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SUMMARY

In addition to the ambient condition "tape test," five mechanical tests of the m-black coating,

Ames 24E2, have been performed at either liquid helium or liquid nitrogen temperature. Tensile

strain in the coating at liquid nitrogen temperature has been measured up to values of 4E-3, both

before and after the coating was cycled down to liquid helium temperature. When applied to an

aluminum substrate which was then bent in liquid nitrogen, the aluminum substrate always failed

(permanently deformed) well before the coating failed. Sinusoidal accelerations up to 45 Gs in liquid

nitrogen and 25 Gs in liquid helium did not crack or otherwise visibly damage the coating. Both

sinusoidal and random acceleration at about 90°K of a representative baffle vane structure, at fre-

quencies from 10 to 2,000 Hz and up to 15 Gs, did not damage the coating, even at the intersection

of a baffle with the telescope tube. Thus on a macroscopic level, cryogenic cooling and various

levels of acceleration and strain did not affect this coating. However, on a microscopic scale some

loose particles were found associated with several tests. Since they were also noted during room

temperature trials, it is concluded that a few weakly bound particles probably exist on the coating

surface immediately after application. A lower bound of about 30 large, and 75 small, particles per

square meter is established. Outgassing data are also given.

1. INTRODUCTION

Ames 24E2 is an infrared-black coating designed to reduce stray light inside far-infrared tele-

scopes such as SIRTF, COBE, and ISO. These cryogenically cooled telescopes and the coatings used

within them must be able to withstand severe launch vibration at cryogenic temperatures. This paper

presents the results of tests performed to evaluate the mechanical characteristics of the coating,

especially at cryogenic temperatures. Its outgassing properties are described as well. The infrared

reflectance characteristics of this coating have been reported in an earlier paper (ref. 1).

Several properties of Ames 24E2 are more easily understood when its components are known.

The basic binder is ECP-2200, which will soon be produced by IITRI in Chicago, IL. To that are

added silicone adhesive resin and carbon black powder. The final component is #80 SiC grinding

grit. The objective of this formulation is to make a rough, thick, absorbing coating. Its exact formula-

tion is given in reference 2.

The author is indebted to Mr. W. A. Campbell of Goddard Space Flight Center for his advice and

assistance; and to Mr. Jamie Brock of UC Berkeley for designing the representative baffle assembly

described in Section 4.4 and for assisting with the cryo-vibration tests.

2. OUTGASSING

Outgassing tests were performed by W. A. Campbell at the Goddard Space Flight Center in
accordance with ASTM Test Method E-595-84 and as described in NASA Reference



Publication1124Revised(ref. 3). Free-standingsamplesof thecoatingwereradiativelybakedat
135°Cbetweentwo quartzlampsfor 24hr undermild vacuumbeforetesting.Theresultsareshown
in table 1,whereTML = total massloss,WVR = watervaporregain,andCVCM = collectedvolatile
condensiblematerial.

Table 1. Outgassing data for Ames 24E2

%TML %WVR %CVCM

0.31 0.22 0.00

It should be emphasized that radiative baking at higher temperature (280°C) and for a longer

duration (48 hr) did not change these data by a significant amount. However, conductive baking on a

hot-plate of an early sample (ref. 3) (1987) did not produce nearly as clean results. Radiative curing

of this coating is clearly the techniaue of choice. These results easily meet the 1% TML and 0.1%

CVCM acceptable maximums given in ASTM E-595-84.

3. AMBIENT TEMPERATURE TESTS

3.1 "Tape Test," ASTM Standard Test Method D-3359

The Ames 24E2 coating passed this somewhat subjective adhesion test with a score of about 4.5

on a scale of 0 to 5, where 5 indicates "no peeling or removal." Four samples of two coats each on

aluminum substrates were tested under ambient conditions. The only peeling or removal of the

coating observed was quite small, and it occurred at the narrow angle intersection of the two knife

cuts into the coating which are part of the test. At a few locations along the cuts the knife blade dis-

lodged a SiC grit which left a pinhole in the coating. This result was not part of the test, but it is not

surprising considering the construction of the coating.

3.2 Handling Fragility

Historically, optical black coatings such as 3M Black Velvet and Martin Black have not been

intended for high wear or abrasive applications because such use breaks off the facets that create the

roughness of the coating surface. Nor is Ames 24E2 intended for use in a high wear application;

therefore, tests such as the Taber Abraser, scrape adhesion, or the Pfund Hardness Test are not

appropriate. Experience using the coating inside cryogenically cooled instruments and detectors at

Ames Research Center and other laboratories indicates that the coating basically adheres to alu-

minum and copper quite well, as indicated on the Tape Test. However, instrument parts which are

continually handled, such as focusing knobs or alignment screws, have been found to produce some

loose black particles. The amounts were small and not quantified. Since SiC grit is a major compo-

nent of the coating, this is not particularly surprising. It could be easily remedied by not coating such
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partsuntil aftertheadjustmentswerecompleted.However,thisexperiencedoesindicateapotential
adhesionproblem,andsometestof handlingfragility wouldseemuseful.Two simpletestswere
devised.

3.2.1Acid Brush Test- Soft,but moderatelystiff brushesof bristleor horsetailhair arecom-
monly usedfor applyingacidto metaljoints in preparationfor soldering.Hencethename"acid
brush."Theselittle brushesareabout3/8 in. wideby 3/4 in. long,andarestiff enoughto movelarge
particles,butstill soft enoughnot to scratchmostsurfaces.Forexample,theydonotvisibly scratch
or otherwisemarthesurfaceof ChemglazeZ-306,Floquil, or 3M BlackVelvet coatings.But theydo
visibly damagetheveryfragile anodizedsurfaceof MartinBlack andInfrablack.Becauseof their
intermediatestiffness,thesebrusheswereselectedto evaluatethesurfaceintegrity of Ames24E2.
After thecoatinghaddried,thesurfacewasbrusheddownwardwith moderatepressureabovea
cleansheetof white paper.Thenumberof grit or otherblackparticlesappearingon thepaperfrom a
measuredareaof brushedcoatingwascountedandreportedasthenumberof weaklybound
particles/squaremeter.Fromfour samplesof Ames24E2,this testgeneratedanaverageof 220 large
(250-450ktm)particles/sq,meter.Surprisingly,abi-modalsizedistributionwasdiscovered.Using a
50xmicroscope,anevenlargernumberof smallparticlesin the30-125I.tmsizerangewascounted.
Undera stainlesssteelprobeat 100x,it wasfoundthatthesmallerparticlesweresoft,sticky,and
hadatranslucentinterioreventhoughtheywereblackon theoutside.Thusit is probablethatthey
arecomposedof carbon-blackpigmentedadhesiveresin.Thelargerparticlesareundoubtedlyblack
pigmentedpaint andresincoveringthe#80SiCgrit, becausethemodalsizeof #80 grit4 is about
300 _tm.Also, shinygreyfacetsareoccasionallyseenon thelargeparticles.Theresultfor afew
otherblackcoatingsis comparedin table2. In performingthis test,caremustbetakenthatthe
coated/brushedareadoesnot extendto theedgeof thesubstratebecauseedgeadhesionis not as
strongassurfaceadhesion.

Table 2. Acid brush test

Coating Visible Area

damage brushed

Weakly bound particles per sq. m.

Large Small

(250-450 [.tm) (see below)

Ames 24E2 None 184 sq. cm. 220 270 (30-125 gm)

3M Black Velvet None 100 sq. cm. 0 3.1E+3 (12-60 t.tm)

Chemglaze Z-306 None 6.5 sq. cm. 0 0

Martin Black Yes 6.5 sq. cm. 0 3.2E+5 (20-40 lam)

3.2.2 Finger Rub Test- This mild abrasion test simply consists of five hard rubs of the index

finger across the surface of the coating above a clean sheet of white paper. The number of particles

dislodged per square meter and the visible damage are reported. The results from three samples of

Ames 24E2 are shown in table 3. The slight visible damage to the coating consisted of skin particles

stuck onto it. It is not surprising that 15 times as many particles were dislodged from A24E2 in this
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Table 3. Finger rub test

Coating Visible Area

damage rubbed

Particles dislodged per sq. m.

Large Small

(250-450 gm) (see below)

Ames 24E2 Slight 135 sq. cm 3.2E+3 3.0E+3 (30-125 [am)

3M Black Velvet None 100 sq. cm. 0 2.1E+3 (12-60 t.tm)

Chemglaze Z-306 None 6.5 sq. cm. 0 0
Martin Black Yes 6.5 sq. cm. 0 1.7E+5 (20-40 ktm)

test as during the Acid Brush Test. The small decrease noted in 3M Black Velvet and Martin Black

particles probably occurred because the same sample had been used in the Acid Brush Test as well.

4. CRYOGENIC TEMPERATURE TESTS

4.1 Tensile Strain Test

When a coated substrate is bent, the coating experiences compressive or tensile strains equal to

that at the surface of the substrate. This is true until the shear force associated with the strain exceeds

the adhesive force binding the coating to the substrate, at which point the coating "fails" and no

longer follows the bend of the substrate. Usually the coating separates from the substrate in some

manner after failing. At cryogenic temperatures many organic materials become rigid and brittle,

hence it is quite possible that a coating will fail at a considerably lower level of strain when cold than

when warm. A cryogenic strain test apparatus was designed to investigate this possibility.

The tensile strain E(x,d) at the upper surface of a cantilever beam at point x when the free end of

the beam is depressed a distance d has been derived by C. C. Hiel (personal communication) of the

Test Engineering Branch at Ames Research Center. It is given by

E(x,d) = Ag / g = _1"5dhx
e3 (1)

where the dimensions h and g are shown in figure 1. It is interesting to note that the strain, a unit-

less quantity by definition, is independent of the elastic modulus of the beam material and increases

linearly with the distance x from the free end. In principle, the point of failure of a coating under

strain will be indicated in some visible manner and thus define the value of x at failure.

Equation (1) was calibrated electrically by mounting strain gauges on each side of a beam (at

x = 3.90 in., with I = 5.15 in.) and attaching them to a Wheatstone bridge circuit. Because the electri-

cal resistance of a wire is proportional to its length, the voltage measured across a bridge circuit with



straingaugesin two of its armscanberelatedto themechanicalstrainthroughaknowngauge
calibrationfactor,Gf.

E(d)= 2V(d_____) (2)
ei Gf

In equation(2),ei is thebridgesupplyvoltageandV(d) is thevoltageacrossthebridgewith the
beamdepressedadistanced. It shouldbenotedthatGf wasdeterminedby thegaugemanufacturer
at atemperatureof 75°C.Equations(1) and(2) apparentlygive thesameresult.Theywereappliedto
two differentthicknessbeamsof 2024-T3aluminumat roomtemperatureby measuringthevoltage
V asafunctionof deflection d. Valuesof thestraincalculatedfrom equation(1) werefoundto
differ from thoseobtainedfrom equation(2)by only --0.7%for a0.062in. thick beamandby +5%
for abeam0.091in. thick, thusconfirmingtheaccuracyof themechanicaltheory.By meansof
equation(1), thecalibrationwasextendedto beamthicknessesof 0.032in. and0.126in. with an
uncertaintyof only +2.6%.

Because equation (1) is independent of the elastic modulus of the material, the strain at the sur-

face of the beam does not depend upon temperature. However, the resistance of the wire in the strain

gauge and the adhesion of the epoxy binding it to the aluminum beam are temperature dependent,

hence a cold calibration of equation (1) was not expected to be successful. However, because the

strain apparatus was designed to operate under liquid nitrogen, it was easy to test. The strain mea-

surements of V as a function of d were repeated with the beam completely submerged in liquid

nitrogen. The gauges did not de-bond, and the readings were consistently 7% and 8% below the
warm electrical data for the two different thickness beams. This consistent difference is attributed to

a thermal change of the strain gauge factor (Gf) from its warm value.

Following the above calibrations, six samples of Ames 24E2 approximately 600 _tm thick and

21 cm 2 in area were prepared for cold strain testing by a 150°C bake-out for 24 hr under mild vac-

uum. These samples had been coated on 2024-T3 aluminum beams that were 15 mm wide, 131 mm

long, and 0.81, 1.55, and 2.31 mm thick. Each coated beam was individually immersed in liquid

nitrogen and the free end depressed the distance necessary to create :_calibrated strain of 3.15 E-3.

This deflection was repeated 10 times while the coating was studied visually through the liquid

nitrogen to determine where along the beam the coating first failed. No coating detachment or other

failore was observed. The deflection of the beam was then increased in 1.3 mm increments until the

aluminum substrate itself failed (was permanently bent), which occurred at a strain of approximately

4 E-3. Still no coating failure occurred. Several of the coated beams were bent well beyond their first

point of permanent deformation, also without any coating detachment or other failure. It was finally

concluded that Ames 24E2 could sustain cold static strains in excess of 4 E-3 and that further strain

tests were unnecessary as the aluminum substrate itself would fail before the coating would.

4.2 Thermal Cycling Test

Because it is anticipated that the SIRTF telescope may be cooled down to liquid helium tempera-

ture several times before launch, five samples of Ames 24E2 coating were thermally cycled six times



each from above 315°K down to about 4°K and back up again. The thermal cycling was carried out

by heating the sample directly with a 20 KW heat-gun to above 315°K, briefly cooling it with a fan,

and then immersing it directly in liquid helium. In an effort to evaluate whether the thermal cycling

affected the adhesion of the coating, the samples were first bent in liquid nitrogen to a calibrated

strain of 3.15 E-3 (+2.6%), then cycled down to 4°K and back up again 6 times, and then deflected

again to a strain of 3.15 E-3. All five samples withstood this drastic thermal cycling procedure with-

out demonstrating any decrease in adhesion or failure of a_ny other macroscgpic mechanical property.

One sample was bent well beyond a strain of 4 E-3 without failing, although its aluminum substrate

was permanently deformed. During these harsh tests no flaking or peeling of the coating were

detected, however a few black particles with about 250 - 400 _tm dimensions were recovered from

the container used to immerse the coating samples in the liquid helium.

4.3 Simple Cryogenic Acceleration Tests

The launch of a space vehicle subjects the vehicle and its contents to a wide range of accelera-

tions over a broad frequency band. Simple sinusoidal acceleration over an even broader range was

used at cryogenic temperatures to test the adhesion of the coating under simulated cold launch con-

ditions. These tests were performed first in liquid nitrogen, and later in liquid helium, by vibrating

coated coupons directly in the liquid. The friction of the liquid moving over the surface of the

coating may have made these tests slightly more severe than the actual cold launch situation.

Cylindrical rods of 2024-T3 aluminum were coated with two coats of Ames 24E2 and baked at

150°C for 24 hr before testing. The coated rods were attached to an audio speaker coil whose fre-

quency was swept across the specified range by a function generator. An accelerometer mounted on

the test rod above the level of the liquid cryogen measured the sinusoidal acceleration of each sam-

ple. This arrangement was used to drive the samples in liquid nitrogen from 60 to 500 Hz at about

45+5 G's, and in liquid helium from 70 to 500 Hz at about 25+5 G's. Sinusoidal vibration at 20 Hz

was also performed at 8 G' s. Two samples, each of 22 cm 2 area, were run in liquid nitrogen for a

total of seven minutes. Two other samples, each of 26 cm 2 area, were vibrated in liquid helium for a

total of 30 minutes.

The samples were examined visually both before and after these cold vibration runs. No

difference from the pre-test examination was found on any sample. The liquid nitrogen runs were

performed in a strip-silvered dewar flask where the samples could be seen visually. No flaking,

shedding, or fracturing of the coating was observed. Thus, these cryogenic vibration tests did not

produce any macroscopic, visible, change in the coating. However, a few black particles were col-

lected in the cup that enclosed the coatings tested in liquid helium (but none in the liquid nitrogen

flask). A _imilar number of black particles were also found in the cup following these vibration tests

at room temperature.The presence of these few particles is disconcerting, but it would appear that

they are not associated with the temperature of the tests.
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4.4 Cryogenic Vibration of a Representative Baffle Vane Assembly

Since small samples of the coating appeared to withstand the cryogenic strain and acceleration

tests described in the previous paragraphs, the next phase of testing was to cryogenically vibrate a

representative baffle vane structure. Because the coating did not macroscopically come off the previ-

ous substrate coupons but some small particles were found, a microscopic particle contamination

experiment was designed. A representative baffle vane assembly was provided by Andrew Lange's

group at the University of California, Berkeley. They had a 10 cm diameter, liquid helium cooled

far-infrared telescope being prepared for a sounding rocket launch from Nagoya, Japan, and they

desired to test an epoxy based coating of their own design. The assembly, shown in figure 2 being

mounted in a nitrogen-cooled adaptor, consisted of a single 10 cm ID aluminum vane bolted inside a

13 cm diameter telescope tube. It had a coated area of 335 cm 2.

After two coats of Ames 24E2 had been applied to the baffle vane assembly it was baked at

150°C under mild vacuum for 24 hr. In this application the sharp inside edge of the baffle vane was

fully coated, but a lmm wide band on each side of the intersection of the outer edge of the vane with

the telescope tube was left uncoated. In this way if the vane were to come loose and vibrate along the

inside of the tube, no paint would be scraped off. Visual inspection of the baffle vane showed large

paint particles protruding from the inside edge before the vibration test. The coated and baked baffle

assembly was mounted inside a special liquid nitrogen cooled adaptor, which itself was then

mounted on top of a Ling Model A300B Vibration System. The vibration direction was vertical and

parallel to the axis of the telescope tube, hence perpendicular to the plane of the baffle vane. Directly

below the baffle assembly a 15 cm diameter pyrex petri dish was held in place with a specially cush-

ioned teflon ring. Anything shaken off the baffle assembly had to fall into this collection dish.

Thermocouples mounted on the flange holding the baffle vane assembly in place monitored its tem-

perature while liquid nitrogen flowed through channels in the adaptor plate. An accelerometer

mounted on the vibration table measured the acceleration imparted to the apparatus. The vibration

spectrum of regular sinusoidal oscillations shown in figure 3 was selected by the Berkeley group as

being appropriate for their purpose. The random mode vibration spectrum shown in figure 4 was

specified by Li S. Chang for the SIRTF telescope in Ames Technical Note SRT-TN-LSC 310789.

Before the coating was tested, three calibration runs of an uncoated assembly were performed to

evaluate the cleanliness of the system and to determine the level of background particle contamina-

tion. It was found necessary to follow standard clean room procedures in order to reduce the back-

ground particle level. Following each run the nitrogen-cooled adaptor was opened in a special,

access controlled, room and the petri collection dish immediately covered; then it was removed from

the adaptor for optical scanning. The glass-covered collection dish containing the shake-out from

each vibration run was scanned on a Nikon Epiphot-TME inverted microscope at 100 power with

dark-field illumination. Some 65 separate scans were required to completely cover one dish at this

magnification. Under dark-field illumination, every non-black object on the microscope stage scat-

tered a great deal of light directly into the microscope objective and could be clearly discriminated

from a dark coating particle on the basis of brightness and color. Lint, dust, glass beads, traces of

tape, and small metal filings appeared bright, colored or translucent, and/or shiny. When a dark,

opaque object was found all ambient background illumination was blocked with a dark card, and the

microscope illumination varied from "off" to full "on." Under this varying dark-field illumination,

particles of Ames 24E2 were not visible at low illumination and were further characterized by being
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the las...._/tobjectin thefield of view to brightenathigh illumination.Backgroundcontaminationparti-
cleswerefoundto begenerallyquitesmall(<40 lam)with adark,grey-blackappearanceandachar-
acteristicsizedistributionthat increasedtowardsmallerparticlesizes,asshownin figure5. In this
figure theaverageparticlecountfromruns#1and#5 is shownbefor_theaveragebackgroundcount
wasremoved.Particlesof Ames24E2hadabi-modalsizedistribution,asdiscoveredearlieron the
Acid BrushTest.Particlesin the largesizemodehadat leastonedimension>200lamandacharac-
teristiccoal-blackcolorthatbecamesomewhatlike gun-metalblueat thehighestillumination.They
sometimesappearedto haveasomewhatbubblysurfacetextureor shinycrystal-likefacets.Particles
in thesmallersizemode,whichwascenteredat 45_tm,hadthesamecharacteristiccoal-blackcolor
andtexture.Oneof themis shownin figure6 at 100powermagnification(thelargercoatingparti-
cleswereoutsidethedepthof focusof themicroscopewhenit wasusedasacamera.)TheEpiphot
microscopecontainedanAustenitereticlewhichwasusedto evaluateparticlesizeaccordingto
ASTM StandardPracticeE-112.

Thefirst, coatedandbaked,baffle vaneassemblywassubjectedto four coldvibration runs.The
temperatureon theserunswas90°K_+.about5°K. Thefirst two runs(#173and174)weresimplythe
initial run andarepeat.Prior to thethird run (#176),the lmm gapin thecoatingatthevane-tube
intersectionmentionedearlierwascoatedwith two coatsof Ames24E2andbakedfor 24hr. The
fourth runwasessentiallya repeatof thethird run,exceptthattherandomvibrationmodein figure4
wasused.For thefifth run (#180)a new,clean,baffle vaneassemblywasgiventwocoatsof Ames
24E2andtheusual24-hrbakeat 150°C.On thisassembly,thevane-tubeintersectionwascom-
pletelycoatedfrom thestart.However,thesharpinneredgeof thebafflevanewasgivenspecial
treatment.It wasnotedearlierthat somelargeparticlesof thecoatingprotrudedfrom thisedgeprior
to thefirst run.Whenthathappens,a smallerfractionof theparticlesurfaceis usedto bind it to the
baffle vanethanfor particleslocatedentirelyonthevane'ssurface.To eliminatetheselessfirmly
attachededgeparticles,the inneredgeof thebaffle vanewascoatedwith aversionof Ames24E2
whichhadbeenfiltered througha paintstrainerto removethelargeparticles.This grit-freeformula-
tion is labeledAmes24E2M.

4.5 Results of Cryo-Vibration

The results of the five cryogenic vibration runs of the baffle vane assemblies are shown in

table 4. The background contamination count, which was determined on the initial calibration runs,

has been subtracted out of this data. As a preface to the discussion of these results, it should be stated

that the coating did not fail in a macroscopic manner as a result of any of these runs. _ micro-

scopic examination of the glass collection dishes showed evidence of fall-out from the cryogenic

vibration. Several points may be deduced from table 4 and figure 5.

1. Both microscopic and physical examination of the particles themselves, and the size distri-

butions shown in figure 5, indicate that Ames 24E2 coating can shed two kinds of particles. The

200 lam or larger size mode is composed of SiC grit covered by black pigmented paint and adhesive

resin. The 25-70 _m size particles are clumps of black pigmented adhesive resin. This is quite con-

sistent with the composition of the coating.

i
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2. Comparisonof tables2 and3 with table4 indicatesthatbrushingwith theacidbrushor
rubbingwith afingerknocksoff moreof eachsizeparticlethandoesvibrationalcryogenic
temperature.

3. Thesheddingof largeparticlesby thisparticularbaffleassemblywassignificantlyreduced
on thefifth runwhenthemannerin whichthesharp,inneredgeof thebaffle vanewascoatedwas
changedby usingonly Ames24E2Mon it. Theadhesionof largeparticlesisobviouslybetterwhen
theydonot protrudefrom thenarrowedgeof avane.

4. Table4 showsthatparticlesheddingdoesno__Atcontinueon therepeatedruns(#2and#4), i.e.,
aftertheinitial installationof theassembly.Thusthesheddingwhich doesoccuris associatedwith
the initial applicationof thecoatingandnot with a continuing failure of the coating due to cryogenic

vibration.

5. The random vibration mode used on the 4th run does not appear any more severe than the

sinusoidal vibrations used on the other runs.

6. Comparison of the 1st and 5th runs in table 4 indicates that the coating can be applied to the

intersection of a baffle vane and telescope tube after assembly if the vane is similar to those used

Table 4. Cryo-vibration particle count (particles/meter 2)

[background contamination has been subtracted out]

Size Ranges

Run >2001a 70--->25_t 25--->14_t <14[.t Description

(File#)

1(173) 180 60

2(174)

3(176)

4(177)

5(180)

m

30

m

90

9O

60 ~150

30 -150

60

240

30 i

Vane-Tube intersection is uncoated. Ed_0ggof

baffle vane was coated. Grits are suspen.ded out

from edge of vane.

Installation contamination (I st shake).

Repeat run (only changed petri dish).

Residual contamination (2nd shake).

Vane-tube intersection freshly coated.

Installation contamination (3rd shake).

Repeat run (only changed petri dish). Used

random vibration PSD curve for SIRTF.

Residual contamination (4th shake).

Completely coated a new, fully assembled Baffle

Vane Assembly. NO large p_.rticles on edge of

baffle vane. Used Ames 24E2M on edge of vane.

Installation contamination (1 st shake).
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here,wherethedistancebetweensecuringscrewsis lessthan21cm.Thatis, thecoatingcanwith-
standwhatevermotionexistsbetweentheouteredgeof thevaneandthetubewall for thisrealmof
vanedimensions.

5. CONCLUSION

Ames 24E2 has been shown to be a low outgassing coating that on a macroscopic basis adheres

well to aluminum at both ambient and cryogenic temperatures. Macroscopically it easily passes the

Tape Test, Acid Brush Test, tensile strain to >4E-3 at ~90°K, thermal cycling from 315°K down to

4°K, and sinusoidal acceleration to 45 G's at 90°K. On a microscopic basis, some loose particles

were found associated with several of the tests (thermal cycling, acid brush, simple acceleration in

liquid helium, and cryo-vibration of the baffle assembly). Their presence was also noted at room

temperature (during trials prior to simple acceleration in liquid helium), which indicates that they are

not generated by a reaction to the low cryogenic temperatures. In fact several runs were made at liq-

uid nitrogen temperature where no particles at all were found. It is thus concluded that a few weakly-

bound particles probably exist on the surface of the coating immediately after application. A lower

bound on the number of such particles may be given by run #5 of the cryo-vibration test (-30/m 2 in

the large size mode and -75/m 2 in the small mode). If these numbers are a matter of serious concern,

then a simple remedy might be to lightly tap or vibrate the coated surface to jar the particles loose

before use. Perhaps this could be accompanied by air pressure, CO2 jet flush and/or vacuum.
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Figure I. Cantilever beam parameters.
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Figure 2. Baffle vane assembly being mounted in the nitrogen-cooled adaptor. The three white areas

on the vane are epoxy plugs over screws through the telescope tube.
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Figure 3. Sinusoidal oscillation spectrum (run #176).
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Figure 4. Random oscillation spectrum (run #177). The rms acceleration over the frequency range

was 4.918 G.
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