FTKSim Status and plans

FTK Meeting 07/13/2006

F. Crescioli, M. Dell'Orso, G. Punzi, <u>G.Volpi</u>, <u>P. Giannetti</u>

FTKSim performance control chain

Our method to monitor the FTK performances use truth and offline tracks.

This method eliminate problems due to the ghost.

Recipes: •iPatRec customized version •FTKSimWrapper •FTKSim

Bs->mumu

- •Efficiency is greater than 80% in this sample
- •Efficiency for pions and kaons is > 75%
- •In curvature there are effects due to the different particle types in different curvature ranges.

Bs->mumu (2)

No particular problem in FTK, but also in iPatRec, to reconstruct trakcs with large impact parameter.

Impact Parameter Distribution

WH->munuuu

fraction

•We make same standard checks over this sample to validate FTKSim.

•FTK efficiency is lesser than Bs->mumu sample.

•Especially for pion and kaon.

•Plot of efficency as function of curvature is due to the various particle composition at differtents Pt

WH->munuuu (2)

Impact parameter spectrum seems well reconstructed

Not particular effects on efficiency as function of impact parameter of tracks

WH->munubb

Same effect on global efficiency and in particular on pions and kaons efficiency.

WH->munubb (2)

For the impact parameter we have a large inneficiency for large impact parameters, but also offline seems to have such problem.

Impact Parameter Distribution

Checks: WH->munuuu WH->munubb

In a previous meeting was reported results of FTK over these control samples.

The distrubutions appear quite similar.

Checks: WH->munuuu WH->munubb (2)

Using only tracks that have matched with the truth the two distribution appear very differents.

Partial conclusions

•Bs->mumu and WH samples probably have some differences:

- Pile-up?
- > Physics ineraction in ID?
- > Misalignments?

•FTK, with an offline match with truth, have good performances.

•Need to implement a method to remove ghosts without using other informations.

•Some tools to validate the FTKSim performances will be uploaded in my FNAL web pages.

Suggestions for the FTKsim user

- 1. Before starting to use a set of new files with FTKsim, please look at files using the offline tools (an offline track reconstruction algorithm like ipatrec).
- Guido's tools to compare FTKsim performances with Ipatrec performances. Available @ http://fcdfhome.fnal.gov/usr/volpig Please use them to check track quality.
- 6. When track quality is guarantee everything else is easier

Possible residual motivation of problems:

Ghosts tracks produced by FTKsim require now a particular use of simulated tracks: Guido tools are a good example of this use

Next: Ghost handling Plan

Duplicated roads/tracks due to:

- 3. Deletion of 5/6 by RW when a 6/6 is available produces small inefficiencies if the 5/6 was the real track \rightarrow reject all 5/6 and do 7 fits in parallel (6/6 and all 5/6 combination) to choose the best χ
- 5. Deletion of 5/6 by RW not possible if the empty strips belong to different sectors
- 7. Training tracks going through the overlap region NOW produce many Ghost patterns not identified by the RW because of type 2. Reduce the ghosts of type 2 due to overlap regions, generating a single pattern

Changes to FTKsim

- 1. Generate again the pattern bank deleting ghosts due to overlap regions (Francesco).
- 3. Modify the Track fitter to perform 7 fits when a 6/6 hit combination is found (Guido).

MUON Trigger: WHAT WE HAVE UNDERSTOOD FROM ATLAS TALK http://agenda.cern.ch/fullAgenda.php?ida=a062952

- 1. Single 6 GeV μ trigger in the ATLAS trigger plan for Instant Lum = 10³³. 2nd μ searched using jet ROIs or μ ROIs below 6 GeV
- 3. We suggest to look for $2^{nd} \mu$ using the list of FTK tracks above 3 GeV, ordered for decreasing Pt.
- 4. Muons are measured by the detector down to 3 GeV.
- 5. Muons are triggered in the barrel with a minimum threshold of 5 GeV

Muon Selection

LEVEL 1	
---------	--

•					
Sources	Barrel		Endcap		
	6 GeV Thresh L=10 ³³	20 GeV Thresh L=10 ³⁴	6 GeV Thresh L=10 ³³	20 GeV Thresh L=10 ³⁴	
π/ K	9300	1090	5900	6400	
c	1620	700	1800	1200	
b	950	300	1000	600	
w	3	27	~	~	
Total	11570	2030	8700	8200	

Sources	6 GeV Thresh L=10 ³³		20 GeV Thresh L=10 ³⁴	
	LVL1	LVL2	LVL1	LVL2
π/ Κ	9300	3300	1090	90
С	1620	930	700	110
b	950	490	300	40
Total	11870	4720	2090	240

LEVEL 2-µ fast ~2ms

TrigDiMuon

- Selects dimuons with m(µµ)>2.8 GeV (2nd muon p_T>3 GeV)
- Apply m($\mu\mu$)<4GeV to select J/ $\psi(\mu\mu)$

 Physics performance estimated → 77% efficiency with 400 Hz background rate

for L=10³³ (Based on 23KHz LVL1 mu6)

68% efficient for 270 Hz

		LEVEL 2- Mu-comb
		↓
Low p _t (6 GeV)	µFast rate (kHz)	μComb rate (kHz)
K/π decays	3.18	1.1
c decays	0.91	0.68
b decays	0.41	0.35
Fake L1	<10-3	<10-3
Total	4.5	2.13

TO do list for the Bs-> $\mu\mu$

- 1. Scan the track list to find matches with the external μ . How many times they are the 2 most energetic tracks above 3 GeV?
- 3. How much the π/k background is reduced by this match FTK-track-MU?

THIS WORK IS STOPPED TO IMPLEMENT A GOOD GHOST HANDLING