions (cold, dense, optically-thick dust-obscured environments)
- independence of flux density on distance means we can detect starburst galaxies in the high-z Universe (which contribute ~50% of the γ-ray to radio extragalactic background light)
- rich molecular-line spectrum to understand physical conditions of starformation, the ISM, gas mass, spectroscopic—z & evolutionary history
- we observe the CMB at the peak of its energy distribution.
 Sunyaev-Zeldovich effect is a powerful redshift-independent method to identify clusters in local and high-z Universe

LMT Design Characteristics

- 50-m main reflector (180 panel segments)
 2.5 m secondary mirror
- active surface (compensates gravity & thermal deformations) to achieve surface r.m.s. of ~70 microns
- operational wavelengths 0.85 4 mm
- Beam resolution (FWHM) 5 -18 arcsec
- FOV ~ 4 arcmin diameter
- Sensitivity 3.0mm 2.0 Jy/K
 1.2mm 3.1 Jy/K

Location of the Large Millimeter Telescope

La Malinche (4400m) Citlaltépetl (5740m) y Sierra Negra (LMT, 4600m)

COIFO de MIENCO

Iztaccihautl (5110m) y Popocatepetl (5400m)

rizaba

Pué

LMT site Volcán Sierra Negra (Tliltepetl) 4581m

Pico de Orizaba (Citlalteptel) 5800m

excellent logistical support available (close to major towns/cities)
only 2 hours travel from INAOE with 110 km of *autopista* and 13 km of access road to summit

LMT Site Characteristics

- Site Sierra La Negra (97° 18' 53" W, +18° 59' 06")
- altitude 4600m (15100 ft.)

WIND (Q1, median, Q2)

- median wind-speed 2.7, 4.5, 6.7 m/s
- wind speed < 10 m/s (90% time)

<u>OPACITY</u>

 median opacity T_{225GHz} ~ 0.1 (winter), 0.3 (summer) 2mm PWV 6 mm PWV

TEMPERATURE (Q1, median, Q2)

- Day (8am 6pm) 0.2, **2.0**, 3.4 degrees Celcius
- Night (8pm 6am) -1.2, **0.3**, 1.4

Monthy-averaged opacity above LMT site

225GHz opacity variations in a 24-hour period

Winter

Summer

LMT panel segments

LMT panel segments

- 180 segments (~5 x 3m) in 5 concentric rings
- 8 sub-panels (<7 microns) electro-formed Nickel
- thermal insulation
- adjusters (segments set to 20-30 microns in lab)
- aluminium base plate
- stainless steel sub-frame & axial bars
- actuators

Surface Alignment

- Inner 32-m installed (inner 3-rings)
- Surface alignment (laser-tracker, holography) to reach <120um before telescope commissioning
- Full telescope sensitivity achieved with 70um r.m.s

Effective aperture areas of (sub-)mm telescopes

Effective area of (5-ring) 50m LMT

Effective area of (3-ring) 32m LMT

March 2006

Site Infrastructure

First-light Instrumentation Overview

Commissioned

AzTEC (JCMT 15-m, ASTE 10-m)
 144-pixel 1.1mm (or 2.1mm) continuum camera

• SEQUOIA (FCRAO 14-m)

32-pixel dual-polarization spectrometer at 85-116 GHz with 15 GHz instantaneous bandwidth

• 90 GHz Redshift Receiver (FCRAO 14-m)

2 pixel, dual-polarization, ultra-wideband analog autocorrelation spectrometer (instantaneous bandwidth ~35 GHz) at 75-111GHz

First-light Instrumentation Overview

Under development

SPEED

4 pixel (FSB) prototype continuum camera. Each pixel operates simultaneously at 0.85, 1.1, 1.4, 2.1 mm

1.3mm SIS receiver

1 pixel dual-polarization spectrometer 210-275 GHz

• LMT wideband spectrometer

versatile digital autocorrelator e.g. Redshift searches BW > 10000 km/s, dnu~100 km/s quiescent Dark Clouds BW ~20km/s, dnu~0.01km/s

Future Instrument Development

- CIX (Cluster Imaging eXperiment) 256-pixel 4-band multi-frequency camera based on SPEED prototype
- OMAR
 16-pixel receiver (210-275 GHz) based on single-pixel 1.3mm SIS development

ToITEC

Large-format continuum camera (~6400 pixels), full-sampled array filling available FOV based on successful TES development (e.g. SCUBA2, MUSTANG, MBAC, ...) or other new technologies

UMass Holography Receiver on the LMT, Installation July 2008

LMT 12GHz holography map (inner 32-m) 0.9 m resolution

SEQUOIA

- A cryogenic focal plane array for the 85-115.6 GHz range
- 32 pixel dual polarization 4 x 4 array
- 50-80 K noise temperature
- No mechanical or electrical tuning
- Single side-band response using just two LOs

Taurus Molecular Cloud Survey (FCRAO 14-m)

Narayanan et al. 2008 ApJ in press astroph/08022556

¹²CO (1-0) -5 < v(kms⁻¹) < 20 ¹³CO (1-0) 3 < v(kms⁻¹) < 9

~45" beam FWHM 0.07 km/s velocity resolution

96 sq degree area and 3.1 million spectra ⁰⁴ with 1024 spectral channels - Nov 2003 – May 2005

LMT Cosmology Key Projects

High resolution studies of LSS and CMB anisotropies

- take advantage of high pt-source sensitivity, mapping speed and resolution to trace 3-d distribution of LSS down to confusion-limit (resolve ~100% of mm background)
- large single-dish telescopes have all 3 capabilities

D.2. "How do galaxies arise and mature?"

we have to search for & find the "first galaxies"

- a population of galaxies undergoing an initial massive burst of optically-obscured star formation that generate a significant rest-frame FIR luminosity

D.2. "How do galaxies arise and mature?"

- Statistical properties needed to understand the formation & evolution of galaxies:
 - source-counts N(>S)angular distribution
 - redshift distribution
 N(> z; S)

Redshift Search Receiver

- luminosity function $\Phi(L,z)$ & spatial clustering

- 144-pixel Si-Ni spiderweb
 bolometer array
- 6" beam at 1.1mm at LMT
- FOV ~2.4 sq. arcmin
- NEFD < $3 \text{ mJy/Hz}^{1/2}$ conservative
- mapping speed > 0.55 deg²/hr/mJy²

AzTEC

P.I. Grant Wilson (UMASS)

AzTEC commissioning & scientific operation

JCMT – 15m 2005

ASTE – 10m 2007-2008 LMT – 50m > 2009

3 months continuous operation from JCMT 10 months operation from ASTE (1 week down-time due to cryogen failure)

used by 120+ astronomers from 12 countries

Mapping Speed

on JCMT: 23-28 arcmin²/mJy²/hr on ASTE: 20-30 arcmin²/mJy²/hr on LMT (projected): 2000 arcmin²/mJy²/hr

AzTEC/ASTE Data from 2008

Expect >1000 SMGs in final catalog. Robust statistical comparisons of source populations finally possible.

0.7

0.6

Submm survey 1 sigma depth [1.1mm mJy]

1.0

1.4

2

1.8

Comparison of LMT and other facilities

CCAT 850 microns

AzTEC on LMT comparable mapping speed to SCUBA-2 (0.55 sq. degs/hr/mJy^2)

Large-format camera (ToITEC) with 6400 pixels at 1.1mm we expect (10 sq. degs/hr/mJy^2)

• ToITEC more than 100x faster than ALMA detection rate for sources > 0.5mJy sources at 1.1mm

adapted from CCAT Feasibility/Concept Study Review

LMT LSS Key Project

• Key Project: 5 sq. degs sample - wide variety of LSS environments

 > 100, 000 galaxies in 100 hr survey (>0.4mJy; SFR >40 Msun/yr; or resolving 100% of the extragalactic mm-background or 60% of FIR background)

LMT advantage - sensitivity & resolution

- Resolution of 10-25m diameter telescopes at sub-mm wavelengths imply confusion-limits > 1mJy
 - CSO, HHT, ASTE, APEX, JCMT, CCAT
- Confusion-limits and short-submm (<450um) k-correction (flux NOT independent of redshift) of small sub-mm telescopes limits sensitivity to the detectability of the "first" galaxies at z > 6, unless SFR >> 1000 M_o/yr
- Lower LMT confusion limits (~0.1 mJy) & longer- λ allow more moderate SFRs (few 10's M_o/yr) to be detected by LMT in the first galaxies at z > 6

LMT advantage - sensitivity & resolution

Resolving the FIR extragalactic background (FIRB)

D.2. "How do galaxies arise and mature?"

spectroscopic redshift (CO, CI, HCN,) for every(?) source

LMT Redshift Search Receiver

bandwidth (z=0) ~ 36 GHz (74-111 GHz)

Frequency Range

Strongest spectral lines from CO and CI (492, 810 GHz). More than one line needed; search the maximum possible bandwidth.

Lines are expected to be quite weak, search in best 3 mm window.

Redshift coverage in 74-110.5 GHz band,

red no CO line, yellow; one line, green; two lines.

System noise temp with Trec = 60 K and 2 and 5 mm PWV.

Ultra Wideband Redshift Search Receiver

- Science goal is to measure galaxy redshifts where Z is unknown.
- 74-110.5 GHz covered simultaneously with a receiver/spectrometer having 30 MHz resolution.
- Wide bandwidth with very low noise is practical with InP MMIC amps operated at 20 K.
- Full receiver has 4 pixels two dual polarization feeds with orthomode transitions.
- 1 KHz ferrite beam switch on input for very flat baselines.
- Each receiver has 2 IF outputs 1.5-20 GHz x 4 receivers
 - \Rightarrow 146 GHz total IF bandwidth!
- A new generation of spectrometer is needed for this problem.

Front end design

•Front end like SEQUOIA, using InP MMIC amps, except that both signal polarizations combined with ortho-mode transition.

•Entire signal band down-converted at once to two 18.5 GHz wide IF bands.

•Four receivers with 8 IF outputs in total.

•1.5-20 GHz IF band split into three overlapping bands of 1.5-8.0 GHz to drive the spectrometer.

Room temp frontend components mount to the outside of the dewar at the waveguide feedthroughs.

Detail of one dual polarized receiver.

Beamswitch

HEMT amplifiers require a fast (~1 KHz) beam switch.

This receiver uses a ferrite rotator to change polarization 0 90 at 1 KHz rate.

Wire grid in front of rotator either passes or reflects beam depending on polarization state.

Receiver has two dual polarized beams with a fast beamswitch (flat baselines). One beam always on source.

Beams separated in azimuth with spacing of 3 HPBW.

Optical design couples to the 2 horns with 2 beams nearby on the sky, converts f ratio, and has wire grid required as a part of beamswitch.

NGC 253

CO (1-0) Survey of Local ULIRGs

A. Chung et al., in prep.

T_{svs}, typically 200-300 K on FCRAO 14-m

 $T_A^* \sim 1.6$ mK rms within 1 hr, 0.3 to 0.8 mK with $t_{int} \sim 5$ to 43 hrs

Redshift Receiver System on the FCRAO and LMT

High-redshift molecular-line spectrum and spectroscopic-redshifts with the LMT *"redshift*-receiver"

• perform efficient measurements of CO spectroscopic redshifts without the prior necessity to have accurate X-ray, optical, IR or radio positions.

(simulation by Yun et al. 2006)

D.2. "How do galaxies arise and mature?"

spectroscopic redshift (CO, CI, HCN,) for every(?) source

Point-source contamination of the SZE by submillimeter galaxies in arcminute resolution experiments

Bullet Cluster 1E0657-56

- in ACT -55 deg strip
- 1.1mm AzTEC map
- ~12 x 12 arcmins
- σ<0.6 mJy (25 hours)

Wilson et al. 2008. MNRAS in press arXiv:0803.3462 A bright, dust-obscured, millimeter-selected galaxy beyond the Bullet Cluster

arcmin resolution detections of the Sunyaev-Zeldovich effect

APEX-SZ 2mm map 85 arcsec beam

blue contours AzTEC 1.1mm 30 arcsec beam

Bullet Cluster: AzTEC 1.1mm contours on X-ray emission

• Sub-mm surveys (source-counts) imply a strongly evolving, luminous $(L_{FIR} > 10^{12}L_{\odot})$, optically-obscured, galaxy population in the high-z Universe

Lensing the millimeter galaxy population

No lensing

S-Z effect cluster survey with the Atacama Cosmology Telescope (ACT)

first-light November 2007 – 100 sq. degree survey (2 years)

to reach 2µK / 1.7' x 1.7' pixel at 150, 220, 270 GHz (2.1, 1.4, 1.1mm)

Confusion-limit due to SMG population is ~30x higher than ACT survey depth

Point-source contamination of SZE (inc. lensing)

Alfredo Montaña et al. 2008 (in prep)

Advantage of higher-resolution observations: with Large Millimeter Telescope

SZE + SMGs 30 arcsec FWHM SZE only + σ ~1mJy noise (input map)

SZE with pt-sources identified with highresolution mask & removed

simulacion por Alfredo Montaña (tesis)

Advantage of higher-resolution observations: with Large Millimeter Telescope

SMGs point-sources

SZE with pt-sources identified with highresolution mask & removed

simulacion por Alfredo Montaña (tesis)

Conclusions

- LMT (32-m) is nearing completion of construction phase
- mechanical & drive-control systems working
- installation of M2 & M3 mirrors and M1 surface alignment required before scientific commissioning begins
- first-light & commissioning instrumentation ready (optical camera, holography receiver, Rx-z & AzTEC)
- first-light science in 32-m format expected in early 2010
- funding being sought for completion of 50-m surface

Conclusions

SEQUOIA, Redshift receiver & AzTEC all commissioned and have operated as scientific instruments on other 10-15m class (sub-)mm telescopes

AzTEC completed 3 seasons on JCMT and ASTE.

- blank-fields (GOODS-N, COSMOS, CDFS, Lockman Hole, SXDF, SEP,)
- biased-fields (ACES survey 40 HzRG and cluster environments)
 - ~3 sq. degrees surveyed at 18-30 arcsec resolution. > 2000 SMGs detected (>>10^12 Lsun, SFR >> 100 Msun/yr)

Conclusions

Increasing likelihood that ACT, SPT, Planck (i.e. lowresolution experiments, > 1 arcmin beams) will suffer from pt-source contamination from lensed SMG population and SMGs intrinsic to high-z clusters

Need higher-resolution (5- 20 arcsec) observations (e.g.

- LMT) to complement SZE survey experiments and
- maximise the accuracy of cosmological parameters and
- understanding of cluster physics derived from arcminute-
- resolution SZE observations