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1  INTRODUCTION

Subsurface contamination in the form of dense non-aqueous phase liquids (DNAPL) poses a significant, yet
unresolved, remediation problem.  DNAPL such as the chlorinated organic solvents trichloroethene,
tetrachlorethene, and carbon tetrachloride have been used for many years as degreasers in many industrial
applications across the nation.  DNAPL spills are a common problem at Superfund sites and other sites managed by
the Department Of Energy, Department of Defense, and private entities.

These toxic compounds have a low solubility in water and tend to travel through the subsurface as a separate
organic phase forming a long-term source of dissolved phase groundwater contamination. Dissipation of such a
source by dissolution may require hundreds of years, so remediation by either removal or containment of the DNAPL
is usually necessary.  Recovery of DNAPL from the subsurface is no easy task because (1) delineating the spatial
extent of residual DNAPL contamination can be arduous, and (2) existing technologies have a difficult time
removing immobilized (residual) and pooled DNAPL.  Of these two issues, recovery technologies have received the
most attention.  However, application of these technologies is impossible without information on the location of the
DNAPL.  Since the cost of remediation is dependent on the volume of soil that has to be treated, there is a clear
incentive to accurately locate the DNAPL.

While many of the techniques needed to delineate free phase and residual DNAPL have already been developed,
we know of no approach that combines these techniques in an organized fashion to optimize the process of
delineating a DNAPL spill.  This paper discusses an approach to delineating DNAPL spills that combines
probabilistic modeling of geological features with percolation models of DNAPL flow and a decision theoretic
approach to optimizing the location of sampling wells.

In our approach, multiple realizations of DNAPL plume location are provided via Monte Carlo simulation using
an invasion percolation model applicable to mesoscale geological sedimentary units.  These realizations capture the
physics of DNAPL movement through the geologic features controlling DNAPL migration.  In this way, uncertainty
about the distribution of geologic features and disposal history at the site can be propagated through the modeling to
reflect the degree of uncertainty in DNAPL location.

The results of the simulation are summarized by a probability map, which estimates the probability of DNAPL
being present at each point on the site.  Without further information, the only prudent course of action would be to
set up a remediation scheme to cover all points for which the map indicates that there is a non-negligible probability
of DNAPL.  However, it is possible that additional sampling could reduce the total cost of characterization and
remediation by decreasing the volume of soil that must be treated.

The probability map can be used to select potential locations for sampling points.  By conditioning the
simulation results on the presence or absence of residual or free phase DNAPL at these locations, we construct a
decision analysis model which allows us to compute the expected reduction in the total cost of sampling and
remediation that could be obtained by sampling at each location.  We use this model to select the location of the next
sampling point.  After the data has been collected, we use the data to condition the simulations and repeat the
process.  If no new sampling points have positive value, then we stop the sampling process.

The importance of our approach is twofold.  First, it may be able to improve the efficiency of the process of
delineating DNAPL that acts as a long term source of dissolved phase DNAPL contamination.  Second, our approach
provides a stopping rule.  When the decision analysis model indicates that there are no more economically viable
sampling locations, we stop sampling and move on to remediation.

The remainder of this paper is organized as follows: In section 2, we discuss previous work on simulations of
geology and DNAPL flow, optimal sampling point location, and hydrogeological decision analysis.  In section 3, we
describe our methodology and a sample problem.  In section 4, we give the results from our sample problem.  Our
conclusions are presented in section 5.
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2  PREVIOUS RESEARCH

Our approach combines simulation of geological properties of a site with simulation of DNAPL flow and the
optimization of sampling point locations.  Each of these topics has been investigated by other researchers.  In this
section we review previous research on the simulation of geological properties, DNAPL flow, and the optimal
location of sampling points.

2.1  Simulating Geology

Numerous methods can be used to simulate the distribution of geological properties in three-dimensional space.
These include geostatistical, geological process-based, geometrical, regionalization, fractal, and other techniques.

Geostatistical methods dominate current thinking on how to simulate the spatial distribution of geological
properties. These approaches attempt to describe the bulk behavior of flow over large temporal and spatial scales
while accounting for the influence of small-scale perturbations (Thompson and Gelhar, 1990; Dagan, 1982; Gelhar
and Axness, 1983; Neuman et al., 1987; Sudicky, 1986).  These approaches are computationally tractable and have
become highly refined.  A major advantage of these techniques is that it is easy to condition the simulation on
observed data.  However, they generally treat geological systems as a continuum with stationary or near-stationary
properties.  In many ways this ignores or precludes consideration of the local scale discrete structure to which
DNAPL migration is sensitive.

Process-based simulation techniques are an attempt to reproduce the essential physical and chemical
mechanisms associated with the development of geologic units.  In the case of sedimentary systems, these processes
involve sediment erosion, transport, and deposition. These approaches can be applied from centimeters to hundreds
of kilometers and have primarily been used to investigate petroleum recovery problems (Cross and Harbaugh, 1989;
Tetzlaff, 1989; Koltermann and Gorelock, 1992).  They produce relatively realistic distributions of sediments, but
generally do not focus on discrete structures at the scale of interest for DNAPL migration. In addition, they require
large computational capabilities.

Geometric models do not directly track processes, but instead focus on the resulting geometric arrangement of
materials. This reduces the computational burden, but relies on empirical or statistical descriptions of the spatial
geometry and arrangement of materials. While early examples of this approach precede process modeling (Bridge
and Leeder, 1979; Allen, 1978), this approach has received relatively little attention until recently (Scheibe and
Freyberg, 1992; Webb, 1994).

Other mechanisms exist, such as regionalization (Bohling et al., 1990; Harff and Davis, 1990; Harff et al.,
1990), that depend on multivariate statistical methods for mapping boundaries within large data sets.  While these are
explicitly discrete, they require large data sets from the field and are not explicitly used as a method of simulating
multiple realizations of geology. Fractal simulation approaches (Turcotte, 1986; Wheatcraft and Tyler, 1988) are
similar to stochastic simulation in applying a mathematical construct to the total field of geological properties. So far
they have met with little success, but are still being pursued (Ghilardi et al., 1993).

2.2  Simulating DNAPL Migration

A critical component of our approach is the modeling of DNAPL movement to its final locations within a given
geologic realization. In this paper we consider the use of a percolation type model for macro scale DNAPL
migration.  Percolation models are considerably faster than standard two or three phase flow codes and therefore
allow incorporation of more geologic detail.  We expect that detail with respect to textural changes within and across
geologic units will be vital in the prediction of non-wetting, dense fluid migration.

Under many conditions, DNAPL movement through the saturated zone will be controlled by gravitational and
capillary forces.  This presumes that flows are sufficiently slow that viscous forces are small with respect to gravity
and capillarity.  For such conditions, laboratory studies suggest that for non-wetting DNAPL, pore scale behavior
leads to capillary fingering in horizontal homogeneous micromodels (Lenormand and Zarcone, 1985) and an
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interplay of gravity fingering and capillary fingering in non-horizontal systems (Wilson et al., 1990).  For both of
these situations, forms of percolation theory can be used to model the immiscible displacement process at the pore
scale.

Standard percolation (SP) was introduced by Broadbent and Hammersly (1957). While this theory has proven to
be quite useful for modeling phase changes and critical phenomena, it is of limited use for modeling incompressible,
two-phase, immiscible fluid displacements in porous networks (e.g., porous media).  To more adequately represent
fluid-fluid displacements in porous networks, Wilkenson and Willemsen (1983) introduced invasion percolation (IP),
which incorporates phase accessibility rules to assure that connectivity within phases is considered in the pore filling
criteria. IP has been applied to immiscible flow in porous media by a number of researchers (Ferrand and Celia,
1992), and has been shown to effectively model displacements in two-dimensional pore networks in micromodels
where a non-wetting fluid invades a wetting fluid (Wilkinson and Willemsen, 1983).

2.3  Selecting Sample Locations

Boreholes are a primary tool in the delineation of DNAPL spills. It is critical to our approach that we
intelligently select the locations of these sampling points.

Early work concerns the optimal location of boreholes for the determination of hydrogeological parameters such
as transmissivity.  In this approach, kriging and other geostatistical techniques are used to obtain estimates of the
unknown parameter at points between the sampling points.  Optimization techniques are then used to select well
locations that minimize the uncertainty in the kriged estimates of the unknown parameter.  Papers in this line of
research include Olea, 1984; Hughes and Lettenmaier, 1981; Bogárdi et al., 1985; Spruill and Candela, 1990;
McBratney et al., 1981; McBratney and Webster, 1981; Jones et al., 1979; Carrera et al., 1984; and Christakos and
Killam, 1993.

In many cases we are not so much interested in hydrogeological parameters as in the resulting groundwater flow
and transport of contaminants.  A second line of research has developed in which geostatistical models of
hydrogeological parameters are used in conjunction with differential equation models of flow and transport. Well
locations are selected to minimize a measure of the uncertainty in a derived quantity, such as the head or
concentration of a contaminant.  For example, Wagner (1995) minimizes the trace of the covariance matrix of the
parameters being estimated. Other research in this line includes Andricevic and Foufoula-Georgiou, 1991; Loaiciga,
1989; McKinney and Loucks, 1992; and Tuciarelli and Pinder, 1991.

We often need more information about the distribution of the contaminant concentration than just the mean and
variance.  For example, in designing a remediation scheme for a contaminant plume, we need to delineate the region
in which there is any significant probability of the concentration exceeding a safe level. In a third approach, Monte
Carlo simulations of the transmissivity field are used with flow and transport models to obtain information about the
distribution of the head or contaminant concentration.  This approach is very computationally intensive because of
the large number of simulation runs required.  For example, Meyer and Brill (1988) describe a procedure for locating
wells in a groundwater monitoring network to optimize the probability of detecting a contaminant plume. Monte
Carlo simulations are used to determine the probability of the plume being present at a number of fixed locations;
then a subset of the locations that maximizes the probability of detecting the plume is selected.  This model was
expanded to include a second objective of minimizing the area of a plume at the time of detection by Cieniawski et
al. (1995). Hudak and Loaiciga (1992) describe a procedure for selecting well locations that maximize the coverage
of a contaminant plume.

Decision analysis techniques can also be used to optimize the location of sampling points.  A recent collection of
papers discusses the application of decision analysis techniques to a variety of hydrogeological problems (Freeze et
al., 1992).  James and Freeze (1993) used decision analysis techniques in predicting aquitard continuity. James and
Gorelick (1994) have used decision analysis techniques to select sampling locations to delineate a dissolved phase
contaminant plume. In this approach, Monte Carlo simulations of the contaminant plume are used to estimate
probabilities of contamination at various locations and the maximum likely width of the contaminant plume.  Data
worth analysis is performed by estimating the expected reduction in the total cost of remediation and sampling that
could be obtained by gathering additional samples.  When the expected reduction in total cost is negative,
characterization stops and remediation begins.  A similar approach was used to delineate a gas phase plume by
Peterson et al. (1993).
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3.  METHODOLOGY

Figure 1 gives an overview of our approach to delineating a DNAPL spill.  The process is essentially a loop in
which we start by simulating the DNAPL plume and condition the simulations to match previous observations.  We
then use the simulation results to construct a probability map of the DNAPL plume.  Based on this probability map,
we construct a decision analysis model which is used to determine which (if any) of the possible sampling points has
a positive expected value in reducing the total cost of sampling and remediation.  If additional data is required, we
gather the data and use it to condition the simulations in the next iteration of the loop. If none of the potential
sampling locations have positive expected value, we stop sampling and begin the remediation process.

Generate realizations of the

to match observations.

of the DNAPL spill.  

Select potential well locations

and create the decision tree.

Evaluate the decision tree.  

Use the decision tree solution

to pick the next well location.

Drill the well, collect data, and

Yes

No

Generate realizations of the

Post condition the results of

the Monte Carlo simulations

Develop an initial conceptual

distributions.

geology of the site

DNAPL source area.

update the model.  

End Characterization.  

More  investigation
worthwhile?

model and input parameter

Develop probability maps

Figure 1:  Flowchart for the Decision Making Process.



The process begins with an initial model based on any observations that may have been made during initial
evaluation of the site.  In order to begin the simulation phase, we need an initial conceptual model of the geology of
the site, information about the type of DNAPL that was spilled, locations where the DNAPL was spilled, and the
amounts of DNAPL that were spilled.  Since it is unlikely that we will have the exact information, we will normally
treat these parameters as random inputs to the simulation models.  The distributions of these random inputs will, in
most cases, have to be determined by subjective expert judgment.

Due to the high level of sensitivity of DNAPL migration to geological texture, any simulation approach used to
trace DNAPL movement must accommodate discrete geological structure in a way that is relatively realistic.  While
there are numerous mechanisms for estimating the spatial arrangement of properties, few focus on accurately
representing the curvilinear geometry that exists in most geological systems.  Geometrical models explicitly
accommodate these discrete structures. Consequently, it was decided that a geometrically-based model would be
preferable for the first implementation of our approach. For this initial attempt to integrate our work, a computer
code, BCS-3D (Webb, 1994), was used to produce estimates of the three-dimensional internal geometry of sediment
units for braided-stream deposits.

BCS-3D uses a random-walk approach, which is a modification of previous attempts to simulate braided-stream
geomorphic patterns (Howard et al., 1970; Krumbein and Orme, 1972; Rachocki, 1981; Webb, 1994), to describe
the formation of braided-channel networks. The concept of hydraulic geometry (Church, 1972) is incorporated to
translate a two-dimensional topological network to a three-dimensional topographic surface.  A series of these
surfaces is stacked vertically with some offset to produce a three-dimensional description of internal sedimentary
architecture.  Individual elements in the architecture are associated with specific sediment units based on a
description of flow energy in the form of the Froude number (Harms et al., 1982).  The simulations are derived from
runs calibrated to a composite set of measurements from two field studies in systems with similar physical
characteristics; the Ohau River in New Zealand (Mosley, 1982), and the Squamish River in British Columbia,
Canada (Brierley, 1989).  A more complete description of model development and calibration is given in Webb
(1994).

We have chosen to use percolation models of DNAPL flow in this study for a variety of reasons; primarily
because we expect the percolation model to more accurately reflect the physics of DNAPL flow at scales of interest
than conventional multiphase flow codes (Glass et al., 1995).  This allows us to incorporate more geological detail
into our models.  Another important reason is the massive computational effort required to use multiphase flow
codes in a Monte Carlo framework.

In analyzing the results of these simulations, we have chosen to work with two-dimensional, "top view"
projections of the three-dimensional simulations.

For the example problem discussed in this paper, in which the aquifer is shallow and of constant depth, this
simplification of the problem is appropriate.  In other situations, this simplification of the problem might not be
appropriate.  Although we could theoretically do all of our analysis in three full dimensions, the storage requirements
would be completely impractical.  For example, it would require approximately 15 gigabytes of storage to store the
results of the 136,000 simulations of our example problem.

Once we have generated a large number of simulations of the DNAPL spill, we can use the simulation results to
construct a "probability map," which shows our estimate of the probability that DNAPL is present in different parts
of the site.  For each point, we estimate the probability as the fraction of simulation runs in which the DNAPL
reached that point.  Similar probability maps have been used by Rautman and Istok (1996) and Istok and Rautman
(1996).

In considering a probability map, it is important to remember that the probability map shows estimates of the
probability of free phase or residual DNAPL at each location.  Depending on the number of realizations used, there
can be significant statistical uncertainty in these estimates.  In particular, estimates of the 0% probability contour are
extremely sensitive to the number of simulation replications used in computing the probability map.  As we add more
replications of the simulation, the 0% contour will steadily expand.  For this reason, we have chosen not to use the
0% contour in our decision making.  Instead, we select a fixed low probability, such as 0.5%, and use it in our



decision analysis.  Reliable estimates of such a contour can be obtained with a limited number of simulation
replications.

Information from sampling wells can be incorporated into the probability map in a straightforward way.  We
condition the probability map by only considering those simulation replications which match all available
observations of the DNAPL spill.  In this paper, we assume that it is possible to determine precisely whether or not
residual DNAPL is present at a given location.  In conditioning simulations, we only take into account such DNAPL
hits and misses.  This simple scheme suffers from one major problem.  As we gather more data, the number of
replications that satisfy all of the conditions is sharply reduced.  Thus, we may have to start with hundreds of
thousands of replications of the simulation in order to obtain as many as one thousand replications that match a set of
observations.  More efficient approaches have been developed to condition some types of geostatistical simulations.
However, to the best of our knowledge, no techniques have been developed to condition simulations of DNAPL flow
on DNAPL hits and misses.

It would also be possible to condition the simulations on other observations, such as geological features in core
samples.  Since the BCS-3D model is incapable of conditional simulation, we have not explored this possibility.

We have assumed that the objective of a sampling scheme is to delineate the free phase and residual DNAPL
with an acceptable degree of precision and in such a way as to minimize the total costs of delineation and
remediation.  In order to construct an optimal sampling scheme, we must have adequate models of the costs of
sampling and the costs of remediation.  In particular, these models should be able to forecast the cost of drilling
sampling wells and the cost of remediation based on a probability map.  A more sophisticated model would also
incorporate human health risk and regulatory compliance.  Clearly, these models will depend heavily on the
particular characteristics of an individual site.  However, we feel that it should be possible to construct adequate
models of this type.

In solving our example problem, we have adopted a simple cost model.  We chose the rule of remediating all
areas of the probability map inside the 0.5% contour.  The 0.5% contour was chosen as a surrogate for more
sophisticated health risk or regularity compliance rules. Remediation costs are estimated at $1,000 per square meter,
and monitoring wells, installed and sampled,  cost $20,000 each.

In determining exactly where to gather sample information, many possible strategies exist.  For example, we
could simply ask a human expert to evaluate the probability map and determine where to sample next. Another very
simple strategy is to set up a grid over the entire site and drill at each grid point.

In this paper, we consider a strategy based on decision analysis techniques (Clemen, 1991; Freeze et al., 1992;
James and Gorelock, 1994).  In determining the value of sampling at a location X, we start by using the probability
map to estimate the probability of encountering DNAPL at location X.  We next condition on a "hit" at location X
and compute the resulting probability map.  We also condition on a "miss" at location X.  In either case, the
additional information is likely to result in a conditional probability map with a reduced cost of remediation.
Mathematically,

E[Ct]|sample at X]=Cs+P(hit)E[Cr|hit at X]+P(miss)E[Cr|miss at X]

Here Ct is total cost, Cs is the cost of sampling, and Cr is the cost of remediation.  For our example problem,
Cr=(Area with P(DNAPL) > 0.5%)($1,000 per square meter).

We need to decide whether the expected reduction in remediation cost outweighs the cost of gathering the
additional data.  If E[Ct]|sample at X] is less than E[Ct]|no sample], then on average, it will be worthwhile to sample
at location X.  This difference in expected costs is the expected value of sample information (EVSI) (Clemen, 1991).
When several sampling locations have positive EVSI, we select the location with the largest positive EVSI. When we
reach a point where none of the potential sampling locations has positive EVSI, we should stop delineating the free
phase and residual DNAPL and begin remediation.



The selection of potential sampling locations is an important issue. We could compute the EVSI at all possible
sampling locations, or only at a more manageable subset of potential sampling locations.  The process of computing
the expected value of sample information at a point requires the computation of a conditional probability map, which
is done by selecting all simulation realizations that match the condition at the proposed sampling location.  This is
somewhat time consuming.  For the computational results reported in this paper, we have limited our sampling
locations to 361 points on a five meter grid spacing.

4.  RESULTS

In order to demonstrate the decision-making process described in the previous section, we performed a
simulation experiment.  This experiment is based on a hypothetical spill in a shallow aquifer.  Our hypothetical
DNAPL spill consists of between perchloroethen (PCE), an organic solvent.  The spill volume is uniformly
distributed between 3,785 liters (1,000 gallons) and 11,355 liters (3,000 gallons). The spill location is at a random
point uniformly distributed with a twenty meter by twenty meter square at the center of the site.  The site has a 4.5-
meter-thick aquifer with geology that is assumed to consist of braided-stream deposits.  The deposits are oriented
primarily in the north-south direction.  The site has a negligible vadose zone.

The geology and DNAPL flow simulations were performed on a 100 by 100 by 90 grid, in which each grid cell
represented a 1 meter (horizontal) by 1 meter (horizontal) by 5 cm (vertical) section of the site.

We first generated two realizations of the spill to be used as example "target spills."  A total of  136,458
simulation replications were generated in the time available, each consisting of a unique geology and DNAPL spill.
For each target spill, we used the procedure described in the previous section to delineate the DNAPL. We also
asked a human expert to delineate the same spill.

4.1  The First Example

Figure 2 shows the geology for our first example.  Figure 3 shows the hypothetical DNAPL spill. Figure 4 shows
a two-dimensional "overhead" view of the hypothetical DNAPL spill.

We first used the procedure described in section 3 to delineate the spill.  Figure 5 shows the initial probability map.
Figure 6 shows the probability map after 29 wells.

This probability map is based on 11,442 realizations that matched the observations at each of the 29 sampling
locations.

The procedure terminated after 29 wells with a 0.5% probability contour that covered 1,733 square meters.  The
total cost of sampling wells and the remediation scheme comes to $2.3 million.  The actual area of the hypothetical
spill was 268 square meters.  Figure 7 shows the hypothetical spill and the 0.5% contour. Note that hypothetical spill
is completely contained within the 0.5% contour.

We next asked a human expert to delineate the spill.  For each well location selected by the expert, the expert
was given information on whether or not there was DNAPL present and at what depth the DNAPL was found.
Figure 8 shows the results of the human expert's work.  The solid lines enclose the area that the expert designated for
remediation.  The expert used a total of 39 wells, and designated an area of 588 square meters for remediation.  The
total cost for sampling and remediation came to $1.4 million.  Figure 9 shows the hypothetical DNAPL spill and the
area delineated by the human expert.  Unfortunately, the human expert was overly confidentthe hypothetical spill
extends beyond this boundary at several points.

4.2  The Second Example

Figure 10 shows the geology for our second example.  Figure 11 shows the hypo-thetical DNAPL spill. Figure
12 shows a two-dimensional "overhead" view of the hypothetical DNAPL spill.
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Figure 2:  Example 1, Geology.

Figure 3:  Example 1, DNAPL spill.
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Figure 10:  Example 2, Geology.

Figure 11:  Example 2, DNAPL spill.
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Again, we used the procedure described in section 3 to delineate the spill.  Figure 13 shows the initial
probability map.  Figure 14 shows the probability map after 25 wells.  Unfortunately, after 25 wells, our initial pool
of over 130,000 realizations had been reduced to only 64 realizations.  Thus, we had to terminate the procedure early
because of the lack of suitable simulation realizations.  After 25 wells, the 0.5% probability contour covered 2,197
square meters.  The total cost of sampling wells and the remediation scheme comes to $2.7 million.  The actual area
of the hypothetical spill was 202 square meters.  Figure 15 shows the hypothetical spill and the 0.5% contour.  Note
that hypothetical spill is completely contained within the 0.5% contour.

We next asked our human expert to delineate the spill.  For each well location selected by the expert, the expert was
given information on whether or not there was DNAPL present and at what depth the DNAPL was found.  For this
example, the human expert was also given conditional probability maps after each well.  Figure 16 shows the results
of the human expert's work.  The solid lines enclose the area that the expert designated for remediation.  The expert
used a total of 25 wells, and designated an area of 807 square meters for remediation.  The total cost of sampling and
remediation came to $1.3 million.  Figure 18 shows the hypothetical DNAPL spill and the area delineated by the
expert. This time, the hypothetical spill was entirely contained within the area designated for remediation by the
expert.  However, as the probability map in Figure 17 shows, there were other simulation realizations that matched
the human experts observations and went beyond the area designated for remediation.  In fact, the 0.5% contour on
this map includes an area of 3,109 square meters.  Thus, if the human expert had used the same 0.5% contour to
designate the area to be remediated, the expert's solution would have cost $3.6 million.
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Figure 15:  Example 2, Actual DNAPL spill in relation to the p=0.5% contour.
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5  DISCUSSION AND CONCLUSIONS

This paper describes an iterative procedure for delineating a DNAPL spill that combines information from
sampling wells and from simulations of a site's geology with a percolation model of DNAPL flow.  We have
implemented this procedure on a Cray T-3D and used it to delineate a hypothetical DNAPL spill.

The results of this computational experiment indicate that the decision-analysis approach can be used to reduce
the total cost of sampling and remediation for DNAPL spills.  Our results are similar to those of James and Gorelick
(1994) in that the decision analysis strategy is effective in reducing total cost.  However, we have found that our
problem is more difficult than the problem studied by James and Gorelick.  It typically takes more than 25 sampling
wells for either a human expert or our automated approach to delineate a hypothetical DNAPL spill, whereas James
and Gorelick (1994) were able to delineate their dissolved phase contaminant plume with as few as six wells.  This is
partly because the DNAPL flow studied in this paper is much more complicated than the dissolved phase
contaminant plume considered by James and Gorelick (1994).  Another important difference is that our problem
involves the delineation of a two-dimensional spill instead of the determination of the width of a required capture
zone.

An important advantage of our approach is that it provides an objective criterion for selecting the area to be treated
by a remediation scheme for free phase and residual DNAPL.  Although we would like to use a more sophisticated
measure that combines elements of cost, health risk, and other factors, the use of a fixed probability contour does
provide a reasonable surrogate for these objectives.  In contrast, a human expert can select an area for remediation,
but cannot provide decision makers with a quantitative indication of the likelihood that this area includes the entire
DNAPL spill.  It is easy for a human expert to become overconfident and specify an area for remediation that might
not contain the entire DNAPL spill.

It should be noted that it is possible to have an expert select well locations and combine this with the use of a fixed
probability contour to select the area to be remediated.  In our second example, we provided the human expert with
probability maps after each well.  The 0.5% probability contour that resulted from the expert's sampling turned out to
be somewhat larger than the contour that resulted from our automated procedure.

The use of a massively parallel processor was critical in achieving our results—it would have taken over 50,000
hours of simulation on our Sun workstation to obtain the 136,458 simulation realizations used in this study.  With the
aid of the Cray T3-D, we were able to compute these simulation runs in a few days.  However, even this very large
number of realizations was inadequate—the simple scheme of throwing out realizations that don't match observations
is clearly an impractical way to condition the simulation on large numbers of observations.  Further work is needed
on ways to generate conditional simulations of DNAPL flow.

There are a number of other ways in which this research could be extended.  The geological simulation used in this
study is applicable only to situations in which the geology consists of braided stream deposits.  There is a need to
extend this approach to other geological situations.  We have focused on the problem of delineating free phase and
residual DNAPL.  There is also a need to delineate dissolve phase DNAPL.  This would involve the use of
conventional models for the transport of dissolve phase contaminants.  Finally, the specific cost model used in our
study would clearly need to be adjusted for use in any real situation.
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