
SANDlA REPORT
,ND2000-2240
limited Release
nted December 2000

#@

~ti idelaes uter Haptics Protein
ion

Derek T. Mehlhorn

Prepared by
Ssndia Natlonal Laboratories . Albuquerque, New Mexlco 87185 and Livermore, Cat~~urr~ua 94550

Sanc
a Lo1
Ener

lia is a multiprogram laboratory oper;
ckheed Martin Company, for the Unit
gy under Contract DE-AC04-94AL851

~ t 4 d by S
ed States
DOO.

andia Co
; Departrr

rer dissen Apprwea tor public release; fur@ .m..-.,vL, "nlimited.

@ &non National Laboratories

rporation.
lent of

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Government,
nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or
assume any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute or imply
its endorsement, recommendation, or favoring by the United States Government,
any agency thereof, or any of their contractors or subcontractors. The views and
opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly
from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865)576-8401
Facsimile: (865)576-5728
E-Mail: reports@pdonis.osti.gov
Online ordering: http://www.doe.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800)553-6847
Facsimile: (703)605-6900
E-Mail: orders@ntis.fedworldgov
Onliie order: http:/ /www.ntis.gov/ordering.htm

mailto:reports@pdonis.osti.gov

SAND2000-2240
Unlimited Release

Printed December 2000

Guidelines for Computer Haptics Protein Simulations

Derek T. Mehlhom
Computational Biology and Materials Technology Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 871 85-03 16

Abstract

Computer haptics is a field of science that studies how one's sense of touch can be
incorporated into a virtual environment. The uses of computer haptics are unlimited,
ranging from graphics design, where an artist can feel the clay deform as they work, to
protein simulations, where the user can feel the surface and attractive forces that a protein
would actually exert. In order to create a haptics simulation, one must first understand
the basic elements and the work -load involved in networking complex 3-dimensional
computer graphics with a force feedback device. This report outlines the basic elements,
as well as advanced and experimental ones, related to computer haptics protein
simulations. Simulations and experimentation, that discussion within this text is based
on, were done using the haptics programming interface eTouch and a desktop
PHANTOM 1.0 force feedback device. This report is intended as both an introduction to
computer haptics, as well as a tutorial for advanced protein simulation design.

INTRODUCTION: ... 3

BASIC SIMULATION ELEMENTS: ... 4

GRAPHICS GENERATION: ... 4
Simple Shapes ... 4
Triangular Surface Mesh ... 5

... FORCE CALCULATIONS: 6

MAINTAINING REFRESH RATES IN LARGE SIMULATIONS .. 8

ADVANCED SIMULATION ELEMENTS: .. 8

FORCE EQUATION IMPLEMENTATION AND INTEGRATION .. 8
SOLUTE MOLECULES ... 1 1
MOLECULE INTERACTION AND DEFORMATION .. 11
TRANSPARENT GRAPHICS OPTIONS ... 11
3D FORCE VECTOR DIAGRAMS .. 12

CURRENT SIMULATION ABILITIES .. 12

BIBLIOGRAPHY: ... 13

Introduction:

What is Computer Haptics?
Haptics is the field of science that studies the properties of human touch. Subsequently, computer

haptics is a field of science that studies how one's sense of touch can be incorporated into a virtual

environment. Research in computer haptics is based around allowing the user to interact with the computer

in the same way that one would interact with the real world. What this means is that two-dimensional input

devices such as a mouse and keyboard simply will not suffice. The user needs to be able to interact in at

least three-dimensions, and the computer needs to be able to interact with the user on a physical level.

The uses of computer haptics are unlimited, ranging from graphics design, where an artist can feel

the clay deform as they work, to protein simulations, where the user can feel the surface and attractive

forces that a protein would actually exert. Computer haptics is the study of how a computer can more

accurately and convincingly simulate reality starting with ones sense of touch.

The PHANTOM', a Computer Haptics Device

Within the field of computer haptics, there a number of commercially

available devices which allow a broad range of motion and force

feedback capabilities. A particularly good haptics device which provides

the user with 6 degrees of freedom (x, y, z, yaw, pitch, and roll) as well

as 3 degrees of freedom of force feedback (x, y, z) is the PHANToM

(Image 1.0). Although there are several different models of the

PHANToM, all discussion in this paper is based on the use of a ModelA

Image 1.0 A Desktop Phantom PHANTOM 1.0.

etoucM, a Haptics Simulation Environment
The two basic elements of a computer haptics simulation are graphics and forces. In order to generate both

of these elements, software that allows your code to network with the force feedback device is required. In

the case of the PHANToM, a set of C++ libraries called GHOST' (Graphical Haptic Open Software

Toolkit) can be used. One thing to keep in mind when undertaking a haptics simulation is that you cannot

simply render a series of graphics and be done with it. You actually have to create a full three-dimensional

world. Unless your project is to actually create a 3-D interface for computer haptics, it is necessary to

acquire an existing haptics environment to create your unique simulation within. A powerful and user-

friendly environment that was originally developed within Sandia National Laboratories called e ~ o u c h ~ ,

was used in creating and testing the simulations and concepts outlined in this report.

eTouch is essentially a haptics operating system, within which one can produce and run

simulations. The eTouch environment is extremely powerful and useful, not only because it controls the

multi-processing of the graphics and forces, but also because it provides the user with a number of ready to

use tools and perspective devices. Interfaces, such as eTouch, allow the simulation designer to focus on

their project specifically, without them needing to be overly concerned with a large number of interfacing

issues.

Basic Simulation Elements:

The two basic elements of a computer haptics simulation are graphics and forces. One of the

interesting things about a haptics simulation is that both of these elements work independently of each

other. This divides the simulation into two distinct parts, each of which present unique problems that can

be addressed in independent and different ways.

In a computer haptics simulation, certain process speeds must be maintained. The graphics

routines must maintain a 30 Hz refresh rate, i.e. 30 times per second, in order to remain synchronized with

the simulation's forces. The force routine must maintain a 1000 Hz refresh rate to prevent "feelable" lapses

in the force feedback. Although a number of factors go into making a successful simulation, the success of

ones application will ultimately rely on good refresh rates.

Graphics Generation:

Simple Shapes
There are a number of different approaches that can be taken when trying to generate graphics for

one's simulation. Through my work with eTouch and haptics in general, I concluded that there are two

general options for rendering molecular graphics. The first is to use OpenGL's built in simple shapes

drawing routines to draw each atom as a single sphere. This is the fastest solution to the problem and also

has the potential to provide a high degree of resolution that may be aesthetically superior to other methods.

This method is the most quickly compatible with protein data files since to generate a sphere you only need

its location and radius. If the number of atoms in one's simulation is relatively low it is advisable to use

this method because it is the easiest and least time consuming solution.

Due to its simplicity and the ease with which it networks with data files, the simple shape

approach is very tempting, however, its performance and desirability quickly decreases as the size of one's

proteins increase. This is because, although easy to implement, the simple shape algorithms are not very

fast. As one begins to increase the number of spheres that must be draw, the graphics refresh speed

decreases substantially. There are a number of things that can be done in order to counteract the slow down

caused by an increased number of spheres. If for example, if your protein has multiple atom types, that you

want to render in different colors but that do not appear consecutively within the data file. You can

preprocess the data, and sort the atoms by type. By sorting the data and storing it in a data structure within

your application, the graphics rendering loop can be optimized by minimizing the data retrieval time as

well as a number of other time consuming operations, such as changing material properties. Keep in mind

that data preprocessing in pretty much a must for all haptics simulations regardless of ones approach. Due

to the relentless refresh rates that such an application demands, the ability to have immediate access to

information and the ability to minimize costly graphics definitions is required.

Data sorting can be a powerful method for increasing graphics refresh, however, when the number

of atoms gets too great, your simulation will have to begin sacrificing sphere resolution in order to maintain

graphics speeds. This is where the simple shapes method begins to loose its appeal, as your spheres turn

into low-resolution polygons. There are, however, other hicks that can be used to minimize the

ramifications involved in decreasing resolution. For example, decreasing the overall resolution of the

protein while increasing the resolution of the spheres in the immediate vicinity of the cursor will maintain

resolution in the most important places while maintaining refresh speeds. Although, this method can

maintain the required refresh rates, it is a fairly ugly and undesirable solution.

The major problem with using sphere functions to generate graphics is that there are far too many

wasted surfaces. OpenGL will create a full three-dimensional sphere for each atom, however, when

working with a fully folded protein, a substantial number of sphere surfaces will overlap and a large

percentage of the atoms probably will not be visible at all. Thus, OpenGL is either forced to draw these

obstructed surfaces, which takes extra computing power, or calculate which surfaces are hidden, and not

draw them. Although removing hidden surfaces is substantially faster than drawing them, when dealing

with a large number of atoms, it can still take too much time.

Another problem with creating graphics using the sphere functions is that each time you draw a

sphere the perspective matrix of your graphics has to be translated over. One cannot simply render a lot of

spheres at the positions x, y, and z. Instead one must move the perspective matrix to x, y, z and then draw

the sphere. Although data sorting can minimize the number of translations that must be made, this process

is still much slower than being able to initially define a large number of absolute object positions.

Triangular Surface Mesh
Due to the large number of wasted surfaces when using spheres, it may be preferable to render

your protein using a triangular mesh surface model. The idea behind this method is to determine the shape

and contour of the protein's surface, within a given resolution, and create a graphics "shell" of the protein.

This way no surfaces are lost because you are specifically creating your graphics to render only what is

visible to the user. This is a substantially faster method than using simple shapes, not only because no

surfaces are wasted, but also because basic polygons are easier to render.

One possible draw back from this solution is the level of detail that may or may not be possible.

In order to create the surface model of your protein, you need to define a vector field of a certain shape.

Knowing the center location of each atom, the furthest sphere intercept along these vectors can be

calculated (Image 1 .I). Each point of intersection will then be used as a vertex in creating a surface mesh

Image 1.1
Shows a how a circular vector field can be used to plot the surface of a semi-spherical
protein

of triangles. Rendering the surface of the protein as a number of points can also be useful as it can give the

user a good perspective of the molecule's overall shape and size. In general, the resolution of ones surface

map will increase with the number of vectors (i.e. points) which you define it with. However, it may be

that the number of vectors, and thus triangles, required to obtain the desired resolution will be so great as to

also slow down the graphics loop. My experience with this method thus far has been promising, and I have

been very please with the level of resolution which it is possible to obtain with a minimal amount of

processor power. However, this method may not work for all proteins since certain protein shapes may not

be well suited for a vector field to map. This method of surface mapping is best suited for spherical

proteins and may not adapt well to other shapes.

Other drawbacks of this method include, for one, its time consuming nature. Where simple shapes

require a center, a size, a resolution, and a light source, a surface mesh requires an entire program to simply

plot it. Once the coordinates of the surface points have been calculated, there is still a substantial amount

of work that is required to create a convincing mesh surface. For example, one needs to create texture

maps for the protein and define the shadowing of the polygons otherwise it just looks like a 2-dimensional

blob. This can be a time consuming process, however, it also allows one to have a lot more control over

what one's protein will ultimately look like, which can be beneficial. Also, your simulation cannot work

properly without both the force and graphics loops maintaining their given refresh rates. As such, complex

and time-consuming solutions to both graphics and force generation may be one's only options.

Force Calculations:
In order to understand many of the difficulties that are inevitably encountered when creating a protein

simulation, one must first understand how forces in a computer haptics simulation work. Basically all

surface forces in a computer haptics simulation act like springs, where the force they exert is equal to a

constant times the depth of penetration, F = kx. Other forces such as magnetic or attractive force are simply

functions of ones distance from the source. Objects in haptics act like springs because the PHANTOM

motors are not infinitely strong; therefore it is impossible for them to exert a realistic equal and opposite

force. As a result, all objects in haptics simulations are inherently "squishy" as well as "springy." When

dealing with single objects or large numbers of non-overlapping objects, surface squishiness and

springiness are not a major concern. However, these characteristics cause a large number of problems that

can be very difficult to correct.

The first force problems when working with overlapping objects is cause by force springiness.

Because force magnitude is dependent

on the depth of penetration, when one

touches two spheres at the same time

but does not penetrate their surfaces an Image 1.2
Shows a force diagram of how force buzzing occurs when interacting

equal distance, one surface will exert a with two objects

greater force than the other (Image 1.2).

This will induce a greater penetration into the other atom, which produces the same result. All of this takes

place at one thousand times per second, which causes a high frequency oscillation of the PHANTOM that

can be felt or even heard. In many circumstances, these unbalanced forces are negligible, however, given

the correct placement and number of objects what is called force buzzing can occur.

Force buzzing is simply where the PHANTOM vibrates because an inconsistent or unstable stream

of forces is being fed to it. Object springiness can cause this because when two identical spheres push on

the cursor, and the first sphere pushes harder than the second, the cursor will penetrate the second sphere

more deeply, inducing a strong force in that sphere and so on.

There are a number of solutions to this problem, many of which are not simple and may have

undesirable side effects. The easiest way to eliminate buzzing, at least to the extent of audible recognition,

is to vary the spring constant of the surface forces proportionally to the number of objects being touched.

In order to make this work a number of different tricks can be used to ensure that the user does not know

that object surfaces will have variable forces. One method that was successful for me was to choose a

spring constant range (.05 to .I), and than 1 would ramp this constant depending upon the change in the

number of atoms the cursor is touching. For example, if you begin by touching one atom, you will feel the

maximum surface force. Then if you move the cursor to touch more atoms, the force will decrease and will

increase again as you touch less. If one's range of forces and the speed at which one ramps them is

reasonable, this method can alleviate solid surface buzzing produced by a number of overlapping "solid"

objects. The major draw back from this approach is that your proteins will feel softer and squishier which

may be undesirable.

Another solution to force buzzing produced by overlapping objects is to not have them. Much in

the same way that a graphics shell of a protein molecule can be generated, a force shell for a protein can be

created. By creating a force shell made up of a number of predefined normals, one no longer has to wony

about inter-object forces. The main draw back from this approach is that you can no longer push into a

protein. A force shell will have the affect of making your protein completely impenetrable and may greatly

reduce the value of one's simulation.

The optimal solution to force buzzing requires a great deal of work and a certain level of expertise

in digital filtering. I have done no research on this topic so I cannot go into specifics. However, I do know

that it is possible to using digital filtering to remove high frequency forces before they are sent to the

PHANToM. This approach should enable one to create smooth protein force simulations without

sacrificing any aspects of the simulation.

Maintaining Refresh Rates in Large Simulations
When running almost any size protein or molecular simulation, one will find that it simply isn't possible to

maintain the required refresh rates if one is trying to keep track of all the atoms in a simulation

simultaneously. In my research, I found that the most effective way to maintain simulation performance is

to divide the protein into grids by space. Each turn the grid number of the cursor is calculated and then

collisions and ambient forces are checked and calculated for only the atoms in the same grid. Although

there is a certain amount of work that is required to maintain force continuity when moving from one grid

to another, it is a versatile and useful way to increase one's simulation performance.

Spatial decomposition of one's simulation is required, especially when more advanced simulation

elements are added. When one's simulation becomes too complicated for a single processor to handle, each

grid can be assigned to a processor of its own. This will enable much more complicated simulations to be

performed in real time, and will enable one's simulation to run on a variety of different machines with a

number of different processors. Ultimately I believe that the kind of equipment required to run complex

molecular simulations involving most of the Advanced Simulation Elements described below, would

require a cluster of at least ten Pentium processors. A small cluster of PC's would probably be sufficient to

run these simulations, but a larger system such as access to C-Plant would be optimal.

Advanced Simulation Elements:
When thinking about designing a protein simulation, it is important to always keep in mind the

computational constraints that exist. You must remember that any solutions or features that you are

interested in implementing will need to be graphically rendered at 30hz and will physically need to be

calculated and corrected at 1000hz. Due to these speed requirements, it is important to consider and

implement the best and most efficient solutions possible, and do as many calculations and as much sorting

as possible before the simulation begins.

Force Equation implementation and Integration
One of major problems which pervades all protein simulations, regardless of size, is the issue of

calculating interactive forces between each of the atoms in the molecule and the cursor. One of the first

problems that one will encounter is scaling the force equations to values that the PHANToM can except.

This can be difficult since the PHANToM takes numbers roughly between 0 and 1.5, whereas force

equations will yield values in the tens of thousands. Also, scaling forces isn't quite as simple as reducing

the force value to be within the zero to one-point-five. Instead there is a difference in the scaling

requirements depending on how many atoms are present in the simulation. This is because the forces

exerted by each atom are summed and may produce a total force magnitude greater than is desired, or

physically impossible for the PHANToM to maintain.

This brings up another problem with force equation scaling, that some forces, inparticular

repulsive ones, may go to infinity so quickly that there is no way to scale them to a reasonable level. In my

experience the repulsive forces, as produced by real world force equations, are useless. Every haptic device

has a limitation of the maximum (8N) and minimum forces that it can produce as well as a maximum

maintainable force (l.4N) and the speed at which it can engage these forces. With repulsive forces that

instantaneously become infinite, two of the computer haptics physical limitations are reached. First, the

PHANToM is unable to instantaneously create a force of the magnitude that the force equation produces.

Thus there is a small delay in the force feedback that will be initially manifested by a click (which is the

servos disengaging and then re-engaging). This not only creates a disruption in the simulation's forces, but

during the several thousandths of a second that the force feedback is not working, the cursor can travel into

an object. Since the magnitude of the force that an object will exert in a computer haptics simulation is

dependent upon the depth of penetration, when the forces re-engage the PHANToM is told that it is inside

a, mathematically, infinitely hard surface. What happens in this situation is the PHANToM will try to

produce this infinite force and will fail, which will again cause the servos to momentarily disengage. Since

the PHANToM cannot possibly instantaneously exert its maximum force, it will produce a very strong

force which will ramp up in about one one-thousandth of a second and then disengage. This will have the

effect of create very bad and inconsistent forces since you will touch the surface of the molecule and get,

violently, kicked back a short distance before the motors disengage.

The second limitation of the PHANToM that is reached is its ability to maintain a large force

consistently. One can actually scale the forces low enough that when you artificially penetrate the atoms

surface, while the motors are still engaging, the PHANToM doesn't exert a great enough force to knock

you out again. It does, however, exceed its maximum exertable force thresh-hold, which means that the

motors will have to shut down momentarily. The result is that you can push through your repulsive fields

but the forces will jerkily engage and disengage the entire way.

The solution to the problem produced by repulsive forces is to simply remove them. Basically all

that the repulsive field should "feel" like, is a hard surface so each atom should be defined as such. When

the cursor gets too close to an object, and the attractive forces become repulsive, one can substitute a

reasonable, constant, surface force for the infinite repulsive ones. This may not produce a mathematically

realistic result, but will produce a realistic haptic result for the user.

Whereas repulsive forces are realistically unusable in a haptics simulation, attractive forces are

not, nor would a protein simulation be worth much if they were. Attractive forces are far more reasonable

in their rate of change, and are therefore relatively easy to scale. However, the magnitude of the attractive

force is not the only problem that one will encounter. As was described in the Force Calculations section,

there is a large problem with computer haptics and force buzzing. Overlapping forces can cause the

buzzing that is produced by a hard surface of overlapping objects, to be enhanced by the attractive forces

that are constantly pulling the cursor against the protein surface. Another problem that results from

grafting attractive forces onto a hard surface is that if you were previously varying the stiffness of your

protein surface to eliminate buzzing, you need to find a different solution. This is because as you are

moving across the protein the cursor is being pulled against its surface and the user can feel the change in

resistance as the forces are scaled to eliminate buzzing. Unfortunately, the solution to this problem, short

of digital filtering, is to decrease the overall surface force of the protein, i.e. make everything equally hard

or rather equally squishy. The side effect of this solution is that your protein will be pretty soft.

The real problem with overlaying forces is that they simply aren't compatible. Obviously one is

repulsive and one is attractive, but they are not instantaneously so, and thus they get into a similar situation

as the previously outlined inter-object problem. What happens is that in the time it takes the forces to

engage, the cursor has moved too far into the solid or attractive forces. This in turn pushes the cursor back

into the opposite forces and so on and so forth, causing precisely the same kind of force buzzing as before.

Basically, any time you have directly opposing forces your going to have force problems. Thus, one of the

two opposing forces needs to be removed or reduced. Remember, however, that you only want to modify

the forces that are "normal" (perpendicular) to the surface of the object you are in contact with. Modifying

all the forces will affect the overall value and realism that your simulation provides.

Image 1.3
This image shows how the component of the attractive force normal to the surface of an atom is
reduced to eliminate force buzzing

I found that to eliminate force buzzing, when working with multiple force types, it is best to use a

combination of scaling techniques. First of all it is necessary that the surface of the protein does not

produce any buzzing of its own. Thus, as was previously mentioned, one needs to reduce its overall

stiffness proportionally to eliminate surface buzzing. Once you have made the surface squishy, you must

filter the attractive forces so that they do not strongly conflict with the surface ones. This entails isolating

and eliminating a portion of the force vector that is normal to the surface of each atom that the cursor is in

contact with (Image 1.3). This will have the affect of smoothing out the forces as long as you are perfectly

in contact with the surface. However, this will also produce an amount of buzzing immediately above the

surface cause by the engaging and disengaging of the normal scaling. To correct this the bound at which

normal scaling is engaged and the bound at which it is disengage need to be different, i.e. you need to get

further away from an atom to re-engage normal forces than you do to disengage. It may also be necessary

to "ramp" the normal forces back up to full strength in order to prevent jumpy and inconsistent forces.

Solute Molecules
The two major issues involved in creating a simulation in which there are a number of solute molecules

surrounding the protein that the user can interact with are, graphics rendering and speed of movement

calculations. The main problem would be related to calculating how the molecules should behave

depending on what the user does. The computing difficulty of this problem can be further increased if one

wants the solute molecules to "flow" around the simulation. The computing power that ambient molecule

motion will require is substantial, varying depending upon the number of molecules and the kinds of

interactions being calculated.

Not only will the x, y, z motion of each molecule need to be determined, but the rotational

characteristics of each molecule must also be calculated. The rendering of the graphics themselves may

prove challenging from a processing standpoint, however, the implementation of this kind of simulation

feature would require multiple processors, and as such I would dedicate at lease one to graphics generation

alone. I would estimate that the total simulation's graphics would occupy one processor, and that at least

two or three processors would be required to calculate the motion, including rotation, of the solute

molecules. This number will, however, vary with the number of molecules being simulated.

If a multi-processor machine is not available, it may be possible to run a low level, small number,

solute simulation on a single processor, where the solutes are stationary until acted upon. Even for a

simulation of limited magnitude it would be desirable to have at least two processors to split the work.

Molecule interaction and Deformation
Intermolecular interactions are a very operation intensive feature to implement. In order to produce the

correct forces for a small multi-atom protein rubbing or pushing against a large one requires that one

calculate the forces exerted on each of the atom in the small molecule. This means that if you have a two-

atom molecule, your force calculations will take twice as long as if you only had one. The time it takes to

calculate the forces will increase proportionally to the size of the interacting molecule until the molecule is

large enough to support other techniques of manipulation, such as spatial decomposition.

A feature where one would push the cursor into a protein and actually deform its overall shape

would produce the same general problems as creating solute molecules. It would, however, be

substantially easier and would probably run on a single processor. Possible problems would include a lag

time between when the cursor moves into the protein and when the protein changes shape. This feature

should be fairly easy to integrate into a simulation that already simulates solute molecules, especially if it is

running on multiple processors using a spatial decomposition scheme.

Transparent Graphics Options
Transparent graphics for things like solute molecules or so one can see the inside of a protein are very

tricky because they must be rendered from back to front. If the image were stationary this would be easy.

One would only need to sort the data by depth at the beginning of the simulation. However, in a

simulation, the viewing perspective can be changed, which would reorganize the graphics relative to the

view screen. Also solute molecules could be floating around the screen constantly, moving in front of and

behind different objects. Due to these factors transparent object generation becomes extremely impractical

because it requires a reorganizing of all the graphics simulation information every turn. An alternative to

actually render transparent surfaces is to create objects using a loose scattering of points that can create the

illusion of a transparent object.

30 force Vector Diagrams
A feature that could be quite useful and relatively simple computationally as well as graphically is to create

a vector diagram of the forces that the cursor would feel when interaction with a protein. This could be

done with lines representing force vectors, or regions of space designated by a population of point that

would imitate a transparent surface. This would be useful in further relating one's sense of sight and touch

together in the simulation without unduly stressing the computational requirements of the application.

Current Simulation Abilities
I believe that all of the features outlined in the Advanced Simulation Features section are possible to

accomplish given current computer technologies. These kinds of simulations are well suited towards PC

clusters since it is practically guaranteed that you will need to break the simulation elements down by

space. The concerns I have about completing a simulation with the outlined features are not related to the

existence of the required resources, but the accessibility of them and the time required to create the

simulation. A possible problem will be having a machine with multiple processors that can be used, real

time, to run simulations. It simply isn't possible to submit a batch job and wait for information to come

back a week later. Development of C-Plant and the prominence of other smaller clusters, however, should

provide all the power and accessibility that is required.

Creation of the simulation alone would be a substantial task, as most of the issues involved have

never been done in a real time simulation. There is also the concern that haptics devices such as the

PHANTOM simply will not suffice for the level of detail which this kind of simulation is aimed at. The

acquisition and integration of different, or possibly multiple, devices would require much more work. The

force related part of the simulations have so far shown themselves to be the most difficult, and would

become even more so as the number of force feedback degrees of freedom begins to increase. I have faith,

however, that it is currently possible to, with a substantial time contribution, create a simulation containing

the elements and concepts outlined in the report.

Bibliography:

1. SensAble Technologies, Woburn MA. httn://www.scnsable.com

- 2. Tom Anderson, Novint Technologies. htt~:llwww.novint.com

http://httn://www.scnsable.com
http://httn:l/www.novint.com

DISTRIBUTION:

MS-9018 Central Technical Files
MS-0612 Review & Approval Desk, 9612

For DOElOSTI
MS-0899 Technical Library, 9616
MS-0316 Grant S. Heffelfinger, 9235
MS-0318 Arthurine Breckenridge, 9227
MS-1111 Marcus G. Martin, 9235
MS-1674 T. A. Mehlhorn
MS-1674 Derek T. Mehlhorn

	Guidelines for Computer Haptics Protein Simulations
	Abstract
	Index
	INTRODUCTION:
	WHAT IS COMPUTER HAPTICS?
	THE PHANToM A COMPUTER HAPTICS DEVICE
	etouch2, A HAPTICS SIMULATION ENVIRONMENT

	BASIC SIMULATION ELEMENTS:
	GRAPHICS GENERATION:
	Triangular Surface Mesh
	FORCE CALCULATIONS:

	MAINTAINING REFRESH RATES IN LARGE SIMULATIONS
	ADVANCED SIMULATION ELEMENTS:
	FORCE EQUATION IMPLEMENTATION AND INTEGRATION
	SOLUTE MOLECULE^
	MOLECULE INTERACTION AND DEFORMATION
	Transparent Graphics Options
	3D FORCE VECTOR DIAGRAMS

	CURRENT SIMULATION ABILITIES
	BIBLIOGRAPHY
	DISTRIBUTION

