

COMPUTATIONAL RESEARCH DIVISION

Benchmarking BGL, UPC, Checkpoint/Restart

.....

BERKELEY LAP

Future Technologies Group

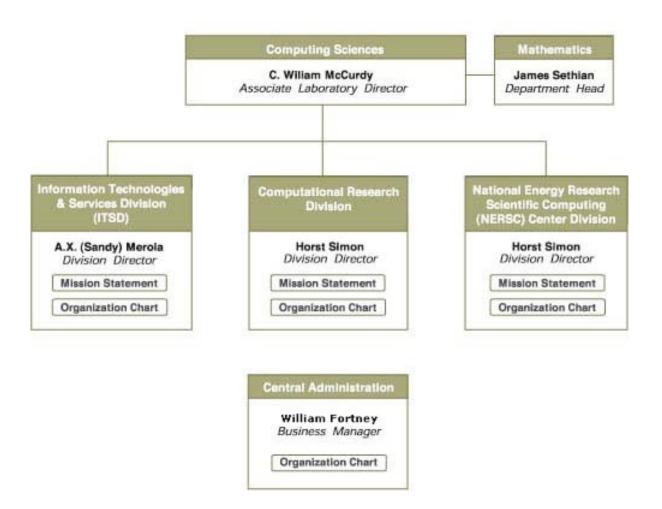
Lawrence Berkeley National Laboratory

Brent Gorda October 15th, 2003

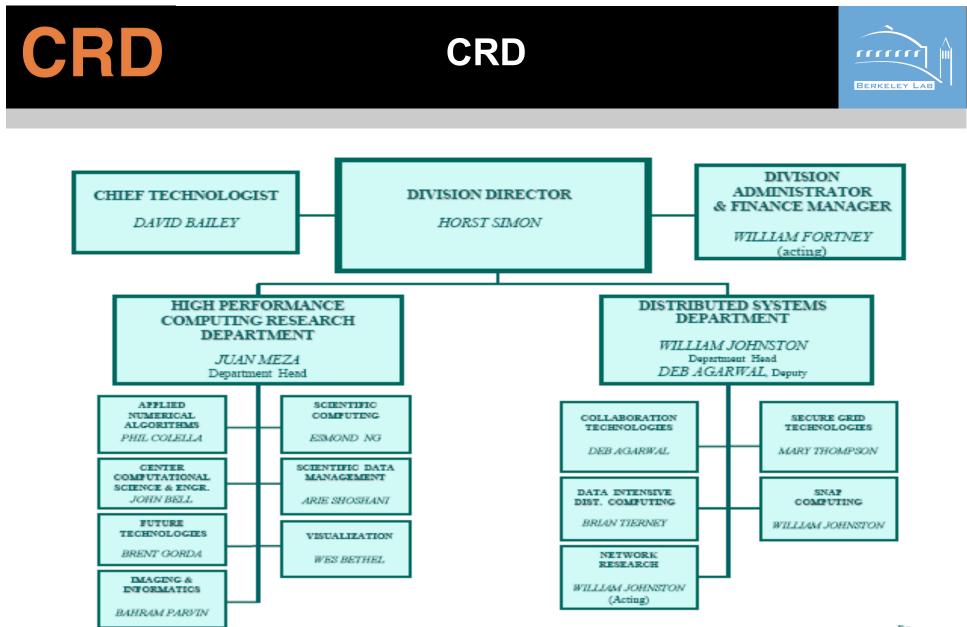
CRD LBNL Future Technologies

Outline

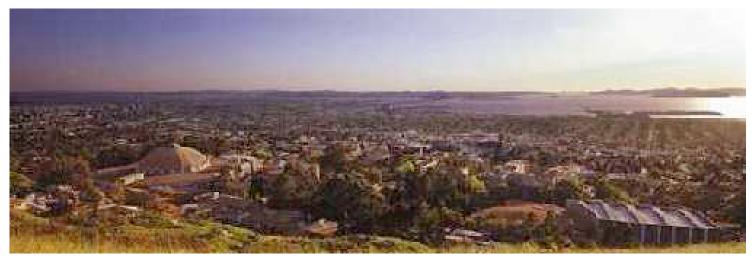
- HPC @ LBNL/NERSC
- FTG's purpose
- Performance studies, UPC, Checkpoint/Restart


BERKELEY L

Follow-up


Office of Science IENT OF ENERGY

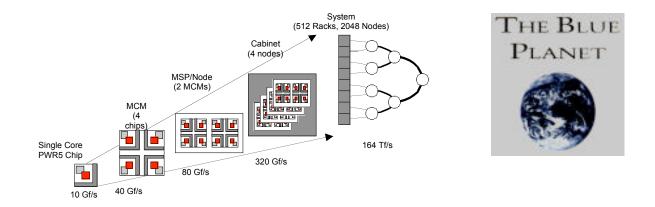
US DEPARTMENT OF EN


CRD NERSC Production Center

DOE Office of Science flagship Computing Center

Supports open, unclassified, basic research

- ~2000 Users, ~400 Projects
- Main computational facility (Seaborg) consists of:
 - 416 16-way Power 3+ nodes
 - 6,656 CPUs 6,080 for computation @ 1.5 Gflop/s each
 - Peak Performance of 10 Teraflop/s
 - 7.8 TB Memory, 44TB GPFS disk (+15TB local disk)



CRD Future Technologies Group

LBNL's Future Technologies Group (FTG) is focused on performance aspects of High Performance Computing (HPC).

FTG's focus is the 5+ year timeframe.

CRD FTG Activities: Architecture

FTG seeks to understand performance of new architectures:

.....

BERKELEY LAE

http://ftg.lbl.gov Bgorda at lbl.gov

Office of

Science

U.S. DEPARTMENT OF ENERGY

Modern Vector Evaluation

BERKELEY L

- Study performance of SX6, X1, Earth Simulator
- Study of key factors of modern parallel vector systems: runtime, scalability, programmability, portability, and memory overhead while identifying potential bottlenecks
- microbenchmarks, kernels, and application codes

http://ftg.lbl.gov Bgorda at lbl.gov

CRD Performance Studies on BGL

Leverage current work:

- Micro benchmarks in communications, memory access issues/patterns/conflicts
- Application kernels glimpse at performance expectations
- If able: select application codes for indepth capability-oriented study

Can BGL enable science for the Office of Science?

Applications of interest

BERKELEY 1 4

• Astrophysics:

- MADCAP Microwave Anisotropy Dataset Computational Analysis Package. Analyses cosmic microwave background radiation datasets to extract the maximum likelihood angular power spectrum. <u>Julian Borrill</u> LBNL
- CACTUS Direct evolution of Einstein's equations.
 Involves a coupled set of non-linear hyperbolic, elliptic equations with thousands of terms. John Shalf LBNL

• Climate:

CCM3 Community Climate Model <u>Michael Wehner</u> LBNL

Fusion

- GTC Gyrokinetic Toroidal Code. 3D particle-in-cell code to study microturbulence in magnetic confinement fusion. <u>Stephane Ethier</u> Princeton Plasma Physics Laboratory
- TLBE Thermal Lattice Boltzmann equation solver for modeling turbulence and collisions in plasma. <u>Jonathan</u> <u>Carter</u> LBNL

Material Science

 PARATEC PARAllel Total Energy Code. Electronic structure code which performs ab-initio quantummechanical total energy calculations. <u>Andrew Canning</u> LBNL

Molecular Dynamics

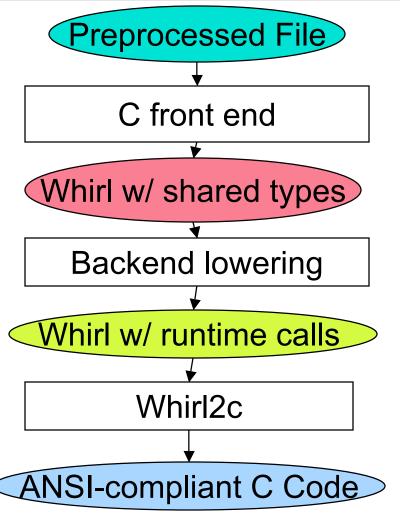
 NAMD Object-oriented molecular dynamics code designed for simulation of large biomolecular systems.
 <u>David Skinner</u> LBNL

Principal Investigator: Kathy Yelick (UCB) Joint project between LBNL and UC Berkeley

UPC language

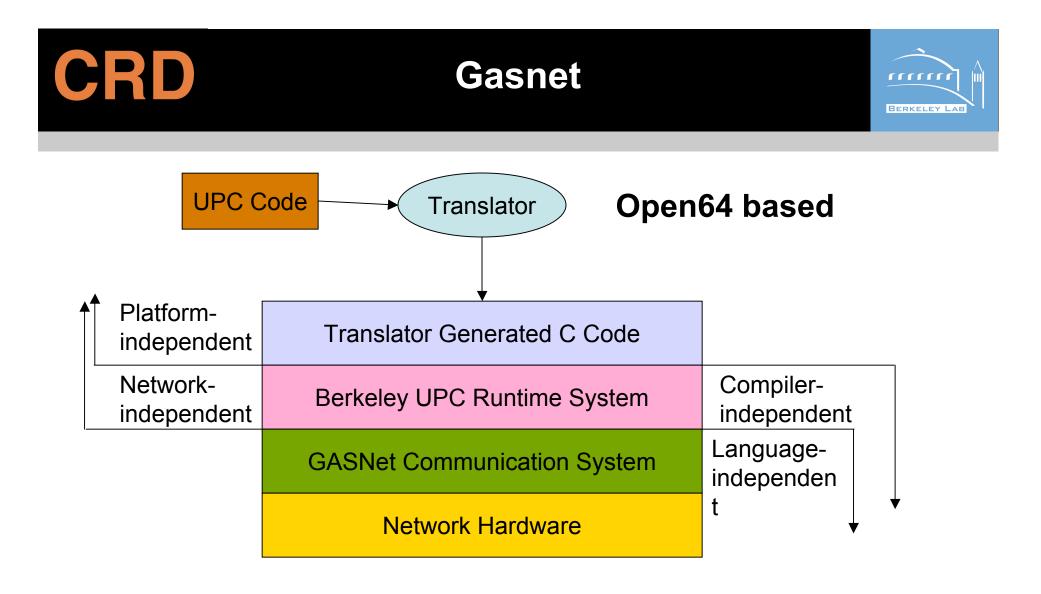
- UPC is an explicitly parallel global address space language with SPMD parallelism
 - An extension of C
 - Shared memory is partitioned by threads
 - One-sided (bulk and fine-grained) communication through reads/writes of shared variables

UPC has a "forall" construct for distributing computation:

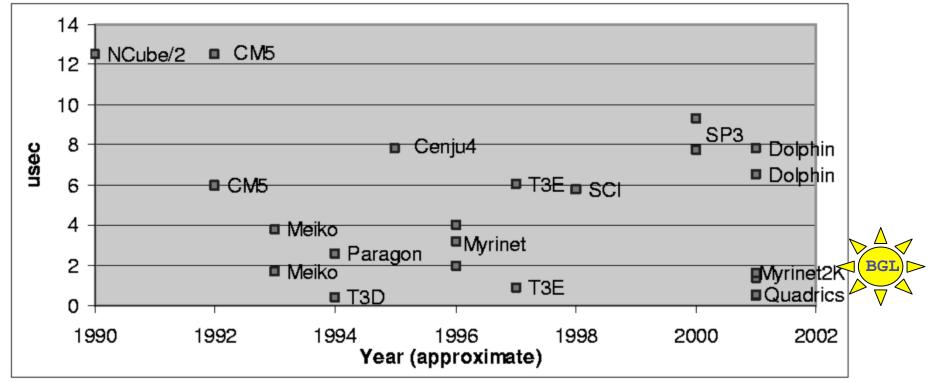

Ex: Vector Addition

```
shared int v1[N], v2[N], v3[N];
upc_forall (i=0; i < N; i++; &v3[i] ) {
    v3[i] = v2[i] + v1[i];
}</pre>
```


Compiler Implementation



- Based on the Open64 compiler
- Source to source transformation
- Convert shared memory operations into runtime library calls
- Designed to incorporate existing optimization framework in open64
- Communicate with runtime via a standard API


CRD

Goals: Portability and High-Performance

CRD Single word transfer is key

rrrrr

BERKELEY LA

Software send overhead for 8-byte messages over time.

Not improving much over time (even in absolute terms)

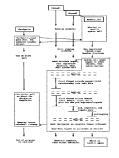
- Standard C compiler (optimizer good)
- Runtime support: GaSNet
- Low latency single word get/put operations
 - UPC Compiler is Open Source
 - V1.0 released early 2002
 - Next release for SC03
 - Strong BGL interest from UPC Team

- DOE Scalable systems software SciDAC
- Checkpoint/restart is a part of the larger resource management picture
- System initiated
- Apps needn't know (for the most part)
 - No recompile necessary
 - But: sockets, changing files, etc.

C/R Motivation

- System Level Checkpoint facility enables:
 - Resource utilization: (NERSC T3D ~70%-90+%)
 - Fault tolerance for long running applications
 - System Maintenance / Upgrades
 - "Livermore Model"
 - Gang Scheduling Moe Jette's work
 - Day vs. night use; debug vs long running
 - Capability + capacity

State of C/R



- Linux Kernel 2.4 (RedHat)
- Kernel Module no kernel source modification
- LAM MPI
- Some details:
 - Standard I/O working
 - In process: pipes, special device files, full process groups, and sessions

Bgorda at lbl.gov

- Signals (and handlers) reinstated, files reopened
- Visit LBL booth @ SC03

C/R on BlueGene/L

Checkpoint:

- Coordination of compute & I/O nodes
- Save state from compute node / BLRTS
- Messages in flight: reliable delivery just drop them?
- Interaction with rest of BG/L system: batch system
- Restart:
 - I/O node: reinstate file pointers, reaquire locks, pid, session ID, process group, etc.
 - Compute nodes: recover memory, reestablish communications end-points

Checkpoint restart is Open Source

- Initial release for SC03
- C/R on BGL shouldn't be hard

Bgorda at lbl.gov

- FTG is interested in whether BlueGene/L is an appropriate architecture for the Office of Science
- We have applicable projects and talent to contribute to the LLNL/IBM effort

Thank you!

