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The von Bertalanffy model of body growth is inappropriate for organisms whose 
growth is restricted to a seasonal period because it assumes that growth rate is invariant 
with time. Incorporation of a time-varying coefficient significantly improves the capability 
of the von Bertalanffy equation to describe changing body size of both the bivalve mollusc 
Macotna baltllica in San Francisco Bay and the flathead sole, Hippoglossoides elassodon, 
in Washington state. This simple modification of the von Bertalanffy model should offer 
improved predictions of body growth for a variety of other aquatic animals. 
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Le modkle de croissance corporelle de von Bertalanffy ne peut s'appliquer B des 
organismes dont la croissance se limite h des p6riodes saisonnikres. car il suppose que le 
rythme de croissance ne varie pas avec le temps. Si I'on incorpore B l'tquation de von 
BertalanlTy un coefficient variant avec le temps, elle dCcrit beaucoup mieux la taille 
changeante, h la fois du mollusque bivalve Macoma balfhicu dans la baie de San Francisco 
et de la sole h t@te plate Hippoglossoides elussodon dans 1'Etat de Washington. On devrait 
pouvoir se servir avec profit de cette simple modification du modtle de von Bertalanffy 
pour mieux pr6dire la croissance corporelle d'une variCt6 d'autres animaux aquatiques. 
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THE following function (from von Bertalanffy 1938) is is a constant upper limit (L,,,) to body size. 4. Growth 
widely used to describe growth of a variety of animals: rate is a (decreasing) linear function of body size: 

(1) L(t) = L,,, - (L,,, - L,,,)ap[-b.(t  - to)], (2) 
dL - - - Ltma, - b.(L - L,,,). 
dt 

where L is length at time t ( t  = 0 on  January I ) ,  L,,, 
is a maximum body size, L,,,, is body size at  time of Assumptions (3) and (4) are  not strictly valid because 
recruitment and b is a constant  hi^ many organisms exhibit indeterminate growth and be- 

relation implies that growth rate is a constant function 
cause the between growth rate and 

of body size alone. While this assumption may hold for  size may become nonlinear as size 

animals in a constant environment, it fails to  hold for  the assumed L a y  (F. H. Nichols unpublished data) .  
the many animals whose growth rates vary seasonally. However, assumptions are approxi- 
-j-his paper describes a simple extension of the mations that allow for  simple models of the complex 

Bertalanffy model that allows growth rate to  vary with growth process. 

changing body size and with periodic (seasonal) changes that the ( 2 )  is the 

in growth characteristics. Bertalanffy model (equation 1 ) . If seasonal variations 
in growth rate are manifested as seasonal changes in the 

~ ~ d ~ l  derivation -we assume here that the follow- coefficient b, then any function that describes the tem- 

ing conditions characterize the general change in body poral variation in b can be substituted into equation 

size of a given organism: ( 2 ) ,  giving a differential equation that incorporates 

1. time of recruitment ( t  = body size is some effects of  both time (season) and body size on  rate of 

constant minimum (L,,,). 2 .  ~~~~~h rate is maximal growth. Its solution should give an improved description 

( d ~ l d ~  = L!,,,,) when body size is minimal. 3. ~h~~~ of changing body size for  those animals exhibiting sea- 
sonal growth. 

Printed in Canada (55229) Nichols' study (unpublished data) of the bivalve 
Imprim6 au Canada (J5229) Macoma balthica demonstrated that the coefficient b 
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FIG. 1. Running averages of the coefficient b describing 
the relationship between growth rate and body size of 
Macoma bnlthica in San Francisco Bay. Also shown (solid 
line) is the fitted function given by equation ( 3 ) .  

changes over an annual cycle in San Francisco Bay. He 
measured growth increments of individuals from a vari- 
ety of size-classes and estimated b from the slope of 
the linear regression relating growth rate ( A L I A t  over 
periods of 1-3 mo) to mean body size. We have fit these 
estimates of b, by least squares (Powell 1968), to an 
empirical function of time (Fig. 1 ) : 

giving a, =: 6.0 x a, = 1.7 X a, = 3.7, 
0 - - 14.4. Incorporation of equation (3)  into (2) gives 
a new differential equation whose solution is 

where the integral can be approximated with a numerical 
quadrature (see e.g. Hildebrand 1974). 

Certainly other modifications of the von Bertalanffy 
equation allow for seasonality. For example, if seasonal 
variations in the coefficient b follow a simple periodic 
function, 

then a simplified analog to equation (4) results 

cos {W))]. 
Because it has fewer parameters and is analytic. this 
function may prove to be of more general use than 

DAY (d) 

FIG. 2 .  Predicted growth of M. balthica in San F~ancisco 
Bay for three different recruitment dates ( t o  - 0, 120, and 
240 d )  . 

equation (4)  which requires a numerical integration. 
However, if growth is truly restricted to one season 
(e.g. Fig. I ) ,  then the increased accuracy of equation 
(4)  may justify its use. 

Discussion - Assuming that L , , ,  - 24.8 mm and 
L,,,, = 0.5 mm (F. H. Nichols unpublished data), equa- 
tion (4) traces body growth of an individual M. balthica 
in San Francisco Bay for any given recruitment date 
(Fig. 2) .  The predicted pattern of body growth is 
strongly influenced by time of recruitment. Individuals 
recruited in the spring (around day 120) initially grow 
rapidly, while initial growth is slower in animals re- 
cruited during other times of the year. Although indi- 
viduals recruited late in the year exhibit slow initial 
growth, they grow faster than older individuals the fol- 
lowing spring (Fig. 2 ) .  Hence, this model (unlike the 
von Bertalanffy equation) describes the process referred 
to as "growth compensation" (Gerking 1966; Ricker 
1975) or the "catching-up phenomenon" (Lammens 
1967). 

Equation (4)  was derived to follow changing body 
size of an individual, but it also describes mean body 
~ i z e  of a cohort from a mixed population of M. balthica 
more accurately than the von Bertalanffy function (Fig. 
3 ) .  In this example the data represent animals that, re- 
cruited throughout the previous year (spring to autumn), 
constitute a single cohort in midwinter (day 30 in Fig. 
3 ) .  (The poor fit between predicted and measured 
lengths after day 3 15 results from our inability to sepa- 
rate this cohort clearly from others after this date.) 

To demonstrate a broader application of this modified 
von Bertalanffy model, we fit equation (4) by least 
squares (Powell 1968) to mean lengths of the flathead 
sole. Hippoglossoides elassodon, over a 3-yr period (data 
from Miller and Wellings 1971). Small deviations from 
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FIG. 3. Comparison of the von Bertalanffy model (equa- 
tion l ,  dashed line) and our seasonally varying model (equa- 
tion 4, solid line) in describing mean length of a group of 
M .  balthica in San Francisco Bay. In fitting measured lengths 
to equation (4) ,  equation (3) was assumed and only Lmi, 
and L,,, were estimated by least squares (Powell 1968). 
Data &;e fit directly to the von Bertalanffy model by least 
squares. 
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FIG. 4. Mean length of (normal male and female) Hip- 
poglossoides el as so dot^ over a 3-yr period (from Miller and 
Wellings 1971). Also shown (solid line) is the least-squares 
fit to equation (4), assuming that t o  = 245. 

the model d o  exist (Fig. 4).  probably because of year- 
to-year environmental variations. But because equation 
(4) acknowledges the obvious seasonal changes in  

growth rate, its prediction of body growth in the flat- 
head sole is an improvement over the simple von 
Bertalanffy hyperbola. 

The  assumption of a constant coefficient b probably 
fails to  hold for  a number of aquatic organisms. F o r  
example, Warren and Davis (1967) demonstrated that 
growth efficiency of the reticulate sculpin (Cottus per- 
plexus) and cutthroat trout (Salmo clarki) vary with 
season. Fortin and Magnin (1972)  found that annual 
growth of the yellow perch (Perca flavescens) is re- 
stricted to a 4-mo growing season in Lake St. Louis, and 
Gerking (1966) reported that the  length of the growing 
season of the bluegill sunfish (Lepomis macrochirus) 
varied among lakes in  northern Indiana from 3- 
6 mo. The temporal changes in growth in all these 
species are consistent with equation (3) and suggest 
that our  extension of the von Bertalanffy model may 
ofier improved descriptions of body growth for  a variety 
of animals. 

Seasonal variations in the  growth of aquatic animals 
are, at least in part. related t o  temporal changes in air 
and water temperature and seasonal variations in abund- 
ance and quality of food (e.g. f o r  M. balthica see 
de Wilde 1975 and Beukema et al. 1977) .  A model that 
incorporates realistic assumptions about growth and 
predicts observed patterns of growth may prove useful 
in directing studies of these relationships. Moreover, the 
accuracy of the new model makes it useful in pointing 
to nongrowth processes that affect mean size in popu- 
lations, such as size selective mortality and continuous 
or  intermittent recruitment patterns. 
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