

Scaling Beyond Commodity

Key Challenges in moving towards Exaflop computing

John Levesque

Director, Cray Supercomputing Center of Excellence, Cray Inc. September 2007

Single Processor Performance ...

No Longer Tracking Moore's Law

Increasing Importance of Scaling

History of some "Unix-based" Cray systems (about \$20M each)

(FDF Ch

	Cray 2 4 CPUs	Cray Y-MP 8 CPUs	Cray T90 16 CPUs	Cray T3E 1024 CPUs	Cray X1E 256 CPUs	Cray XT 16384 CPU d	4 cores
	1986	1990	1994	1996	2004	2007	
Processors	4	8	16	1024	256	16384 4096 X	
Memory	2GB	256 MB	4 GB	512 GB	1 TB	16TB 8192 X	
Frequency	240 Mhz	166 Mhz	440 Mhz	600 Mhz	1.1 Ghz	2.6 Ghz 11 X	
Peak	1.9 Gflops	2.6 Gflops	28 Gflops	1.2 Tflops	4.6 Tflops	150 Tflops 78,000 X	
Boot Time	~20 minutes	~20minutes	~20 minutes	~20 minutes	~20 minutes	~20 minutes 1X	

Realities

Supercomputing with commodity processors will become almost solely focused on *scalability* The flattening of the per-core performance trends has renewed interest in *novel processing architectures* and *accelerator* technologies

Some Customer Pain Points

Clusters are still hard to use and manage

- Power, cooling and floor space are major issues
- Third party software costs
- Weak interconnect performance at all levels
- Applications & programming hard to scale beyond a node
- RAS is a growing issue
- Storage and data management
- Multi-processor type support and accelerator support

Where Should We Invest?

Five areas to invest that yield big payoffs in scalability:

Reliability & Manageability
 Interconnect Technology
 Packaging for Performance
 Scalable Software
 Application Support

Reliability at Scale

(Probably)^{1,000,000} =P?robably Not

Reliability Features Needed At Scale

- Simple, microkernel-based software design
- Redundant Power Supplies and Voltage Regulator Modules (VRMs)
- Small number of moving parts
- Limited surface-mount components
- All RAID devices connected with dual paths to survive controller failure
- Interconnects with link-level reliable transport

One vs. Many

Beowulf

Cray-o-Wulf

Current commodity clusters have roughly 250 fans per cabinet
 MTBF for fans alone in a 10-cabinet system is 26 hours

Do We Still Need Custom Interconnects? Interconnects in the Top 500

Balance Points – 2-node Beowulf

CI	i.	Ы		1	2
3		u	C		~

m2 miaenno, 5/9/2007

Balance Points – 2-node Cray XT4 Architecture

Everything Is Interrelated

- Providing high bandwidth requires many high-speed cables
- Air simply cannot be pushed through the cabinets from front to back
- Packing systems more densely is needed due to cable reach declining
 - 🏶 ~ 5m at 20 Gb/s
- Bottom to top cooling is necessary
- Liquid cooling could become a requirement

Transpose Performance on Large IB Cluster

- IB shows a large spread between maximum and minimum performance (almost 10X)
- In MPP computing, we always wait for the slowest processor, so the minimum values are more important than the maximums
- Solutions include overprovisioning the interconnect and adaptive routing

Source: Presentation by Matt Leininger & Mark Seager, OpenFabrics Developers Workshop, Sonoma, CA, April 30th, 2007

FTQ Plot of Catamount Microkernel

FTQ Plot of Stock SuSE (most daemons removed)

CRAY

FTQ plot of CNL

Application Support

- Best in Class MPI
- Best in Class Scientific Library Routines
- Best in Class Performance Tools
- Cray Supercomputing Centers of Excellence to assist researchers in porting/optimizing applications

Realities

Supercomputing with commodity processors will become almost solely focused on *scalability* The flattening of the per-core performance trends has renewed interest in *novel processing architectures* and *accelerator* technologies

Should We Accelerate?

- Slowing single-thread performance may make specialpurpose designs more attractive
- Commodity Multi-core processors have issues with memory bandwidth balance and latency tolerance
- There is a trade-off between power efficiency and programmability
- There is no such thing (today), as a general purpose accelerator

Why Vectors? Accelerating challenging memory addressing patterns through global addressing

The Simulation Challenge

- Simulate a flapping wing for development of Unmanned Aerial Vehicle
- Around 5.5 million tetrahedral elements

Solution

- Need new CFD solution written in modern programming language
 - "XFlow" Dynamic Mesh CFD code
 - Language Unified Parallel C
- Customer reports largest ever adaptive mesh simulation
- "Could not be programmed in MPI"

New application opens door to modeling whole new realm of simulation and modeling

Why FPGAs? Example: Smith Waterman Search

Previous FPGA product over 500X faster than Opteron processor

Source: George Washington University

Why Massive Multithreading?

- Driving applications are Informatics Graph-Based algorithms
- Problems of interest are large and require Terabytes of memory to hold
- Problems have no locality and are not partitionable
- Most of these types of problems cannot be coded with the MPI programming model

Georgia College of

Case Study: MTA-2 vs. BlueGene/L

- · With LLNL, implemented s-t shortest paths in MPI
- Ran on IBM/LLNL BlueGene/L, world's fastest computer

- Finalist for 2005 Gordon Bell Prize
 - 4B vertex, 20B edge, Erdős-Renyi random graph
 - Analysis: touches about 200K vertices
 - Time: 1.5 seconds on 32K processors
- Ran similar problem on MTA-2
 - 32 million vertices, 128 million edges
 - Measured: touches about 23K vertices
 - Time: 0.7 seconds on one processor, 0.09 seconds on 10 procs
- Conclusion: 4 MTA-2 procs = 32K BlueGene/L procs

Hybrid Supercomputing to Adaptive Supercomputing

Today – Hybrid Supercomputing

- Multiple processor types in the same system
- Software to allow them to be easily used and administered
- Heterogeneous Workflows
- Tomorrow Adaptive Supercomputing
 - Flexible processor that takes on different "personalities" while operating within a single code
 - Scalar
 - Vector
 - Multi-threading

Software (compilers & languages) to take advantage of these features

Example Application: Weather Research & Forecasting (WRF) Model

- Operational forecasting, environmental modeling, & atmospheric research
 - Key application for Cray (both vector & scalar MPP systems)
- Code characteristics:
 - Most of the code vectorizes really well
 - Dynamics and radiation physics
 - Part of the code is serial
 - Cloud physics is parallel, but doesn't vectorize
 - Little FP, lots of branching and conditionals
 - Vertical columns are all independent
 very amenable to multithreading

Accelerating on Cascade Adaptive Processor (Opteron + Adaptive Vector/Multithreading Accelerator)

- Serial code runs on Opteron
- Vector code runs on accelerator in vector mode
- Cloud physics runs on accelerator in multithreaded mode
- Optimal performance on each code segment

Summary

- Supercomputing using commodity processors is becoming more and more about scalability
- "Beyond Commodity" investment is required in:
 - Reliability & Manageability
 - Interconnect
 - Packaging
 - Software
 - Application Support
- Accelerator technologies are gaining interest
- Today Hybrid Supercomputing
 - Hetrogenous workflows
- Tomorrow Adaptive Supercomputing
 - Broad application acceleration

Thank You!