
Advanced Checkpoint Fault 

Tolerance Solutions for HPC

Paul Hargrove with Eric Roman and Jason Duell

http://ftg.lbl.gov/checkpoint

Paul Hargrove with Eric Roman and Jason Duell

checkpoint@lbl.gov

WTTC2008

June 9, 2008   Bangkok, Thailand

June 12, 2008   Phuket, Thailand



Introduction

Checkpoint. Save a process's state to a file.

Restart.  Reconstruct the process from a file.

BLCR.  Berkeley Lab Checkpoint Restart  for Linux.

Project goals. What is BLCR's approach to CR?

Why use checkpoint/restart?

http://ftg.lbl.gov/checkpoint

Why use checkpoint/restart?

System design. How does BLCR work?

Current status. What does BLCR do now?

Plans. Where is BLCR going?



Project Goals

Provide checkpoint/restart for Linux clusters running scientific workloads.
Checkpoint and restart jobs (shell scripts) running MPI applications.

Support a wide variety of networks.

Fit easily into production systems
Run unmodified application source.

Run unmodified binaries where possible.  No special compile/link in most cases.

http://ftg.lbl.gov/checkpoint

Run unmodified binaries where possible.  No special compile/link in most cases.

Run on unpatched kernels (as a kernel module).

Run with unmodified system libraries (e.g. libc).

Unrelated features (ptrace, Unix domain sockets) have low implementation priority

Why checkpoint?
We see three main scenarios:  scheduling, fault tolerance and debugging.



Usage Scenarios

Batch Scheduling.

C/R can be used to preempt and/or migrate running jobs.

Drain queues quickly for maintenance.

Increase system throughput by switching job mix between long jobs and wide jobs.

Increase system utilization by allowing the scheduler to correct for bad decisions.

Gang scheduling.  Divide system time up into slots.

Priority scheduling.  Run jobs with the highest priority.

Fault Tolerance.

http://ftg.lbl.gov/checkpoint

Fault Tolerance.

Not every application can checkpoint itself.

Periodic checkpoints can reduce lost work in case of failure (but adds cost to 
normal fault-free execution).

Reactive checkpoints can respond to non-yet-fatal problems (like loss of a fan).

Debugging.

Rollback execution to a checkpoint taken before a fault, restart with a debugger.



Other Approaches

Application-based checkpointing.

Efficient: save only needed data as step completes.

Good for fault tolerance: bad for preemptive scheduling.

Requires per-application effort by programmer.

Library-based checkpointing.

Portable across operating systems.

Transparent to application (but may require relink, etc.) .

Can't (generally) restore all resources (ex: process IDs) .

http://ftg.lbl.gov/checkpoint

Can't (generally) restore all resources (ex: process IDs) .
Can’t checkpoint shell scripts.

Hypervisor (similar arguments for software suspend) .

Granularity is a full virtual machine.

Administrators have to maintain one VM per checkpoint.

Rollback.  What happens to the disk state?

Debugging?

Coordination for distributed jobs is still necessary.

Scheduler integration.



Implementation

BLCR provides single node checkpoint/restart through kernel modules and a 
runtime library.

libcr.so:  Full library: can register handlers, request checkpoints, etc. 

OR libcr_run.so:  Stub library with only a default checkpoint handler

Kernel modules:  coordinates the process checkpoints, saves/restores kernel 
data structures, interfaces with library and command line tools.

BLCR doesn’t provide built-in support for distributed runtime features

http://ftg.lbl.gov/checkpoint

BLCR doesn’t provide built-in support for distributed runtime features

TCP sockets, bproc namespaces, etc.

Instead, BLCR provides hooks which allow apps and libraries to coordinate 
checkpoints and restart distributed processes through callbacks.

So, the MPI library must know how to checkpoint; the user application does not.



Basic Operation

Rough idea:  Send the application a signal that tells it to call into BLCR.

A checkpoint request can come from the same process, or from another.

By default, user code doesn’t need to do anything to handle it.

http://ftg.lbl.gov/checkpoint

If desired, user code may register a callback to handle it.

If desired, user code may block requests (critical sections).



Example:  Migration

Checkpoint 
requested

http://ftg.lbl.gov/checkpoint



Status

Processes, process groups and sessions
Shell scripts (bash, tcsh, python, perl, ruby, ...) .

Multithreaded processes (pthreads with standard NPTL) .

Resources shared between processes are restored.

Restore PID and parent PID.

Files

http://ftg.lbl.gov/checkpoint

Files
Reopen files during restart: open, truncate, and seek.

Pipes and named FIFOs.

Files must exist in same location on filesystem.

Memory mapped files are remapped.

Option to save shared libraries and executable.

Option for file path relocation.



Supported Platforms

Linux kernel 2.6 kernels

test with kernels from kernel.org, 
Fedora, SuSE, and Ubuntu

support of custom patched kernels 
through autoconf

Architectures

x86, x86-64, ppc, ppc64 and ARM

Batch Queue Systems

Torque support available in 
recent snapshots.

qhold, qrls, and periodic 
checkpoints tested.

BLCR, Condor and Parrot 
HOWTO available.

http://ftg.lbl.gov/checkpoint

x86, x86-64, ppc, ppc64 and ARM

Xen dom0 and domU

MPI Implementations

MVAPICH2

LAM/MPI 7.x (sockets and GM) 

MPICH-V 1.0.x with sockets

OpenMPI

Cray Portals

HOWTO available.



Example 2: MPI Checkpoint/Restart

Step 1 (mpirun) and Step 2 (checkpoint)

1

http://ftg.lbl.gov/checkpoint

2



Example 2: MPI Checkpoint/Restart

The job terminates...

http://ftg.lbl.gov/checkpoint



Example 2: MPI Checkpoint/Restart

The job restarts...

http://ftg.lbl.gov/checkpoint



Work In Progress

Queue system support

BLCR, Torque, and OpenMPI

Alternative handling of files

Allow checksum of file, with restart error if it has changed.

Allow saving contents of file (restore may either replace or rename) 

Support files that are not open at checkpoint time, but are specified as 
being part of the checkpoint

http://ftg.lbl.gov/checkpoint

being part of the checkpoint

Improved I/O

On-the-fly compression of context files

Direct I/O

Other

Detailed error reporting (e.g. What file caused ENOENT?)

Zombie processes



Conclusions

Future Work

Interested in other queue systems (LSF, SGE, SLURM, etc.) 

More MPI implementations

MPICH 2 support anticipated

Vendor support (Quadrics)?

MPI support for partial/live migration

Ship support with distributions (ROCKS, OSCAR) 

http://ftg.lbl.gov/checkpoint

Ship support with distributions (ROCKS, OSCAR) 

We expect BLCR to be deployed in a production batch environment before 
the end of the calendar year.

Torque support will be available soon.

You should be able to install BLCR on your system and checkpoint your MPI 
applications with it.

We would like you to download BLCR and try it!



For More Information

http://ftg.lbl.gov/checkpoint
Papers (available from website):

“Design and Implementation of BLCR”: high-level system design, 
including description of user API

“Requirements for Linux Checkpoint/Restart”: exhaustive list of Unix 
features we will support (or not).

http://ftg.lbl.gov/checkpoint

features we will support (or not).

“A Survey of Checkpoint/Restart Implementations”: focusing on open 
source versions that run on Linux 

“The LAM/MPI Checkpoint/Restart Framework: System-Initiated 
Checkpointing”: implementation with LAM/MPI

CIFTS
Coordinated Infrastructure for Fault Tolerant Systems

Parent project.  Building a notification infrastructure for BLCR.

http://www.mcs.anl.gov/research/cifts/


