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Existing formulas for the confidence of estimates of modified Al Ian variance (rnvar) are
based on the reinterpretation of mvar in terms of third differences of the cumulative sums Wn of
time residuals x~. These formulas work only if the long-term linear frequency drift rate is zero, or
can be removed from the data. In analogy with the “overall second difference” drift estimator,
which uses three values of xn, an unbiased drift estimator is constructed from four values of w~,
placed according to a minirnax  variance criterion. Partly because of the noise rejection of the
cumulative-sum operation, the resulting “4-point w“ estimator has comparatively low variance
for all five standard noise types, white PM to random-walk FM. Its variance is tabulated
alongside those of several well-known drift estimators, arranged in “discreteness” classes for
easy comparison.

When an rnvar estimator is applied to data from which an estimated drift is removed, the
the estimated mvar, in general, has a nonzero bias, and its variance differs from that of the
corresponding estimate in the situation of zero or known drift. l’hese  effects are computed for the
4-point w drift estimate. As expected, the mvar bias depends greatly on the noise type, becoming
heavily negative for large averaging times T in the presence of random-walk FM noise. On the
other hand, the number of degrees of freedom of the mvar estimator turns out not to be greatly
affected by drift removal, so that a simple noise-independent conservative strategy to account for
it can be devised.

A formula, almost noise-independent, for the variance of the 4-point-w drift in terms of
mvar is given. Unfortunately, to use this formula one has to extrapolate the value of mvar at the
largest possible ~, with the true drift removed, from values of mvar for lesser ~.

It is apparent that other means for uncoupling the deterministic and ranclom aspects of
clock behavior should be considered. Among these are higher-order variances, the “totvar”
method, and frequency-domain techniques.

‘l’his work was performed at the Jet Propulsion I,aboratory,  California Institute of l’ethnology,
under a contract with the National Aeronautics and Space Administration.
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Abstract

Aclrift-rate  estimatorc onstructcd froI[lfo~lr val~les oftllectlttl~lla-
tive sum of clock residuals is S11OW’IL to have goocl error perfc)rluance
in the presence of the five stauclard power-law noises. A colllparisou
table of several drift estimators is given. The bias and variaucw (cm
equivalent degrees of frccclom) of a moclifkc] Allau varia]lcc esti Iuator
iucorporatiug cirift removal is calculated.

1 Introduction

The confidence of estimates of moclified  Allan  variance (mvar) can be derived
from previously-published formulas and algorithms [1, 2, 3], but olily for sit-
uat ions in which mvar is not dominated by lillear frequency clrift. For such
a situation to hold, either the actual clrift rate must be negligible for a givell
span of clock data, or the clrift rate m~vit bc removed after bei~lg  estimated
from a longer span of data or by another  method, such as hydrogen-maser
cavity tunirlg. The present illvcstigatio~l  has t~vo goals: 1) dcsigu of a clrift
estimator with sat isfactory error pcrformatlce in tile presence of the five
standard power-law phase noise models; 2) finding  out how removal of drift,
as estimated from the current data, affects tllc bi.m and variance of the esti-
mated mvar of the resicluals,  and thereby designing an automatic prc)cedure
for assigning mvar confidence illtervak+.

The first goal is achieved by a linear combination of four values chosen
from the sequence of cutnulativc sums of the time rcsiduak.  ‘1’he variance of
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the chosen estimator for the five standard lloisc  Inodcls  is colnparecl  to that
of several other drift estilnators.  Table 1 gives a collcise present  aticln of their
variances in a uniform notation, along urith a lliscreteness”  cl~wifkation  of
drift estimators.

The second goal is partially achieved, in that the requirecl  lnean and
variance comput  at ions were successfully carriccl out; results are presented
below (Figs. 2 and 3). Unfortunately (ancl not mlexpectedly),  the Lias of
the “net” (drift removecl)  mvar estimator depenck so heavily on the noise
type that the author cloes not know how to colnpensate for the bias without
human judgment of the dominant noise type and a risky extrapolation of
the sigma-tau curve to an unobservable region.

2 Drift Estimator Design

The design is based on continous-time  power-law mocleh of phase noise. Let
z (t) ,0< t <1’, be the time clel)arture  of a clock, with y (t) = da: (t) /clt the
normalized frequency depart  ure, and let 2(7 (t) == [ z (t) dt, the cent inuous-
time analog of the sequence w,, = ~~=.l  Z (7LTo),  whose thircl clifferences  can
be used for computing modified Allan variance [2]. The iclea is to make
an unbiased estimator of frequency-drift rate from cliscrete  values c)f w (t)
instead of values of z (t), thus gaining the advantage of an integration over
tile noise in z (t). A quadratic com~Jollcllt ~c/2 c)f z (t) appears as a cu-

1 3 of UI (t);  consequently, at least four values of u] (t) arebic component ~ct
needed.

Consider the one-parameter family of estinlators

6

[

‘w (T – 7’7’) – ‘w (7’7’)
~ (~)  =  ~.~_~ ‘u) (7’) – ’211  (()) –

1–27’ 1
(1)

where O < 7. < 1/2. If w (t) were a cubic l)olylIonlial  with leading term
1 t3, then L (r) would equal c.~c Selection of 7“ is based  on the behavior
of the variance of 2 (7-) under the five stauclarct  ~)ower-law  z noises: \vllite
PM, flicker PM, white Fh4, flicker l’h~, and randon-walk  I“hl, with spectral
clensities  S1 (j) a ~~, ~ = O, –1, –2, –3, –4. Si[lce SUj (j) ~ ~p–2, Ivhich is
integrable over high frequellcies,  one call C1O without a high-frequel  Lcy cut off.

The parameter 7. is C11OSCIL according to a nlillimax  criterion. By tile
method of the generalized autocovariance (gacv),  closed- fornl expressions
for var L (r) aEs a function of 73 can be derived for the five lloise types. Figure
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1 Sllc)ws plots of
war t (7’)

‘u~ (r) == — —
i n f  var i5 (7’)’

0<,<1/2

indexed by 1~1. Since the ul)per  cnlvclope  of tllc five 7J~ futictions has a
minimum at r = 0.0958 . . . (tllc intersection of the curves  for white Phl  and
white FM), it is reasollablc to choose r =: 1 /10 for sim~)licity.  Doing so gives
a clrift estimator

[
&4 = :R 4ul (T) – 4zu  (o) – 5W (3+5’”(H ‘2)

henceforth callecl the four-point  w estimator, abbreviated as w4. It is also
apparent from Fig. 1 that tllc pcrforlnallce  of the estimator could be int-
provecl  by eliminating white PM from the noise set;  the corresponding min-
imax value of r would be about 0.0337.

In practice, onc uses a cliscrete-time version of 104: Given phase clata
zTl=z(7z~O)  for7~= l,..., N, form the secluence  w,,, whcm zoo is arbitrary
(usually O), w,, = UJCI  + ~~=1 zj. Choosing an illtegcr  7L1 close to N/l O, let
rl == 7L1 /N. The drift estimator is given by
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7LJN_7L1 — UITL1
‘— UIN — UIo – 11–27’] “

tv,4d = j@TgT1 (1 – ~1 ) (3)

‘1’heoretical  formulas for the variance of ?W4 were chcckecl by simulations
o f  &ld for all five noise  ty~)es, with 1000 runs of N = 100 points each.
Excellent agrccmeIlt  was ol)served. Below, a possible method  for cstimatiug
the variance of &j4 from the ciata is given.

3 Comparison with Other Estimators

Recent papers of Logachcv  and Pashev [4] allcl of Wci [5] give variance tables
for other unbiasecl  drift estimators under all or so]nc of the standard noise
types. Following arc names and abbreviations for these estimators, and
formulas for the colltill~loLls-tiIllc analogs that were used for vel ifying tllc
previous results and collsolidatillg tlleln into a uniforln  llotation.

IJcast-squams  quadratic fit to x (IS*),  o~)tinlal for wllitc  PN’1:

(4)
60 ’7’@z = —. /(l’a ~

6t2 – (Ki”t + 7’2) 2: (t) Lft

- ;j [w (T) - w (o ) ]  - - * /7  (’t - 7’) ZL, (t) C i t .. (5)
o
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l’hree-point  z (X3), also called overall sccoll[l-(liffcrcl ice:

Least-squares linear  fit to g (LSy),  o~jti[llal  for w’llitc FM:

6 I
7’

21JSV = —-
7’3, ~

(2t - 7’) g (t) C?t

—. $ [z (o) +-x  (2’)]  - ; ~“x (t) cit.

(6)

(7)

(8)

Least-squares constant fit to z = cJy/clt  (I, S.Z), also callecl two-point  y,
optimal for random walk FM:

.

/

1 7 ’

C1’SZ = i= ()

2 (t) d == + [IJ (T) – y (o)] . (9)

As defined, this estimator call be appliecl  to random walk FM but not to
infinite-bandwidth white and flicker l’h~ (let alone the PhI noises), for which
poi]lt values of y (i) are not definecl. 111 its place olle L]scs a discrete-time
version call~!cl two-pozrd J (jj2) or mean second-difference:

“--[ x( ’’xtx$)--$(~)’z(o)  lz(o)l ’10)252 = (N --1) T ’

for which the sample ~)eriocl of z (t) is ~Jresumecl to be T/N.
These drift estimators fall iIlto a natural classification that, determines

the noise types over which they are effective. The 204 ancl LSZ estimators are
called w-ciiscrete  because they contain cliscrete values of w (t), ancl perhaps
also integrals over w (f). Likewise, x3, l,Sg, ant] ij2 arc x-cliscrete, and LSZ
is y-cliscrete.

Table I gives tile variance of all these clrift estilnators  over the five noise
types,  scalccl accolcling to the convclltion S; (~) = hfi+ Zjp-t  2 for the one-
sidecl spectral density of y (t). ~ror these results to ap~)ly to the actual
discrete-time estimators, the hi.gh-frc!clm!ncy cLltofi ~~ of the noise mLlst sat-
isfy the NyclLlist criterion for tile san~~)le  ~Jeriocl TO, i.e., ‘j~TO ~ 1 [6]. ‘The
results are asymptotic K!lativc to the ass LIIllptioIls 2n flLT >>1, N >>1. With
minor changes in logarithlnic cx~)ressionsl  the results agree with the citecl
references. The numbers in brackets arc the rankings of the estimators over
those noises for which tile variarlc~e is independent of f}, ancl clata size N (iI1
the range of the aSSLIIll~)tiOIM).



The similarity of the cstilnators in the same cliscrcteness  class is appar-
ent. The w-discrete estimators are ballcl\\’icltll-irlclepellclellt  for all the noises,
the z-discrete estimators only for the FM noises. If all the noise types are
included, then W4 is the best overall drift estimator. If only the Fh’1 lloises
are included, then LSy is best; even so, for ranclom walk Fh4 the W4 variance
is only 10% more than the LSy variance.

4 Gross and Net Mvar

Assume that the time deviation process x (t) has stationary seconcl  cliffer-
ences.  Then it has a constant frequency drift rate c=, which, if nonzero, gives
rise to an mvar component c~T2/2 that dominates mvar for long averaging
times. In terms of the time residuals x,, = x (7L~o) ancl their cumulative
sums w,,, we have

where ~ = m~o, F; denotes mathematical expectation, ancl A,,, is the back-
ward difference operator with stride m. According to the thircl-dif~erence
formulation of mvar [2],

I11OC1 CJ: (~)

Because it includes drift, this
replace the expected square by

m o d  CJ:o (7) =

—

—

1.-  –“ [(70&#’7J2]2T4

is called gross mvar.
the variance:

C-3)2]

Net mvar, which is invariant to the value of c=, can also be definecl  as mvar

[j+ (TO&W71 –
C2T2

Inocl 0; (T) -- *.

To define net lnvar,

of the red’ucecl time residual process x (t) – crt2/2.
Now suppose that one has time data z], . . . , ~hI with sanl~}le ~el’iod  70,

and let T = IVTO. For any constant c, forln the quantity

(11)
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where AI = N — 37n + 1. TiLcn VT (~,7’,0) is aIl ullbiascd  esti Inator  c)f gross
mvzLr (ancl also gives (1 1 ) for any c if 2-T, is replaced by X71 — CTjjTL2/2 or W7L by
wrt — c~~n3/6).  If Cz is known, then  Vz (~, T, cz) is all uIlbiased estimator of
net mvar. More often, one ha.” some ulhi~lscd  estimate ~ that clepends  only
oll the clata at hancl. In this case, the corrcspollcling estimator V,, (-r, 7’, Z),
while nonnegative ancl invariant to the true! value of cr, is biased for net
Invar because subtractillg  all estimated clrift telkcls to cut i[lto tile long-term
random fluctuations.

For theoretical computations of the mean and variallce  of these estima-
tors, it is conveniellt  to a~)proxinlate  the above setting by a colltillLlolls-tillle
forlnulation that uses the asymptotic lnodified  Allan variance of Dernier  [6]
and a continuous-time analog of (11) ill which tile sum becomes al~ inte-
gral. This approximation is valicl  providecl  -r/-r. >> 1; simulations inclicate
that -r/-r. > 8 is adecluate. The W4 clrift estimator tW,4 is usecl for form-
ing the biased net mvar est il nat or. Fk!cause Vz (T, 1’,  Cr) and Vr (~, l“, Fw,d)
are invariant to true clrift rate Cz, one can assLIIne CT = O; thcm the third
w-cliff erences have mean zero. Using the gacv met hocl, oIle can compare
the mean of Vx (T, T, &4)  to the true net mvar; assuming also that the
third w-differences form a Gaussian process, one can compute th[! variance
of Vz (~, 1’, Cr) and Vx (T, T, ?W4).  !I’he computations, similar to those for
conventional Allan variance [7], are not given here.

Figure 2 shows the bias of tllc llct Invar est itnator VZ (~, T, &,4) in terms
of mclev (square root of mvar) as a function of I ‘/~ for the five standard noise
types. As an example, take the most extrelnc case, rancloln  walk Fhfl and
~/T = 3, for which EV~ (’r, T, &4)  = 0.06352 mocl a~o (T); the plottecl  value
is {O- – 1 = –74.8’%o.  Sin~ulatioll  results (N = 1152, 10000 trials),
S11OWI1 by the open symbols, agree well mlough vritll theory to serve as curve
labels. Especially in view of the persistellt  large negative bias for random
walk FhI (still —12.5~0 for T/T = 10), one needs  to acljust measurement
results on a l[loclcl-de~)el~del~t  basis.

Figure 3 S}1OWS lIOW removix]g  tl~e W4 c!stilnatcd  drift c}langes  the confi-
dence of the mvar estimator. ~onfidmlce is Incasllrecl by cquivalmlt  clcgrem
of freedom (eclf), clefinecl  for a positive randoln  variable X by cdf X =
2 (EX)2 / var X. computations arid approximations for the eclf of the ulL-
biased estimator Vr (T, 7’, G) have previously been given [2, 3]. Here, the
continuous-time formulatioll was Lmxl for a~)~)roximatirlg  those  com~)utations
and computing the cclf of the biased  net mvar estimator VT (~, T, ?i,4). Fig-
ure 3 shows eclf (biased) – edf (unbiased) vs. T/T for the standard noises.
Tile relative difference is small since all the edfs arc of order T/~; a sitn-
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ple conservative a~)proxirnation for edf (biased) is edf (unbiased) -- 0.75.
At 7- = T/3, each eclf is I because the cstil[lator is the square of a sil~gle
Gaussian random variable.

5 Estimating Drift Estimator Variance

ln their discussion of the 2:3 cirift estimator, Weiss and lIack[nan  [8] poiIlt
out that its variance is simply (8/1’2) a~o (2’/2), where m~o (~) is net con-
ventional AIlan variance, i.e., Allan variance with t}le true clrift re~no~ecl.  In
turn, C& (T/2) is to he estimated from the clata by extrapolating tl~e esti-
mated u~o (T) (using &3 itself to relnove  drift) for lesser  T out to ‘7_ = T/2.
‘This requires hLIIIl:ul  juclgment of tile behavior of the rlet sigma-tau curve
in the face of increasing bias ant] variance as ~ increases.

The variance of the W4 drift estimator can be estimated by a similar
methocl  usillg net rnvar. One firicls that

var &4 = #IIlod ojo (?’/3) ,

where Ap = 3.70, 3.14, 3.14, 3.41,3.80 for /3 = O to –4 (white PM to random
walk FM). Therefore, a conservative estilnate  of the stanclard deviation of
&4 is (3.8/T) mod ago (T/3). Again, this requires intelligent extrapolation
of the curve for estimated net mclev out to ~ = 2’/3, where  llet Invar is
essentially unobservable because its estimator has one clegrec  of freeclorn
and a bias as large as –93.6Y0.

6 Concluding Remarks

The four-point w drift estimator clescribecl above clesertres  collsiclcratioll as
a general-purpose methocl  for estimating frecluency drift rate. From Table 1
onc can calculate the ratio of its stanckwcl deviation to those of the c)ptimal
estimators for the even-~ )owcr  noises: 1.242 for white PM, 1.111 for white
FhI, and 1.151 for random-walk Fhl. Although the ranclom-walk  FM case
is important, its optimal drift estimator, lneall sec:oncl ciif[erellce,  ~)erforms
poorly in the presence of otl~er plla.se noises. hloreover, the stanclard clevia-
tion of the four-point w estimator is only 1.051 tilnes that of the seconcl-place
estimator, least-scluares  linear fit to frequency.

The heavily rllodel-cle~Jellclellt  biases shown in Fig. 2 leacl to an unsat-
isfactory situation in which guesses about the long-term noise ty~w have to
be made in orclcr to comr~ensate  for the bias of the net mvar estimator.

7



other  methods for uIlcoup]iIlg  dC!tCH’IIliIliStiC  mld I’aldonl a“pcds of clock
clata are already being illvestigated  or used. IIigllcr-order vatiallces,  such
as Haclamard  variance (mean-square third clifference  of x) ancl wavelet  vari-
ances, automatically kill the quadratic component of x (t). ‘1’he “totalvar’]
processing methocl,  which augmellts  a clata sequence with a reflected copy of
itself, has been foullcl to rccluce the bias of clrift rmnoval  froln conventiollal
Allan variance in a specific case [9]. P[!rhaps a combination of flequcncy-
domain techniques could be useful: one lnight perforln a s~)ectral estilnation
procedure to characterize the ranclom nc)ise, while estinlatillg  the clrift rate
as the mean of the seconcl phase clifferences  by applyilqg  a clata taper with
low sidclobes,  to reject all but the lowest-frequency com~)ollellts.  Onc COUIC1
hope to assign confidence intervals to the results ill a model-free way.

This work was performed at the Jet Propulsion laboratory, California
Institute of ‘~echno]ogy,  under a contract with the Natiollal  Aerollautics  alld
Space Aclministration.
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Table 1: Variance of frequency clrift estimators. Names: W4 = 4-point w,
I,% = least-squares quadratic fit to x, Z3 H- 3-point z, IJSy = least-squares
linear fit to y, LSZ =- least-scluarcs colIstaut  fit to z, ij2 = 2-point ~. Each
entry is to be multipliml  by the factor on the right. The numbers in brackets
are rankings within each noise type.

zu-cliscrctc mcliscretc
noise type U74 IJsfc X3 Lsy 1S.2 or ij2 factor

white PM ~%j” [21 90[1] safh~ 18 fh~’ *
flicker Phl 74.84 [1] 75[2] 24 in (4.441 j},T) 181n (4.l17f~T) *

white FM % [’21 y [4] 8[3] 6[1] N $%

flicker Fh4 10.9 OO[2] ~ [4] 161u2[3] 9[1] 3+21n N }1-1
-p

h- XT2
rancl.-wk. FM ~ [3] y [5] ~ [4] ? [21 2[1] ~



Fig. 1. Parameter selection for the 4-point w clrift estimator. “1’he mini-
max point of the five variance curves is circled.

Fig. 2. Bias of net mvar estimator, expressed as 100({~nlvar  – 1).

Fig. 3. Change in equivalent degrees of freeclom when removing clrift
from mvar estimator. Plotted is eclf (biased) – edf (unbiased).
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