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ABSTRACT: The Tevatron tune tracker is based on the idea that the trans-

verse phase response of the beam can be measured quickly and accurately enough

to allow us to track the betatron tune with a phase locked loop (PLL). The goal

of this paper is to show the progress of the PLL project at Fermilab. We will

divide this paper into three parts: theory, implementation and measurements. In

the theory section, we will use a simple linear model to show that our design will

track the betatron tune under conditions that occur in the Tevatron. In the im-

plementation section we will break down and examine each part of the PLL and

in some cases calculate the actual PLL parameters used in our system from beam

measurements. And finally in the measurements section we will show the results

of the PLL performance.
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INTRODUCTION

The Tevatron tune tracker is a Run II project whose goal is to be able to track the

proton tune up the ramp and through the squeeze for every store. The holy grail is to

eventually build a tune and chromaticity feedback system around the tune tracker in order

to control these two critical parameters up the ramp. The idea behind the tune tracker

is that the phase response of the beam can be quickly measured and that the phase null

of the response is at the peak of the resonance. By following this null, any motion of the

resonance peak can be tracked. Tracking with this method is called the PLL (phase locked

loop) method. This method is also of interest for the LHC (Large Hadron Collider) and

so part of the funding of this project also comes from LARP (LHC Accelerator Research

Program). As part of the LARP collaboration, BNL (Brookhaven National Laboratory)

has also been tasked with looking at tune tracking with a PLL as a possible method of

doing tune feedback up the ramp at the LHC.

Tune tracking with a PLL is not new. BNL1,2,3 has had many years of experience with

this method. What Fermilab brings to the table is that we have a working machine — the

Tevatron — that accelerates bunches of protons (and anti-protons) to higher energy than

RHIC (Relativistic Heavy Ion Collider). This presents an opportunity to test the PLL on

beam that is at a different regime than at RHIC.

The PLL which we designed for the Tevatron has the capability of doing multitone

(three tones) PLL and pulsed PLL. Due to the compressed time frame of this project, we

have only built a PLL for measuring the horizontal tune and not all the parts of the design

have been implemented yet. Our main goal at the time was to build as much of the system

as necessary to show that the tune tracker will work when in the continuously or pulsed

beam excitation modes. As of this writing, although this project has been active for about

10 months (September 2003 to end of July 2004), a lot has already been done and the
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results will be presented here.

This paper is divided into four sections and two appendices. The four sections are

Theory , Implementation, Measurements and Epilogue. In the Theory section, we will

show the derivation of a linear theory of the PLL so that we can show that our design

will lock to the betatron tune in the cases of a phase jump, frequency jump and frequency

ramp. In the Implementation section, we will show how the PLL parameters are found

from actual beam measurements. We will also discuss the software portion of the PLL,

kicker feedback, Schottky detector, automatic gain control and phase compenstaton. In

the Measurements section, we will show the bench measurements of the PLL electronic

characteristics as well as the tracking of actual beam using both the continuous and pulsed

excitation methods. The Epilogue section contains future plans and conclusion from the

work done so far.

Two other parts of this project have helped speed up our development of the system

considerably:

(i) The complete description of the PLL in software. This has allowed us to simulate

the behaviour of the PLL under different excitation and beam conditions which

has helped us understand and debug the actual hardware. This software model of

the PLL will not be discussed in this paper.

(ii) The “fake beam frequency response” circuit which has allowed us to test the PLL

on the bench before using any precious Tevatron study time. The theory of this

circuit will be discussed in Appendix I .
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Theory
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THEORY

The goal of this section is to analyze the PLL performance with a linear mathematical

model and to show that our final implementation will work. In order to get analytic

solutions, we will make two beam phase response approximations:

(i) The beam response is a damped simple harmonic oscillator. We will ignore syn-

chrotron tune lines and just look at the betatron tune line only. This is a reasonable

approximation because the goal of the PLL is to lock to the betatron tune.

(ii) We will linearize the phase response close to resonance. We can do this if the PLL

excitation frequency never moves too far away from resonance.

After we have the beam phase response approximation, we will calculate the transfer

function H which relates the phase of the excitation to the phase of the beam resonance.

This is exactly what our PLL does: if the PLL is designed correctly then when the beam

resonance moves (like ramping etc.), the transfer function H will move the excitation phase

to follow this change.

In order to characterize the steady state properties of the PLL, we will calculate the

error transfer function He of the PLL. The error phase is defined to be the phase difference

between the excitation phase and the phase of the beam resonance. We will show that

for the cases when the beam resonance does a phase jump, frequency jump and frequency

ramp, the PLL will eventually lock to the beam resonance.

In this paper we will write the time domain phases in capitals Θ(t) and the s-domain

phases in lower case θ(s).

Finally, at the end of this section, we will also show the theory behind the pulsed PLL.

The technique of pulse exciting the beam will enable us to always lock to the centre of the

tune line rather than to some arbitrary synchrotron line.
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LINEARIZATION OF THE BEAM PHASE RESPONSE

Let us assume that the beam frequency response is that of a simple harmonic oscillator

(sho). The magnitude and phase of the sho is shown in Figure 1(a). Next we can linearize

the phase response of the sho if we are close to ω0 like in Figure 1(b). This means that we

can approximate the phase around ω0 as a straight line with slope −K. It is well known

that at resonance ω0 = Θ̇0 the phase shift should be −90◦, however, it is easier for our

calculations if we make the phase shift zero at resonance by adding a 90◦ phase shifter to

the beam. See Figure 1(c).

For example, if the excitation sine wave before going into the beam is at phase Θin,

then after the beam, the output phase Θout is related to Θin by a linear phase shift, i.e.

Θout = Θin −K
(

Θ̇in − Θ̇0

)
(1)

Clearly from (1), the excitation sine wave will not be phase shifted when Θ̇in = Θ̇0 = ω0.

This is exactly when phase locking occurs.

The Laplace transform of (1) is

θout = θin −Ks
(
θin − θ0

)
+K

(
Θin(0)−Θ0(0)

)

= θin −Ks
(
θin − θ0

)

=
(

1−Ks
)
θin +Ksθ0





(2)

where we have selected the initial condition Θin(0) = Θ0(0) = 0. This choice means that

the excitation does not start until t > 0.
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Figure 1 The stages of how we obtain the beam phase response
approximation.

PLL TRANSFER FUNCTION

Referring to Figure 2, the frequency response H which relates θ0 to θ2 is

θ2 = Hθ0 (3)

The motivation for finding this relationship rather than others is because in real life when

the resonant frequency Θ̇0 of the beam response moves we want to know how well the

excitation Θ̇2 of the PLL tracks it.
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Figure 2 This is the block diagram of the PLL.

At point a of Figure 2, we have

θ2 =
K0Kd

s
F (s)

(
θ1 − θ2

)

⇒ θ2 =
K0KdF (s)θ1
s+K0KdF (s)





(4)

The output θ1 after going through the beam using the approximate beam response (2) is

θ1 =
(

1−Ks
)
θ2 +Ksθ0 (5)

By substituting θ1 from (5) into (4), we have

θ2
θ0

=
K0KdKF (s)

1 +K0KdKF (s)
≡ H(s) (6)

which gives us the required relationship. Substituting F (s) = G(s)/s into (6), we get

H(s) =
K0KdKG(s)

s+K0KdKG(s)
(7)
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Note that the integrator 1/s is important for the PLL to track the tune in certain condi-

tions. This will be discussed in section No Integrator .

For completeness, a similar expression which relates θ1 to θ0 is

θ1
θ0

=
K
(
s2 +K0KdG(s)

)

s+K0KdKG(s)
(8)

Normalized Form

Let us choose G(s) to be a passive lag filter

G(s) =
g(1 + sτ2)

1 + s(τ1 + τ2)
(9)

where τ1 = R1C, τ2 = R2C and g is the gain of the filter with dimensions of 1/time (g

has the dimensions which ensure that F (s) is dimensionless). The passive lag filter circuit

and Bode plot is shown in Figure 3.

Figure 3 The passive lag filter circuit and its Bode diagram.

Then H(s) becomes

H(s) =
gK0KdKτ2s

τ1+τ2 + gK0KdK
τ1+τ2

s2 + (1+gK0KdKτ2)s
τ1+τ2 + gK0KdK

τ1+τ2

(10)
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We can identify the usual quantities

ωn =

√
gK0KdK

τ1 + τ2
⇒ ω2

n =
gK0KdK

τ1 + τ2

ζ =
1 + gK0KdKτ2

2(τ1 + τ2)ωn
⇒ ζ =

ωn
2

(
τ2 +

1
gK0KdK

)





(11)

where ωn is the natural frequency and ζ is the damping factor. So H written with these

quantities is

H(s) =
sωn

(
2ζ − ωn

gK0KdK

)
+ ω2

n

s2 + 2sζωn + ω2
n

≈ 2ζωns+ ω2
n

s2 + 2sζωn + ω2
n

if ωn/gK0KdK � 2ζ





(12)

(A quick sanity check shows that when s→ 0 H → 1). The Bode plot of H(s) for different

ζ values is shown in Figure 4.

|
|

Figure 4 This is the Bode plot of H for different values of ζ.

Again for completeness the normalized transfer function that relates θ0 to θ1 is

θ1
θ0

=
Ks3 + ω2

ns
2

gK0Kd
+ 2sζωn + ω2

n

s2 + 2sζωn + ω2
n

if ωn/gK0KdK � 2ζ (13)
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ERROR TRANSFER FUNCTION

We will calculate the error transfer function He in this section. Our definition of the

error θe in the phase lock is

θe = θ0 − θ2 (14)

This is a natural definition because we are interested in the error between the beam re-

sponse centre frequency and our excitation.

So with this definition and using (4) for θ2 and (7) for θ1 = Hθ0, we obtain

θe
θ0

=
s

s+K0KdKG(s)
≡ He (15)

Clearly s→ 0 θe → 0 if G(0) 6= 0 which is true for low pass filters.

For the special case of the passive lag filter we can write He in normalized form

He(s) =
s
(
s+ ω2

n
gK0KdK

)

s2 + 2sωnζ + ω2
n

(16)

The Bode plot of He(s) for different ζ values is shown in Figure 5.

For the case when ωn/gK0KdK � 2ζ, we can use the approximation H from (12)

which gives

He(s) =
s2

s2 + 2sωnζ + ω2
n

(17)

Phase Step in Beam Response

If we have a phase step ∆φ in Θ0(t) then

θ0(s) =
∆Φ
s

(18)

Therefore the error θe from (15) is

θe =
∆Φ

s+K0KdKG(s)
(19)
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Figure 5 This is the Bode plot of He for different values of ζ for
K0KdK = 106 and g = 1 time−1.

Using the final value theorem

Θe(t =∞) = lim
s→0

sθe(s) = lim
s→0

s∆Φ
s+K0KdKG(s)

= 0 (20)

if G(0) 6= 0. This means that the PLL will converge to the right frequency when the beam

response centre frequency has a phase step.

Frequency Step in Beam Response

If we have a frequency step ∆ω in Θ0(t) then

θ0(s) =
∆ω
s2 (21)

Therefore the error θe from (15) is

θe =
∆ω

s
(
s+K0KdKG(s)

)
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Again we can apply the final value theorem and find that

Θe(t =∞) = lim
s→0

sθe(s) = lim
s→0

∆ω
s+K0KdKG(s)

=
∆ω

gK0KdK

= 0 if gK0KdK � ∆ω and G(0) = g

(22)

This means that if there is a frequency step in the beam response centre frequency the

PLL will converge to it eventually.

Frequency Ramp in Beam Response

If we have a frequency ramp ∆ω̇ in Θ0(t) then

θ0(s) =
∆ω̇
s3 (23)

For this part of the exercise we will use the special case of the passive lag filter. If

ωn/gK0KdK � 2ζ then we can use the approximation of He from (17)

He(s) =
s2

s2 + 2sωnζ + ω2
n

(24)

Therefore the error θe is

θe =
∆ω̇

s
(
s2 + 2sωnζ + ω2

n

) (25)

and from the final value theorem

Θe(t =∞) = lim
s→0

sθe(s) = lim
s→0

∆ω̇
s2 + 2sωnζ + ω2

n
=

∆ω̇
ω2
n

(26)

Thus for a frequency ramp in the beam response there is an error that is not zero. If we

demand that Θe ≤ 1 then the maximum rate of change of frequency that does not cause

the PLL to lose lock is

∆ω̇max = ω2
n (27)
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NO INTEGRATOR

The integrator 1/s in F (s) of Figure 2 is important for the PLL to track in one

important condition: frequency ramp. The transfer function H′ which relates θ2 and θ0

without the integrator is

H′(s) =
K0KdKG(s)

1 +K0KdKG(s)
(28)

For the case of the passive lag filter, it is easy to show that

H′(s) =
ω2
n + 2sζωn

s(1 + 2ζωn) + ω2
n

if ωn/K0KdKg � 2ζ (29)

The error transfer function H′e is

H′e =
s

s(1 + 2ζωn) + ω2
n

(30)

Again, we will consider the three cases:

(i) Phase step ∆Φ/s. The tracking error converges to zero because as t→∞

Θ′e(t =∞) = lim
s→0

s∆Φ
s(1 + 2ζωn) + ω2

n
= 0 (31)

(ii) Frequency step ∆ω/s2. The tracking error converges to a finite value because as

t→∞
Θ′e(t =∞) = lim

s→0

∆ω
s(1 + 2ζωn) + ω2

n
=

∆ω
ω2
n
6= 0 (32)

(iii) Finally for a frequency ramp ∆ω̇/s3. The tracking error does not converge to a

finite value because as t→∞

Θ′e(t =∞) = lim
s→0

∆ω̇
s[s(1 + 2ζωn) + ω2

n]
→∞ (33)

This means that if the tune frequency is linearly ramped, the PLL will not lock.
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PULSED EXCITATION

The motivation behind using pulsed excitation rather than a continuous sine wave

excitation comes from the observation of synchrotron lines in the tune spectra. See Fig-

ure 6. As we can see from these figures, the PLL can in principle lock onto any of these

synchrotron lines.

In order to overcome this problem and always lock to the synchrotron line that is at the

centre of the betatron tune, we have to somehow remove the effect of the synchrotron lines

— if we are able to do this, we can then easily find the “true” tune. After some analysis,

we realize that when we excite the beam continuously, the phase measurement of the

beam w.r.t. the excitation is measured to infinite accuracy i.e. zero resolution bandwidth.

In contrast, if we excite the beam for a finite amount of time, i.e. pulsed excitation,

the resolution bandwidth becomes non-zero. And if we choose the pulse time such that

its Fourier spectrum covers a few synchrotron lines, we can then smooth out the phase

response around these synchrotron lines.

With this simple idea in mind, we see that when we turn the excitation on for τ s, the

Fourier transform of a rectangular pulse with this width is

FT
[
rect

(
t

τ

)]
= τ sinc

(ωτ
2

)
(34)

with rect() the rectangle function defined as

rect(t) =





1 if |t| < 1/2

0 otherwise
(35)

and the sinc() function defined as

sinc(x) =
sinx
x

(36)

The Fourier transform FT [ω] is the engineer’s definition

FT [ω] =
∫ ∞
−∞

dt e−iωtf(t) (37)
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Figure 6 The horizontal frequency response of one coalesced bunch
at 150 GeV in the Tevatron. The chromaticity is about 8 units.
Clearly seen are the synchrotron lines embedded in a background tune.
The zoomed in view shows the problem: our PLL can arbitrarily lock
to any one of them.

We can further define the bandwidth ∆bw of the sinc() function in Fourier space to be the

width at the zero crossing of its largest lobe shown in Figure 7. This gives us the formula

∆bw(Hz) =
2
τ

(38)
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Figure 7 The Fourier transform of a pulse of width τ is a sinc func-
tion. The width of the largest lobe (enclosed by the vertical and
horizontal dotted lines) in the bottom graph is 4π/τ rad·s−1.

The value of τ is dictated by the synchrotron frequency. At 150 GeV, the synchrotron

frequency is about 84 Hz. If we choose τ = 10 ms, we have ∆bw = 200 Hz, this means

that we will average a little over 2 synchrotron lines.

The amount of “off” time is dictated by the width of the synchrotron line, i.e. its Q

value. See Figure 6. The half-width at half-max f1
2 ,

1
2

of a synchrotron line is about ∼ 5 Hz.

This means that the 1/e time is about 1/2πf 1
2 ,

1
2
≈ 30 ms if we assume that the resonance

has the shape of a Lorentzian. From empirical observations, a 1/e “off” time is sufficient

to smooth out the synchrotron lines to reveal the background tune. See Figure 8.
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Figure 8 The horizontal phase response for a bunch of coalesced
protons on the proton helix at 150 GeV with continuous and pulsed
excitation. The chromaticity is about 4 units. The pulsed excitation
(10 ms on, 30 ms off) clearly smoothed out the phase response.

Another Possible Advantage

Another possible advantage of the pulsed excitation over continuous excitation is when

we have both planes of the PLL commissioned. There is a possibility that coupling between

the two planes may cause either of the PLLs to lose lock because continuous excitation in

one plane will cause the other plane to be excited as well. The solution may be as simple

as staggering the pulsing between the two planes, i.e. the horizontal pulsed PLL is on while

the vertical PLL is off and vice versa may be able to alleviate this potential problem.
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IMPLEMENTATION OVERVIEW

In this section, we will discuss the implementation overview of the PLL tune tracker.

See Figure 9. The entire PLL tune tracker system can be broken down into the following

major parts

(i) DSP motherboard and daughtercard. The heart of the PLL.

(ii) The software PLLs which live in the DSP. The brains of the PLL.

(iii) The kicker feedback circuit.† This circuit keeps the kicker power at a level that is

high enough so that the PLL will still lock to the beam without blowing up the

emittance.

(iv) Schottky detector. A resonant detection circuit which is extremely sensitive to the

Schottky noise of the beam.

(v) The automatic gain control circuit. This circuit keeps the input the analogue to

digital converter (ADC) at a fixed level independent of beam conditions.

(vi) The phase compensator circuit.‡ When the Tevatron ramps, the RF frequency

increases from 53.103 MHz to 53.104 MHz. This increase leads to an additional

phase shift in the measured phase of the beam response. The phase compensator

circuit is designed to remove this extra phase.

In the following subsections, we will discuss each part separately.

† The kicker feedback circuit has been built and tested on the bench but did not make it in
time before the August 2004 shutdown.

‡ The phase compensator was not built for these experiments.
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Figure 9 The tune tracker PLL implementation block diagram.
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DSP MOTHERBOARD AND DAUGHTERCARD

The DSP motherboard and daughtercard is shown in Figure 10. The software PLL

executes on the TMS320C6416 32-bit fixed-point digital signal processor (DSP) running

at 500 MHz. We did not design the DSP motherboard but instead bought an off-the-shelf

test and evaluation board TMS320C6416TEB from Texas Instruments. This motherboard

has slots for plugging in daughtercards like analogue to digital converters (ADCs), digital

to analogue converters (DACs) etc. which we used for our PLL tune tracker daughtercard.

The daughtercard for the PLL tune tracker is an inhouse design which at its heart is a

356-pin field programmable gate array (FPGA) made by ALTERA (EPF10K100ABC356-

1). All the input/output lines from every digital part on the daughtercard goes to or

originates from the FPGA. The other integrated circuits on the daughtercard are:

(i) One 14-bit ADC from Texas Instruments (THS14F04) sampling at 300 Khz. This

is used to digitize the Schottky signal. Note that in the DSP, we are looping over

three software PLLs, so effectively, each software PLL is sampling at 100 kHz.

(ii) Three 32-bit direct digital synthesizers (DDSs) made by Qualcomm (Q2368) run-

ning at 25 MHz. Each DDS can produce two separate channels of digital sine and

cosine waves of the same frequency at the same time. We designed the daughter-

board to contain three DDSs because we want to be able to do multitone PLL,

i.e. tune tracking with multiple excitations in order to lock to different synchrotron

lines. The Q2368 was selected because unlike newer DDSs it does not contain an

onchip DAC. This means that the DDS outputs can be routed back to the FPGA

to do hardware addition without an intermediate ADC.

(iii) Two 14-bit DACs from Analog Devices (AD9764). One of the DACs converts the

digitally summed sine signal of the three DDSs to analogue while the other does
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the same for the summed cosine digital signal.

Hardware control of the ADC and the DDSs by the DSP comes from writing to and

reading from the control registers on the FPGA via the above mentioned slot on the TEB.

The control system controls the DSP over the ethernet by communicating with a

microcontroller daughtercard (RCM2100) that has onboard ethernet. The RCM2100 talks

to the DSP by writing to and reading from registers on the FPGA.
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Figure 10 The daughter card which plugs directly into an off the
shelf DSP card (TMS320C6416TEB) is shown here.
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DSP SOFTWARE PLL

The software running on the DSP is the brains of the operation. The block diagram

of the software which is running in the DSP is shown in Figure 11. There are three

software PLLs running on the DSP. Two of them are continuous excitation PLLs and

one of them is a pulsed excitation PLL. Figure 11 shows that the continuous and pulsed

PLLs are nearly identical in structure to the PLL described by Figure 2 in the Theory

section. We see that for the continuous excitation PLL the only addition is the gain stage

A. For the pulsed excitation PLL, the filter and integrator are updated only during the

time when the excitation is on. The on/off time of the pulsed excitation has already been

discussed in section Pulsed Excitation and will not be touched here. For completeness, the

implementation values and units of g, K0, Kd and K are summarised in Table 1.

Table 1. Implementation Values of Software PLL

Variable Value Units Remarks

g 105 s−1 integrator gain

K0 0.0366 rad·s−1/c.u. DDS gain

Kd 0.25 c.u./rad phase detector gain

K (0.2 to 2)× 10−2 s slope of beam phase response

A 1 to 20 − programmable gain multiplier

The values in Table 1 are calculated like this:

(i) g the integrator gain comes from normalizing the sampling time dt so that g×dt =

1. For a sampling frequency of 100 kHz, dt = 10−5 s, thus g = 105 s−1.

(ii) K0 the DDS gain comes from converting a 32-bit number into frequency. For a

DDS clock frequency of 25 MHz, every computer unit (c.u.) in decimal corresponds

to 2π × (25× 106)/232 = 0.0366 rad·s−1/c.u.
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Figure 11 The block diagram of the software PLLs implemented
in the DSP. There are three software PLLs, two continuous excitation
and one pulsed excitation.
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(iii) Kd is the phase detector gain. Our phase detector which will be described in the

section Phase Detector returns phase in the decimal range ±π. However, since our

DSP is a fixed point processor, we need to keep the phase confined to the decimal

range ±1. Thus, we divide the phase by 4 to keep it in this range.

(iv) K is the slope of the beam phase response. The phase slope is measured from the

phase response measurement shown in Figure 8. The measured smoothed slope

from pulsed excitation is about 0.2 × 10−2 s and from continuous excitation, the

slope from one synchrotron line is about 2× 10−2 s.

With these values out of the way, the most important part to discuss next is the

phase detector. Without a good and robust phase detector the entire system will not

work. Right after the phase detector is the low pass filter G(s). We will implement G(s)

as an infinite impulse response (IIR) filter. The coefficients of this filter are determined by

the phase response of the beam. The calculation of these coefficients will be shown after

the phase detector discussion.

Phase Detector

The purpose of the phase detector is to detect the phase difference between the input

sine wave and a reference sine wave. Our implementation of the phase detector is shown

in Figure 12.

Before going into the mathematics of the block diagram, we will quickly discuss the pur-

pose of the Hilbert transformer (which will be discussed in detail in the next subsection).4

The Hilbert transformer is a filter that is able to exactly phase shift an input sine wave by

π/2, i.e.

sin(ωt′ + θ)→ Hilbert Transformer→ cos(ωt′ + θ) (39)

Of course, nothing is for free: an (N + 1) tap Hilbert Transformer has a delay of N/2
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Figure 12 The phase detector. Note that φ is a user input phase
offset, i.e. φ can be set to zero by the user if a phase offset is not
needed.

samples. (This means that for a 51 tap transformer, there is a delay of 25 samples or

250 µs at 100 kHz sampling rate). Thus, this requires us to add a delay of exactly N/2

samples at various points shown in the block diagram.

So we start with the phase detector analysis by looking at point (a) in Figure 12. At

time t′ we have

(a) = sin(ωt+ θ) cosωt (40)

where t is earlier than t′ by N/2 samples. At point (b), we have

(b) = cos(ωt+ θ) sinωt (41)

Taking the difference between (a) and (b), we get at (c)

(c) = sin(ωt+ θ) cosωt− cos(ωt+ θ) sinωt

= sin θ



 (42)
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Similarly at (d), we have

(d) = sin(ωt+ θ) sinωt+ cos(ωt+ θ) cosωt

= cos θ



 (43)

At point (e) we introduce a phase rotation φ which will allow us take out any phase off-

sets. See Figure 13. It is obvious that we can think of sin θ and cos θ as projections of a

unit vector v onto the x and y axis of a Cartesian plane. In this plane, v when rotated by

φ is given by the matrix transformation
[

cosφ − sinφ
sinφ cosφ

] [
cos θ
sin θ

]
=
[

cos(θ + φ)
sin(θ + φ)

]
≡ v′ (44)

Therefore the angle v′ makes with the x-axis is simply

tan−1
[

sin(θ + φ)
cos(θ + φ)

]
= θ + φ where −π ≤ (θ + φ) < π (45)

The rotation method naturally limits the result of adding the phase offset φ to θ to ±π.

Figure 13 This shows that by rotating the unit vector v by φ to
v′, we can introduce a phase offset. When we perform the tan−1 after
the rotation, the result is always confined to ±π.
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Hilbert Transformer

The key to the phase detector is the use of a Hilbert Transformer for phase shifting

the input sine wave by π/2. Our Hilbert Transformer contains 51 taps whose coefficients

are shown in Table 4 of Appendix II . The magnitude and phase response is shown in

Figure 14. Clearly the Hilbert transformer phase shifts the input by π/2 with possibly a

small change in magnitude ±0.15 dB, as long as the input frequency is between 0.05/Ts

to 0.45/Ts where Ts is the sampling period. For example, when the sampling frequency is

100 kHz, the Tevatron tune frequency ∼ 27.5 kHz ≈ 0.55 × π lies right in the middle of

the Hilbert transformer phase response.

Figure 14 The frequency response of the Hilbert transformer using
the coefficients shown in Table 4.
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PLL Parameters from Beam Phase Response

The beam phase response will determine the natural frequency ωn, and the form of

the low pass filter G(s), These values will then determine the other loop parameters like

the loop bandwidth, lock-in time, pull in range etc.

For calculating the natural frequency ωn, we notice that from (7), the PLL transfer

function H(s) is a 2nd order linear phase lock loop if it does not wander too far away

from the resonance. If this condition is satisfied we can use the results derived in the

Theory section and compare them to the transfer function derived in Best5 section 2.3.

We will find that they are the same except for extra factors g, K and A shown in Table 1.

This means that we can lift some of the formulæ and arguments used by Best and apply

them here.

First, we want the PLL to lock within one single beat if the difference between the beam

resonant frequency and the excitation frequency is less than ∆ωL, called the lock range. We

want ∆ωL to be at least the width of one synchrotron line which is about 5 Hz (measured

from Figure 6) since the linear theory only works when it is close to resonance i.e.

∆ωL ∼ 2π × 5 rad·s−1 (46)

The lock range is related to the natural frequency by ∆ωL ≈ 2ζωn if ωn/gK0KdKA� 2ζ.†

If we want an optimally flat PLL transfer function then ζ = 0.7, thus
∆ωL ≈ 2ζωn = 1.4× ωn

.˙. ωn = 2π × 5/1.4 = (2π × 3.5) rad·s−1

}
(47)

Calculating G(s)

In principle, we can calculate the form of G(s) with ωn = 2π × 3.5 rad·s−1 found in

† We will see that this condition is not satisfied in Calculating G(s), but we will nevertheless
use this as a starting point for ωn.
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(47) and with the choice of ζ = 0.7 for an optimally flat PLL transfer function provided

that we know g, K0, Kd, K and A. If we solve for τ1 and τ2 from (11) after we set these

values from Table 1 and take K = 0.6 × 10−2 s (which is the phase slope of the “fake

beam response” circuit. See section Closed Loop Response of the Continuous PLL) and

A = 3, we find that gK0KdKA ≈ 16.5 s−1. Fortunately, (11) does not need to satisfy the

condition ωn/gK0KdKA� 2ζ and thus we can find τ1 + τ2 and τ2

τ1 + τ2 =
gK0KdKA

ω2
n

= 16.5/(2π × 3.5)2 = 0.03 s

τ2 =
2ζ
ωn
− 1
gK0KdKA

≈ 2× 0.7
2π × 3.5

− 1
16.5

= 0.003 s





(48)

Unfortunately, this filter is rather poor at suppressing high frequency noise because τ2 is

only 10 times smaller than (τ1 + τ2). See Figure 16. We can improve it by decreasing τ2

by a factor of 10 and still get approximately the same ζ, i.e. if τ2 = 0.3× 10−3, we have

ζ =
ωn
2

(
τ2 +

1
gK0KdKA

)
=

2π × 3.5
2

×
(

0.3× 10−3 +
1

16.5

)

= 0.67 ≈ 0.7





(49)

Thus, with this new value of τ2 the edges of the passive lag filter shown in Figure 3 are

ωb =
1

τ1 + τ2
=

1
0.03

= 33 s−1

ωa =
1
τ2

=
1

0.3× 10−3 = 3× 103 s−1





(50)

For the digital realization of this filter, we implement it as an infinite impulse response

(IIR) filter shown in Figure 15. The coefficients of the IIR come from

yn =
b

Ts + b
yn−1 +

Ts + a

Ts + b
xn − a

Ts + b
xn−1

≡ α−1yn−1 + β0xn − β−1xn−1

≈ yn−1 + 0.0113xn − 0.0110xn−1





(51)

where a = 1/ωa and b = 1/ωb and Ts = 10 µs is the sampling time. Figure 15 and

Figure 16 show the realization of G(s) in frequency space.
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Figure 15 The equivalent IIR circuit of a passive lag filter drawn
in the usual z-transform way. z−1 represents a one sample delay.

Figure 16 The frequency response of the low pass filter with the
coefficients given by (48) (red) and (51) (black).
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KICKER FEEDBACK

The goal of the kicker feedback circuit is to keep the S/N ratio to ≥ 6 dB which we

will discuss in Minimum Kicker Power . The kicker power will be adjusted by the feedback

loop so that the S/N ratio is maintained. In our design the kicker feedback circuit consists

of two major parts:

(i) Fourier component detector. The Fourier component detector picks out the Fourier

component at the kicker frequency.

(ii) S/N ratio detector. The S/N ratio detector measures the ratio between the power

from the kicker and the total power (less the kicker power) in the bandwidth which

contains the tune. In this case, our bandpass filter is centred around 27.5 kHz with

a bandwidth of 5 kHz.

Fourier Component Detector

To extract out the PLL excitation Fourier component from the Schottky signal (see

Figure 17), we start at the input from the AGC (which is from the Schottky detector). We

must AC couple this into the multipliers because we do not want any DC contributions after

multiplication. We assume that this input yin(ω′) has the form yin(ω′) = A sin(ω′t + φ).

Let us consider first the case when ω′ = ω the PLL excitation frequency, then at (a)

(a) = A sin(ωt) sin(ωt+ φ)

= −A2
[

cos(2ωt+ φ)− cosφ
]



 (52)

The 100 Hz low pass filter will leave us with the DC component of (52), i.e. A
2 cosφ, if

(2ω > 2π × 100) s−1. After we square this, we obtain at (c)

(c) = A2

4 cos2 φ (53)
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Figure 17 The block diagram of the kicker feedback circuit.

A similar argument shows that at (d), we have

(d) = A2

4 sin2 φ (54)

Going through the summer,

(c) + (d) = (e) =
A2

4
≡ F 2 (55)

which is the Fourier component of the PLL excitation from the Schottky signal.
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For the case when ω′ 6= ω, we have at (a),

(a) = A sin(ωt) sin(ω′t+ φ)

= −A2
{

cos
(

[ω′ + ω]t+ φ
)
− cos

(
[ω − ω′]t− φ

)}


 (56)

If (ω′ − ω) > (2π × 100) s−1, the low pass filter will suppress this. This means that the

Fourier component detector will have contributions from ±100 Hz around the PLL kicker

frequency.

Power Detector

The power detector shown in Figure 17 integrates the power in the frequency band

centred at 27.5 kHz and a bandwidth of 5 kHz. The power detector is based on the Analog

Devices AD83616 which measures the root mean square voltage from the input signal. To

obtain power from this, we simply square the output of the AD8361.

Normalized Signal to Noise Ratio S/N

We define the normalized signal to noise ratio S/N to be

S/N =
F 2

gpP − F 2 (57)

where F 2 is the output of the Fourier detector and P the output from the power detector

and gp is the gain at the output of the power detector. Its value is adjusted so that when

there is no noise at the AGC input, gpP ≡ 2× F 2. Therefore,

(S/N)no noise =
F 2

2× F 2 − F 2 = 1 (58)

The reasons for our S/N definition are as follows:

(i) We want to remove any contribution of F 2 from noise because (a) it is a coher-

ent signal and (b) in most cases when the PLL is locked F 2 is larger than the
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background noise by at least 6 dB and thus it can overwhelm any background

noise.

(ii) The usual definition of signal to noise will go to infinity when there is no noise.

Our definition prevents this circumstance and normalizes this case to 1 i.e. it is

guaranteed that 0 < S/N ≤ 1.

Closing the Loop

The loop is closed by feeding the S/N into a 5 Hz low pass filter and then into a

summer where the level can be set by the user. The error signal from the summer is used

to set the variable gain amplifier which sets the level of the PLL kicker signal sent to the

beam.

Minimum Kicker Power

The minimum power of the kick is determined from measurements (see Figure 18), we

find that at 150 GeV the noise power from 1 bunch of coalesced protons on the proton

helix† is −10.3 dBm over 1 kHz. The signal to noise ratio S/N between the noise power

in this 1 kHz band and the beam response to the coherent kick of the PLL must satisfy

the following inequality for a reliable lock

S/N =
(
Ps
Pn

)
≥ 4 (59)

where Ps is the power of the kick. If we choose S/N = 4, then (59) can be solved for Ps
Ps = 4× Pn

= (6− 10.3) dBm

= −3.7 dBm





(60)

† See Tracking for what coalesced and uncoalesced protons and helix mean.
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When we kick the beam with 180 mW of power, we find that the power transferred to

the beam is −3.89 dBm at the kicker sine frequency 27.78 kHz which is about 1 dB larger

than needed. Note that for one uncoalesced bunch, we found that the kicker power can be

dramatically reduced from 180 mW to 7.5 mW to keep S/N ≈ 4. We think that this can

be explained by going back into the coalescing process which may have introduced much

more coherent motion compared to uncoalesced protons. This coherent motion is also

rather persistent up the ramp and through the squeeze compared to uncoalesced beam.†

† Coherent motion that persists for intense bunches may be interesting physics. See for exam-
ple ICFA HB2004 conference talks at http://www.gsi.de/search/events/conferences/ICFA-
HB2004/scientificprogram e.html
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Figure 18 The measured noise power in over 1 kHz which encloses
both the horizontal and vertical tunes at 150 GeV for 1 coalesced
bunch of protons on the proton helix is shown in the top trace. The
effect of kicking the beam with a 180 mW sine wave is shown in the
bottom trace.

SCHOTTKY DETECTOR

The Schottky detectors used by the PLL tune tracker were built by Martin et al7 in

the late 1980s. These detectors are the primary workhorses used routinely for tuning and

measuring the betatron tunes in the Tevatron. We will not go into depth on how these

detectors work and the reader is referred to the references for the finer details.

A cartoon of one Schottky detector is shown in Figure 19. It is basically a pair of 1 m
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Figure 19 The Schottky detector resonant structure.

Figure 20 Simplified block diagram of the Schottky electronics.

long striplines contained in a structure with a square cross section. Each stripline consists

of a copper bar which can be moved closer or further away from the beam by stepper

motors thus changing its sensitivity to the Schottky signal. Its resonant frequency can

also be tuned by using the variable capacitor Cv. Presently these detectors are tuned to

resonate around 21.4 MHz with a loaded QL = 370. Historically, the resonant frequency

was chosen because it is one of the standard IF frequencies (the others being 455 kHz

and 10.7 MHz respectively) used in radio communications. Thus unwanted revolution

harmonics can be easily filtered out using off-the-shelf narrow band filters. A simplified

block diagram of the Schottky electronics is shown in Figure 20.
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AUTOMATIC GAIN CONTROL

The block diagram of the automatic gain control8 (AGC) is shown in Figure 21. The

goal of the AGC is to keep the signal to the PLL within its range (which is ±1.2 V).

Figure 21 The block diagram of the AGC.

The 10 Hz low pass filter is to keep fast changes in size of the Schottky detector signal

from rapidly changing the gain of the amplifier. This filter prevents a phenomenon called

“gain pumping” which is an amplitude modulation of the output. Thus only slow changes

which are < 10 Hz can cause the loop to change the gain of the amplifier. The output

signal level is set by the user at the port labelled “level set” in the figure.

One important consideration in designing the AGC is to keep phase shift introduced by

the low pass filters to a minimum in the bandwidth of interest. This is to keep the measured

phase response of the beam from changing too much in the bandwidth of interest — if for

example, the phase shift at resonance is +10◦ then the resonance peak that we measure

will be lower than the actual resonance. For the bandwidth from 26 kHz to 29 kHz the
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Figure 22 The open loop frequency response of the AGC. The
phase shift of 7◦ lies between the markers from 26 to 29 kHz which
corresponds to 0.544 to 0.61 tune units.

open loop phase shift is shown in Figure 22. And in this case there is a 7◦ phase difference

between the band edges. The resonance peak reported by the PLL compensates for these

phase shifts in software. See section Phase Corrections.
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FIXED DELAY FOR PHASE CORRECTION UP THE RAMP

If the path length between the two legs into the phase detector is different we will

find that when we ramp — because the RF frequency changes, the phase response of the

beam will get an additional phase shift ∆θD.9 The solution to this problem is to make

the path lengths into the phase detector equal so that the output of the phase detector

is independent of the RF frequency. First, let us show that there is indeed a phase shift

when the RF frequency changes.

Figure 23 shows the relevant parts of the PLL in this discussion. It is an equivalent

block diagram of the phase detector, kickers, Schottky pickup, beam response and cables

with time delays drawn out explicitly when the PLL is kicking the beam at the betatron

frequency ωβ , i.e. at resonance. The red leg of the phase detector starts from the kicker

source then goes into a mixer for up conversion. The phase at (a) is

(a) =
(
ωβ + ωosc

)
t− ωosc∆tk (61)

where −ωosc∆tk comes from the phase shift of the local oscillator after going through a

cable of length ∆tk. The negative sign comes from causality.

Next, we go through the equivalent circuit which contains the kicker, beam response,

Schottky pickup and electronics, filters and cables. This equivalent circuit has a delay ∆ts

(mainly coming from the Schottky pickup and the crystal filter electronics). Therefore the

phase after this is

(b) =
(
ωβ + ωosc

)
t− ωosc∆tk −

(
ωβ + ωosc

)
∆ts + θ0 (62)

where θ0 is the phase shift which comes from the beam phase response.

Finally at (c), after down conversion

(c) = ωβt−
(
ωβ + ωosc

)
∆ts − ωosc

(
∆tk −∆tp

)
+ θ0 ≡ θ1 (63)
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Figure 23 A simplified equivalent circuit of the phase detector,
kickers, Schottky pickup, beam response and cables with time delays
drawn out explicity.

where −ωosc∆tp is the phase shift of the local oscillator after going through a cable of

length ∆tp.

The blue leg of the phase detector has a phase compensator which we will discuss in

the next subsection. Suppose instead that the phase compensator is not present, then

θ2 = ωβt (64)

Note that we do not add in a phase change from the cables which connect the kicker source

to the phase detector because the wavelength of the betatron tune ∼27.5 kHz is ∼10 km.

Finally, the result of the phase ∆θ at the output of the phase detector is

∆θ = θ1 − θ2

= −ωosc
(

∆tk −∆tp + ∆ts
)
− ωβ∆ts + θ0



 (65)
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When we ramp, the local oscillator frequency changes ωosc → ω′osc, this means that the

output of the phase detector becomes

∆θ′ = −ω′osc

(
∆tk −∆tp + ∆ts

)
− ω′β∆ts + θ0 (66)

The phase shift due to the two different local oscillator frequencies is therefore,

∆θ′ −∆θ = −
(
ω′osc − ωosc

)(
∆tk −∆tp + ∆ts

)
≡ θD (67)

Example 1

The measured phase shift of the beam phase response in the Tevatron at 150 GeV and

at 980 GeV is 20◦ for an oscillator frequency change of 400 Hz. (The actual RF frequency

change from 150 GeV to 980 GeV is 53.103 MHz→ 53.104 MHz, which is 1 kHz. However,

our oscillator frequency is 21.4 MHz which is 53.1/2.5 MHz which means that the frequency

change is 1000/2.5 = 400 Hz). Using (67), we can calculate the delay in the red leg

∣∣∣∆tk −∆tp + ∆ts
∣∣∣ =

20× π
180

× 1
2π × 400

= 139 µs (68)

Phase Compensator

There are at least three methods for building the phase compensator. The first method

is obvious and is shown in Figure 24. It requires that we make an equivalent copy of the

red leg with the goal that we choose tD so that the red leg and the blue leg have the same

path length. The second method comes from (65) and will be discussed in Method II .

Finally the method which we have adopted comes from (67) and will be discussed in

Method III .
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Figure 24 The phase compensator circuit which is an equivalent
copy of the red leg in Figure 23.

Method I

The phase at each point in Figure 24 is

(a) =
(
ωβ + ωosc

)
t− ωosc∆ta

(b) =
(
ωβ + ωosc

)
t− ωosc∆ta −

(
ωβ + ωosc

)
∆tD

(c) = ωβt−
(
ωβ + ωosc

)
∆tD ≡ θ2





(69)

where the choice of tD is the time delay determined by the following:

∆θ = θ1 − θ2

= −ωosc
(

∆tk −∆tp + ∆ts
)
− ωβ∆ts +

(
ωβ + ωosc

)
∆tD + θ0

= −ωβ
(

∆ts −∆tD
)

+ θ0

= ωβ

(
∆tp −∆tk

)
+ θ0

≈ θ0





(70)

if we choose ∆tD = ∆tk −∆tp + ∆ts then ∆θ just reflects the phase response of the beam

at resonance. The term ωβ(∆tp −∆tk) is small because even if the difference in oscillator

cable lengths between the mixers is ∼100 ns this term contributes only about 1◦ because

ωβ ∼ 2π × 27.5 × 103 s−1. In reality the difference cable length is � 100 ns. Therefore,

(70) is independent of the oscillator frequency ωosc and only depends on time delays.
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Method II

The second method is similar to Method I except in its choice of placement of the delay.

We notice that ∆tp is opposite in sign to ∆tk and ∆ts in (65). Therefore, if we add delay

to the down convert local oscillator, we can have the situation where ∆tp → ∆tk + ∆tp

and thus the phase contribution from the oscillator in (65) becomes identically zero. The

phase that is left behind −ωβ∆ts is easily compensated by adding a digital delay in the

Phase Compensator box shown in Figure 23. The digital delay block diagram is shown in

Figure 25.

Figure 25 A digital delay with an ADC frontend, FIFO memory
and DAC backend.

The ADC frontend samples the input kicker sine wave and then stuffs the result into

FIFO memory at a rate given by the sampling clock which runs independently of the

low level RF. After shifting through memory for ∆ts s , the output of the FIFO is sent to

a DAC which results in a time delayed sine wave.

Method III

The main problem with Method I and Method II is the design of the fixed 139 µs
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delay — clearly, in practice, cables cannot be used. To do this digitally like in Figure 25,

ωsample must be at a minimum 4 × ωosc ≈ 2π × 100 × 106 s−1 in both methods and that

still does not guarantee that we will not be overwhelmed with phase noise because current

14 bit ADCs are limited to sampling frequencies of < 150 MHz, i.e. this design can be done

but is a challenge. A much better way is to look at (67) and notice that if we introduce

a frequency dependent phase shifter in the up convert leg† of the local oscillator we can

remove the need for the high speed ADC. We start at (a) of Figure 26

(a) =
(
ωβ + ωosc

)
t− ωosc∆tk + ∆φ(ωosc) (71)

and continuing through the other points

(b) =
(
ωβ + ωosc

)
t− ωosc∆tk −

(
ωβ + ωosc

)
∆ts + θ0 + ∆φ(ωosc)

(c) = ωβt−
(
ωβ + ωosc

)
∆ts − ωosc

(
∆tk −∆tp

)
+ θ0 + ∆φ(ωosc) ≡ θ1

∆θ = −ωosc
(

∆tk −∆tp + ∆ts
)
− ωβ

(
∆ts −∆td

)
+ θ0 + ∆φ(ωosc)





(72)

When the oscillator frequency changes, ωosc → ω′osc the phase detector output is

∆θ′ = −ω′osc

(
∆tk −∆tp + ∆ts

)
− ω′β

(
∆ts −∆td

)
+ θ0 + ∆φ(ω′osc) (73)

If we choose ∆td = ∆ts in the phase compensator box in Figure 26, the phase shift due to

the two different local oscillator frequencies is

∆θ′ −∆θ = −
(
ωosc − ω′osc

)(
∆tk −∆tp + ∆ts

)
+ ∆φ(ω′osc)−∆φ(ωosc) ≡ ∆θD (74)

To remove any dependence of ∆θ on ωosc clearly, we want ∆θD ≡ 0. This means that

∆φ(ω′osc)−∆φ(ωosc) =
(
ωosc − ω′osc

)
∆tD (75)

where tD = ∆tk−∆tp+∆ts. If we choose ∆φ(ωosc) = 0, then we have the following linear

relationship between the phase shift and the local oscillator frequency

∆φ(ω′osc) = −
(
ω′osc − ωosc

)
∆tD (76)

† Note this analysis is also valid if we stick the phase shifter in the down convert leg.
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Figure 26 We add in a phase shifter in the local oscillator leg of the
up convert mixer and a delay ∆td = ∆ts in the phase compensator
box.

Using this relationship, the phase detector will be independent of the local oscillator fre-

quency and hence the ramp frequency.

In the Tevatron, the RF frequency varies proportionately with the ramp current. Thus

by measuring the ramp current, we can set the amount of phase shift that will compensate

for the ramp. See Figure 27.

Example 2

Continuing from Example 1, at 150 GeV, the phase shifter will be set so that it shifts

the local oscillator phase by zero degrees. At 980 GeV, the phase shifter will shift the

oscillator phase using (76) by −2π × 400 × (139 × 10−6) = −20◦ in order to keep the
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Figure 27 The ramp frequency dependent phase shifter.

phase detector independent of the local oscillator frequency change.
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Measurements
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MEASUREMENTS

In this section, we will discuss all the measurements that we have made.

(i) The closed loop response of the PLL. This measurement uses the idea that when

we have a step change in the resonant frequency of the beam, we can use it to

derive the closed loop frequency response H.

(ii) Linear corrections to the reported locked tunes. As was previously mentioned in

the Automatic Gain Control section, the filters used in the system will cause small

phase shifts that we need to correct.

(iii) The response of the beam with different excitations at 150 GeV. We will show

the spectra of 1 bunch of coalesced protons on the proton helix when it is kicked

continuously and pulsed. The phase response measured by the PLL in these cases

is also discussed.

(iv) PLL tracking up the ramp and through the squeeze with different beam conditions.

This is, of course, the entire goal of the project. We will show the PLL tracking

performatince in four different sets of conditions up the ramp and through the

squeeze.

(v) Emittance growth of the beam. The Achilles heel of this method is emittance

growth. We have to keep the emittance growth down to acceptable levels without

compromising the signal to noise ratio discussed in PLL Parameters from Noise

Characteristics.
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CLOSED LOOP RESPONSE OF THE CONTINUOUS PLL

A practical method for measuring the closed loop frequency response of the PLL pa-

rameters will be discussed here. We will not use actual beam for this measurement but

instead use the “fake beam response circuit” shown in Appendix I . This circuit allows us

to get an idea of what the closed loop response is without using actual beam. There are

two reasons for doing this

(i) In real life, access to the Tevatron beam for beam studies is difficult.

(ii) Using the fake beam response circuit allows us to control exactly the conditions of

the measurements.

Note that the closed loop frequency response depends on the frequency response of

the beam. Clearly from (7), H depends on the beam phase response slope K. Thus the

measurements done here only give us H for one fixed value of K. From the frequency

response of the fake beam shown in Figure 28 we find that K = 0.6× 10−2 s which from

Table 1, is within the range of K for the actual beam.

Theory

We will derive a method where we can measure the closed loop response of the PLL

with a digital oscilloscope.10 From (3), the relationship between the excitation phase θ2

and the beam phase θ0 is

θ2 = Hθ0 (77)

If there is a step in the beam resonant frequency i.e. θ0 → θ0 + ∆ω0/s
2 then the response
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Figure 28 The frequency response of the fake beam circuit. Top
picture is with a 1 kHz span and bottom picture is with a 100 Hz
span.

of the PLL excitation θ2 → θ2 + ∆θ2

θ2 + ∆θ2 = H
(
θ0 +

∆ω0
s2

)

⇒ ∆θ2 = H∆ω0
s2





(78)

56



Multiplying (78) by s, and defining s∆θ2 ≡ ∆ω2(s), we have

∆ω2(s) = H∆ω0
s

(79)

i.e. we have moved to a relationship between frequencies rather than phases. Therefore, if

we differentiate once the change in excitation frequency in the time domain after we step

the beam resonant frequency by ∆ω0, we get

s∆ω2(s) = H∆ω0 (80)

Thus the method becomes clear: to measure H, we need to change the frequency of the

beam resonance by a step ∆ω0, differentiate the PLL excitation frequency that tries to

follow this step and then Fourier transform it to obtain H.

Setup and Results

The setup to measure the closed loop response of the PLL is shown in Figure 29. The

frequency source which is used to clock the commutating filter is set up to do frequency shift

key (FSK) modulation. And because of the way our commutating filter is implemented,

if we want the fake beam to resonate at f kHz, we must clock it at 8 × f kHz. Thus, for

the fake beam to start at a resonant frequency of 27.500 kHz and then have a 37.5 Hz

step and repeat every 10 s, the FSK carrier is set to (8 × 27.5000) kHz, hop frequency to

(8×27.5375) kHz and periodic frequency of 100 mHz. This step causes the PLL to change

its kicker frequency ωk in order to follow this step. The results are shown in Figure 30(a)

for the cases when the gain multiplier is set to 1, 2, 5, 7 and 10. We differentiate (a) once

to get the results shown in Figure 30(b). And finally Fourier transforming it, we get the

closed loop frequency response shown in Figure 30(c).

From Figure 30(c), we can see that the natural frequency ωn and damping factor ζ of

the PLL are dependent on the gain multiplier A. These results should be compared to

57



Figure 29 The block diagram of the setup used to measure the
closed loop frequency response of the PLL.

Figure 4 and the calculations presented in the section Calculating G(s). We expected that

ωn = (2π × 3.5) s−1 when ζ = 0.7 and A = 3 from theory but from these measurements,

we found that when A = 2, the measured results are ζ = 0.7, ωn = (2π× 2.2) s−1. Table 2

summarizes the measurements for other values of A.

Table 2. Measured ω3dB, ωn and ζ

A ω3dB × 2π (s−1) ωn × 2π (s−1) ζ

1 1.3 1.7 0.93
2 2.5 2.2 0.71
5 6.2 4.7 0.34
7 7.6 6.0 0.28
10 9.4 7.5 0.19
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Figure 30 The magnitude of the frequency response of the PLL
using the method discussed in Closed Loop Response of the PLL for
different gain multipliers A.
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PHASE CORRECTIONS

We need to perform small phase corrections in software because the filters used in the

PLL introduce phase shifts, for example in the AGC. See Figure 22. These corrections are

not related to the phase shift from change in the RF frequency that was discussed in Fixed

Delay for Phase Correction Up the Ramp but come from the excitation sampling different

parts of the filters in the PLL circuit.

The corrections are found with the fake beam frequency response circuit because we

know exactly where the the fake beam resonance is supposed to be. First, we set the

fake beam resonance to 27.500 kHz, and then we set the phase offset of the PLL so that

it returns exactly 27.500 kHz. The fake beam resonance is then moved and the lock

frequency fm found by the PLL is plotted against this. See Figure 31. The linear fit gives

the correction for the phase shifts from filters which are

ft = 1.00465× fm − 0.127999 for continuous PLL

ft = 1.01673× fm − 0.459365 for pulsed PLL
(81)

where ft is the true resonance frequency and fm is the measured PLL lock frequency.

Interestingly the slopes are nearly one in both cases, but the intercepts are clearly different.
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Figure 31 Corrections to the frequency for both continuous and
pulsed PLL.
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BEAM RESPONSE FROM EXCITATION

The behaviour of 1 coalesced bunch of protons on the proton helix at 150 GeV with

chromaticity set to about 4 units when excited continuously or pulsed is shown here. The

Schottky signal of this bunch when it is not excited is shown in Figure 32(a). The kicker

power level is set to 180 mW which is the minimum power needed to be 6 dB above noise

in 1 kHz of bandwidth (from section Minimum Kicker Power) for continuous excitation.

The spectrum when this is applied to the beam is shown in Figure 32(c). The spectrum

when the beam is pulse excited (10 ms on and 30 ms off) is shown in Figure 32(b). Not

surprisingly, the beam is less excited with a 25% duty cycle compared to 100% duty cycle.

The phase response of the beam when continuously excited and pulsed excited is shown in

Figure 32(d). Pulsed excitation clearly smooths out the phase response.

Since the pulsed excitation clearly smooths out the synchrotron lines, we want to see

whether the pulsed PLL will indeed lock close to the middle of the betatron line. We start

with both PLLs locked to the centre of the betatron tune. Then we yank the PLL excitation

frequency by +350 Hz (3.5 synchrotron lines) and −500 Hz (6 synchroton lines) to cause

the PLL to lose lock. After a while, the PLL will eventually lock to some synchrotron line

for the continuous PLL while for the pulsed PLL it locks to a place that is close to the

centre of the betatron tune. Figure 33 shows the result of this experiment. It is interesting

that this effect is not symmetric about the centre. This is easily understood by looking at

the phase response shown in Figure 32(d). For the continuous PLL, we use the red curve.

We see that when the initial lock is at 27.7 kHz and after we yank the excitation frequency

to 28.05 kHz, there is only one nice zero crossing to the right of 27.7 kHz. While yanking

to lower frequencies, there are no zero crossings other than the one at 27.7 kHz. The same

argument applies for the pulsed PLL.
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Figure 32 These figures show the spectra of one coalesced protron
on the proton helix for different kick conditions. Figures (a), (b)
and (c) are the spectra measured by the VSA. Trace A (purple) is
the spectrum of the beam signal from the AGC with the kicker off.
Trace B (red) is the spectrum of the kicker signal before up conversion.
(a) shows the case when the kicker is off. (b) is when the kicker is
pulse kicking the beam. (c) is when the kicker is continuously kicking
th beam. (d) is the phase response for the case when the beam is
continuously kicked (red) and pulse kicked (blue).
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Figure 33 This compares the continuous PLL and pulsed PLL
when the lock frequency is yanked by +300 Hz and −500 Hz. Clearly
the continuous PLL locks to different synchrotron lines while the
pulsed PLL locks to a frequency that is close to the centre of the
betatron tune.

TRACKING

Finally, we get to the results which show that the tune tracker PLL does track the

tunes up the ramp and through the squeeze. The Tevatron has two beam conditions:

(i) Uncoalesced beam is when we have ∼ 200 × 109 protons spread out equally in

30 adjacent buckets. This is the usual Tevatron diagnostics beam condition.

(ii) Coalesced beam is when we have ∼200× 109 protons all in one bucket. This is the

HEP beam condition for 1 proton bunch. (For HEP, the Tevatron runs with 36

coalesced bunches).

and three electrostatic separator conditions:

(i) Separators off. This means that the helix is off and thus the beam is on the central
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orbit.

(ii) Separators on, in the usual polarity. This means that the protons are on the proton

helix and this is the condition during HEP. Separators in this polarity are used to

separate the protons and the anti-protons which are in the same beam tube.

(iii) Separators on, opposite polarity. This means that the protons are on the pbar

helix. This is only used for beam studies.

For this paper, we will only track the tunes up the ramp and through the squeeze with

the following conditions:

(i) Uncoalesced beam, central orbit, with continuous PLL. See Figure 35 and Fig-

ure 36.

(ii) Uncoalesced beam, central orbit, with pulsed PLL. See Figure 37 and Figure 38.

(iii) Coalesced beam, proton helix, with continuous PLL. See Figure 39 and Figure 40.

(iv) Coalesced beam, proton helix, with pulsed PLL. See Figure 41 and Figure 42.

Note that the tune tracker did not have all its parts at the time the experiments were

performed. The missing parts are the kicker feedback circuit and the phase compensator

circuit. Without the kicker feedback circuit, we just kept the kicker power fixed up the

ramp and through the squeeze. The absence of the phase compensator is a little bit more

of a concern. As we had discussed in Fixed Delay for Phase Correction Up the Ramp,

there is a phase shift of 20◦ between 150 GeV and 980 GeV. This phase shift is sufficient

to cause the PLL to smoothly slip between synchrotron lines. Although we did not lose

lock in any of the cases we discuss below, the PLL frequency locks to a lower frequency

than the actual betatron frequency as the beam is ramped.
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Uncoalesced Protons, Central Orbit, Continuous PLL

Using continuous excitation on uncoalesced protons on the central orbit, we excite the

beam with 7.5 mW of power with the gain multiplier set to 1. Figure 35(a) shows how

the excitation behaves up the ramp. It is clear that the excitation is strong enough to

overwhelm the Schottky noise of the beam and thus we cannot tell whether the PLL is

actually tracking anything real. Thus, to avoid being misled, we compared the locked

frequency collected here with a store of uncoalesced protons (store 3624) that did not

have the PLL turned on. By superimposing the locked frequency data and the waterfall

plot from store 3624, we get Figure 35(b). We can see that the white trace which is the

locked frequency data does follow the features of the Schottky spectra of store 3624. Going

through the squeeze, we again have to superimpose the PLL data onto store 3624. See

Figure 36(b). We see that the white trace tracks through the squeeze spectra rather well.

Uncoalesced Protons, Central Orbit, Pulsed PLL

For the pulsed PLL, we have the kicker turned on for 10 ms and off for 30 ms. The

kicker power is still at 7.5 mW while the gain multiplier has been increased to 5. Clearly

looking at Figure 37(a), the PLL locked frequency tracks the Schottky data up the ramp

rather well. Comparing the noise levels of the frequency lock with continuous PLL and

pulsed PLL, we see that pulsed PLL is at least twice as noisy as continuous PLL. However,

because the gain multiplier is different, this is not a fair comparison.

Coalesced Protons, Proton Helix, Continuous PLL

For coalesced protons on the proton helix, we have to kick the beam with 180 mW

of power in order to satisfy the S/N ≥ 4 requirement. The gain multiplier is set to
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4. Coalesced protons on the proton helix is the condition that is closest to HEP — the

differences are

(i) there is only 1 bunch compared with 36 bunches used for HEP.

(ii) We do not have anti-protons in the study.

Looking at Figure 39(a), we see that the white trace follows HEP store 3699 up the

ramp rather well until maybe at 500 GeV. This is where we may have departed from the

true betatron tune. There are two possibilities:

(i) the anti-protons have shifted the horizontal tune up in the HEP store compared to

the PLL store which did not have anti-protons.

(ii) the phase shift from RF change has not been corrected.

Another interesting observation is that the noise of the lock increases as the ramp

energy increases. This is clearly seen in the bottom graph of Figure 39, at 300 s the gain

multiplier is reduced from 4 units to 2 units and immediately the noise level went down.

With the gain multiplier set to 2 units and at the same power level, we go through

the squeeze. See Figure 40. Tracking through the squeeze produces a much better result.

Note that the white trace is stuck to the left of the Schottky spectra because we did not

change the phase offset by 20◦.

Coalesced Protons, Proton Helix, Pulsed PLL

For the pulsed PLL, we turn the excitation on for 10 ms and off for 30 ms. The gain

multiplier is set to 16. Although, we see that the white trace follows the Schottky data

of store 3699 up the ramp is a lot more noisy when compared to the continuous PLL.

In fact, when we turn the gain multiplier down at 980 GeV from 16 to 1 the noise level

immediately goes down. The bottom graph of Figure 41 shows this effect at 250 s. Going
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Figure 34 The noise comparision between continuous and pulsed
PLL. Gain multiplier is set to 4 for continuous PLL and 16 for pulsed
PLL.

through the squeeze with the gain multiplier set to 1 the noise level of the pulse PLL is

comparable to the continuous PLL.

Comparison between Continuous and Pulsed PLL

We can plot the tracking performance of the continuous and pulsed PLL and compare

them. From empirical observation, it is always necessary that we run the pulsed PLL at

a higher gain than the continuous PLL, which means that the pulsed PLL will always

be noisier than the continuous PLL. However, because the optimum gain for either PLLs

has not been determined yet, the final verdict on the exact noise difference between the

methods has not been settled. We will, nonetheless, venture at a stab at the difference and

guess that the noise level is less than a factor of 2 between the two methods after the gain

has been optimized. For example, see Figure 34, where we have zoomed in at 150 GeV for

coalesced protons on the proton helix. The rms error of the tune is 2 Hz (or 4× 10−5 tune

units) for continuous PLL while for pulsed PLL it is 3 Hz (or 6× 10−5 tune units).
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Figure 35 Tracking using continuous PLL up the ramp on the
central orbit with uncoalesced beam. Picture (a) is the waterfall
spectrum of the Schottky signal with the PLL kicker on. The white
trace superimposed in this picture is the PLL track data. Picture (b)
is the central orbit waterfall spectrum of store number 3624 without
the PLL going up the ramp. Superimposed on this is the data from
(a). Finally, the bottom picture is the data from (a) plotted against
the Tevatron energy ramp.
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Figure 36 Tracking using continuous PLL through the squeeze
on the central orbit with uncoalesced beam. Picture (a) is a water-
fall spectrum of the Schottky signal with the PLL kicker on. The white
trace superimposed in this picture is the PLL track data. Picture (b)
is the central orbit waterfall spectrum of store number 3624 through
the squeeze without the PLL. Superimposed on this is the data from
(a). Finally, the bottom picture is the data from (a) plotted against
the Tevatron squeeze.
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Figure 37 Tracking using pulsed PLL up the ramp on the cen-
tral orbit with uncoalesced beam. Picture (a) is the central orbit
waterfall spectrum of store number 3624 without the PLL going up
the ramp. Superimposed on this is the PLL locked frequency data
from another store. Finally, the bottom picture is the same PLL tune
data plotted against the Tevatron energy ramp.
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Figure 38 Tracking using pulsed PLL through the squeeze on
the central orbit with uncoalesced beam. Picture (a) is the cen-
tral orbit waterfall spectrum of store number 3624 without the PLL
going through the squeeze. Superimposed on this is the PLL locked
frequency data data from another store. Finally, the bottom picture
is the same PLL tune data plotted against the Tevatron squeeze.

72



Figure 39 Tracking using continuous PLL up the ramp on the
proton helix with one bunch of coalesced protons. Picture (a) is
the proton helix waterfall spectrum of store number 3699 without the
PLL going up the ramp. Superimposed on this is the PLL locked
frequency from another store. Finally, the bottom picture is the same
PLL tune data plotted against the Tevatron energy ramp.
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Figure 40 Tracking using continuous PLL through the squeeze
on the proton helix with one bunch of coalesced protons. Picture (a)
is the proton helix waterfall spectrum of store number 3699 without
the PLL going through the squeeze. Superimposed on this is the PLL
locked frequency from another store. Finally, the bottom picture is
the same PLL tune data plotted against the Tevatron squeeze.
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Figure 41 Tracking using pulsed PLL up the ramp on the proton
helix with one bunch of coalesced protons. Picture (a) is the proton
helix waterfall spectrum of store number 3699 without the PLL going
up the ramp. Superimposed on this is the PLL locked frequency data
from another store. Finally, the bottom picture is the same PLL tune
data plotted against the Tevatron energy ramp.
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Figure 42 Tracking using pulsed PLL through the squeeze on
the proton helix with one bunch of coalesced protons. Picture (a)
is the proton helix waterfall spectrum of store number 3699 without
the PLL going through the squeeze. Superimposed on this is the PLL
locked frequency data from another store. Finally, the bottom picture
is the same PLL tune data plotted against the Tevatron squeeze.
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EMITTANCE GROWTH

The emittance growth of 1 bunch of coalesced protons on the proton helix is measured

using flying wires at 150 GeV. After injecting this bunch into the Tevatron, the horizontal

emittance is measured to be at 8.1π mm·mrad. After 10 minutes, the horizontal emittance

grew to 9.86π mm·mrad without any kicking from the PLL. We then turn the PLL on with

the kicker set to 180 mW for 10 minutes. The horizontal emittance after 10 minutes is

10.6π mm·mrad. This means that the emittance has grown by 0.74π mm·mrad which is

smaller than the first 10 minutes without the kicker. See Figure 43. Although we have not

proved that there is no emittance growth due to the PLL kicker, we have at least shown

that the emittance does not grow by a factor of 2 during this time. The vertical emittance

did not grow appreciably during the 10 minutes of kicking. Table 3 summarizes the results.

Table 3. Emittance Growth

εx start εx stop time (min) Comments

8.10 9.86 10 kicker off
9.86 10.6 10 kicker on and PLL locked
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Figure 43 The emittance of one coalesced bunch on the helix before
being kicked continuously by the PLL is shown in (a). The emittance
after 10 minutes of continuously kicked by the PLL is shown in (b).
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Epilogue
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PLANS FOR 2005

The Tevatron is shutdown from August 2004 to November 2004. Tune tracker studies

will probably resume in January 2005 at the earliest. The plan is to

(i) Implement kicker feedback.

(ii) Implement phase compensation.

(iii) Test out multitone PLL.

(iv) Make a copy of the tune tracker for the vertical plane.

(v) Start work on chromaticity measurement which critically depends on the success

of the PLL.

CONCLUSION

After less than a year of work, the tune tracker system at Fermilab is in good shape

to make more progress next year. We have found that the continuous and pulsed methods

of excitation do work up the ramp and squeeze. Although there is no compelling reason

to use pulsed excitation up the ramp for one plane only, there may be an argument for

using it when we have both planes working if coupling turns out to be a problem. We

can also think of other scenarios where we can use the pulsed PLL to find the centre of

the betatron tune and then use continuous PLL to track it. However, these speculations

of how to use both methods will have to wait for the reality of beam next year. From our

successful experience up to this point, we believe that the concepts described in this paper

can also be used at the LHC.
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APPENDIX I

The goal for building a fake beam frequency response is to relieve us from always asking

for machine studies time in order to test out the PLL. We wanted to have a circuit that is

simple and has the capability of changing its resonance frequency quickly and easily. This

request was quickly fulfilled by a circuit built by D. Peterson called a commutating filter

which is a non linear circuit whose frequency response is a comb filter like structure. The

positions of the tooths of the comb in frequency space are controlled by an external clock

and thus by changing the frequency of this clock, we can easily change where the teeth

are. In this circuit, they are at multiples of (clock frequency)/8. The use of this filter

is immediately obvious: the lowest frequency tooth in the comb filter can be thought of

as the betatron tune. The position of the tooth can be easily changed by changing the

clock frequency, thus mimicking frequency changes in the betatron tune. At this time, the

fake beam response circuit is limited to representing a betatron tune with zero chromaticity,

i.e. no synchrotron lines. An upgraded design is now being built by J. Ning and C.Y. Tan

which will be able to mimic synchrotron lines and chromaticity. (Estimated completion

Spring 2005).

In the next two sections, we will calculate the frequency response and the bandwidth

of the commutating filter and also show the measured frequency response of the actual

circuit.

Commutating Filter

The commutating filter is shown in Figure 44. It consists of a resistor R and N

capacitors C. Each one of these capacitors is switched into the circuit with a period Ts

and is left in the circuit for Ts/N . See Figure 45. This implies that the switch frequency
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Figure 44 The commutating filter consists of a resistor R and N

capacitors C numbered from 0, 1, . . . , N − 1. The switch S rotates
at frequency ωs and connects each capacitor C for a time period of
Ts/N .

ωs = 2πN/Ts.

Let us look at one of the circuits with R and the nth capacitor C. See Figure 46. We

will calculate vo when vi = ṽie
iΩt.† The differential equation which relates vo to vi is

IR+
Q

C
= vi

⇒ Q̇R+
Q

C
= vi





(82)

where I is the current in the circuit, Q the charge stored in the capacitor. The initial

condition Q(tk) = Qk.

(82) is easily solved for Q and yields

Q(t) =

(
Qk −

ṽiCe
iΩtk

1 + iΩRC

)
etk/RCe−t/RC +

ṽiCe
iΩt

1 + iΩRC
(83)

† The choice of eiΩt rather than e−iΩt is because we will be using the engineer’s definition
of the Fourier transform rather than the physicist’s definition.
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Figure 45 Each capacitor C is connected to R for a time period
Ts/N and the time between each “on” period is Ts.

Next, let us look at how the charge Q on the capacitor evolves as a function of time t.

Looking at Figure 46, let us assume that at t = nTs/N , the initial charge is chosen so that

Q
(
k = 0

)
=
Cṽie

i(n+1)ΩTs/N

1 + iΩRC
at t = (n+ 1)Ts/N . (84)

We can do this because we will be looking at the asymptotic value of Q. Continuing on,

for k = 1, the initial charge is given by Q
(
k = 0

)
and so at t = Ts + (n+ 1)Ts/N

Q
(
k = 1

)
=

Cṽi
1 + iΩRC

[(
ei(n+1)ΩTs/N − 1

)
e−Ts/NRC + eiΩTs(1+n+1

N )
]

(85)

And in general at t = kTs + (n+ 1)Ts/N

Q(k) =
Cṽi

1 + iΩRC


ei(n+1)ΩTs/N

k∑

p=0
e−(k−p)Ts/NRCeipΩTs−

e−Ts/NRC
k−1∑

p=0
e−pTs/NRC








(86)
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Figure 46 Looking at the nth RC circuit, the switch is turned on
every kTs + nTs/N and stays on for Ts/N .

For large k, we can use the formula for the infinite geometric sum

Q(k, n) =
Cṽie

i(k+n+1
N )ΩTs

(
1 + iΩRC

)(
1− e−Ts/NRCe−iΩTs

) − Cṽie
−Ts/NRC

(
1 + iΩRC

)(
1− e−Ts/NRC

)

≡ Q(Ω)ei(k+n+1
N )ΩTs + DC offset independent of k and n





(87)

where we have used
∑k
p=0 e

−(k−p)Ts/NRCeipΩTs =
∑k
p=0 e

−pTs/NRCei(k−p)ΩTs . (87) tells

us that after a long time, for a fixed Ω, the charge on the right edge of the “on” interval

of the nth circuit is dependent on the sinusoidal term. The DC term is independent of k

and n and is the same in each “on” interval. Since the DC term is constant, we will ignore

it for the rest of the analysis.

Now, let us put in all the capacitors and make the approximation that the charge in

each “on” interval is constant and is given by (87). See Figure 47. Note that in this
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approximation Q(k, n) is the charge in the “on” interval numbered (k, n+ 1) and the first

“on” interval has zero charge. We do this so that our result is causal.

Figure 47 In this example we have a sinusoidal input Vi and at
the output using our approximation — we have boxes which also look
sinusoidal.

We are going to renumber the counters (k, n) in (87) to `, i.e.

Q(Ω)ei(k+n+1
N )ΩTs → Q(Ω)ei(`+1)ΩTs/N

{
k = 0, . . . ,∞ and n = 0, . . . , N − 1

` = 0, . . . ,∞
(88)

Therefore, the output Vo is

Vo(t) = Ṽi(Ω)
∞∑

`=0

[
u

(
t− (`+ 1)Ts

N

)
− u

(
t− (`+ 2)Ts

N

)]
ei(`+1)ΩTs/N (89)

where Vi(Ω) = Q(Ω)/C and u(t) is the step function.
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We need the component of Vo(t) at Ω in order to calculate the frequency response of

the commutating filter. The Fourier transform is

Ṽo(Ω) = lim
M→∞

Ṽi(Ω)
M∑

`=0

ei(`+1)ΩTs/N×
∫ ∞
−∞

dt

[
u

(
t− (`+ 1)Ts

N

)
− u

(
t− (`+ 2)Ts

N

)]
e−iΩt

= lim
M→∞

iṼi(Ω)
Ω

M∑

`=0

(
e−iΩTs/N − 1

)

= Ṽi(Ω)e−iΩTs/2N
sin
(

ΩTs
2N

)

Ω
2

× lim
M→∞

(M + 1)




(90)

The infinite sum comes from evaluating Ṽo at Ω. This should be compared to calculating

the Fourier transform of eiΩt which gives us a Dirac delta function δ(ω − Ω). And when

evaluated at ω = Ω gives infinity.

The Fourier transform of the excitation at Ω which goes from t = 0 to t = (M+1)Ts/N

with M →∞ is

Ṽi(Ω) = lim
M→∞
ω→Ω

ṽi

∫ ∞
−∞

dt

[
u(t)− u

(
t− (M + 1)Ts

N

)]
ei(Ω−ω)t

= lim
M→∞

ṽi(M + 1)Ts/N
(91)

which means that the frequency response is easily derived from (90) and (91) and is inde-

pendent of M

H(Ω) =
Ṽo(Ω)
Ṽi(Ω)

=
e−iΩTs/2N
1 + iΩRC

× 1
1− e−Ts/NRCe−iΩTs ×

sin
(

ΩTs
2N

)

ΩTs
2N

= phase shift× resonance× rectangular sample

(92)

Examining the terms in (92) gives us a phase shift which depends on Ω, R, and C. The

sinc term comes from the approximation that the voltage is constant in each “on” interval.

The resonance term is more interesting: it is maximum when e−iΩTs is completely real
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Figure 48 The frequency response H(Ω) of the commutating filter.
We have added 90◦ to the phase so that we do not have the wrap
around effect at ±180◦.

and positive, this means that

Ts = N

(
2π
ωs

)

.˙. ΩTs = Ω×N
(

2π
ωs

)
= 2kπ k ∈ Z





(93)

so that the peaks of the resonance Ωres are at

Ωres = k
(ωs
N

)
k ∈ Z (94)

For example if the sampling frequency is 200 kHz and N = 8, then fres = 25, 50, . . . kHz.

The plot of the frequency response H(Ω) is shown in Figure 48 for the special case of

N = 8, R = 10 kΩ, C = 0.1 µF, ωs = 2π × 200 × 103 s−1. The plot of the frequency

response of an actual commutating filter is shown in Figure 49.
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Figure 49 The frequency response of the commutating filter mea-
sured with a VSA. The phase is also shifted by 90◦.

Bandwidth

The bandwidth of the resonances can be calculated from just the resonance term. The

power at resonance is

Ṽ 2
res =

1
1− e−Ts/NRC (95)

We need to solve for Ω at V 2
2 /2 i.e.

1
1− e−Ts/NRCe−iΩTs × complex conjugate =

1

2
(

1− e−Ts/NRC
) (96)

To make things simple, we will assume that Ts � NRC. For example for N = 8, R =

10 kΩ, C = 0.1 µF, ωs = 2π×200×103 s−1 which implies that Ts = 40 µs and NRC = 8 ms

which satisfies the assumption.

Inverting and expanding (96) we find that

cos ΩTs = 1− 1
2

(
Ts

NRC

)2
+ O

(
Ts

NRC

)3
(97)

90



where we have made the approximation that e−Ts/NRC ≈ 1 − Ts/NRC. Solving for Ω

from (97)

Ω =
1
Ts

cos−1

[
1− 1

2

(
Ts

NRC

)2
]

≈ 1
NRC

+ kΩres k ∈ Z

≡ ∆Ω1/2 + kΩres k ∈ Z

(98)

The bandwidth of each resonance is given by 2∆Ω1/2 and thus

∆Ωbw =
2

NRC
⇒ fbw =

∆Ωbw
2π

=
1

πNRC
(99)
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APPENDIX II

Table 4. Hilbert Transformer Filter Coefficients

i coefficient[i] i coefficient[i]

0 0.0124427 50 −0.0124427

1 0.0000000 49 0.0000000

2 0.00900775 48 −0.00900775

3 0.0000000 47 0.0000000

4 0.0122483 46 −0.0122483

5 0.0000000 45 0.0000000

6 0.0162677 44 −0.0162677

7 0.0000000 43 0.0000000

8 0.0212626 42 −0.0212626

9 0.0000000 41 0.0000000

10 0.0275401 40 −0.0275401

11 0.0000000 39 0.0000000

12 0.0355514 38 −0.0355514

13 0.0000000 37 0.0000000

14 0.0461607 36 −0.0461607

15 0.0000000 35 0.0000000

16 0.0608791 34 −0.0608791

17 0.0000000 33 0.0000000

18 0.0831083 32 −0.0831083

19 0.0000000 31 0.0000000

20 0.121635 30 −0.121635

21 0.0000000 29 0.0000000

22 0.208752 28 −0.208752

23 0.0000000 27 0.0000000

24 0.635464 26 −0.635464

25 0.0000000
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