

Constellation-X/ IXO
Facility Science Team Meeting
GSFC Greenbelt, MD
20 August 2008

Constellation-X FST Science Panel Plasma Diagnostics and Atomic Astrophysics

Nancy S. Brickhouse

Harvard-Smithsonian Center for Astrophysics

Panel Members: G. Brown, J. Li, V. Kashyap, M. Sako, D. Savin, D. Schultz, W. Waldron, B. Wargelin

Outline

- Theoretical and Experimental Atomic Physics -> Plasma Modeling
- Examples of Plasma Diagnostics for Con-X/IXO
 - Charge Exchange
 - Collisionally Ionized Plasmas
 - * Case Study: Mn/Cr Ratios in SNR from Type Ia SNe
 - Photoionized Plasmas
 - * Case Study: Time-Dependent Photoionization to Study Feedback in AGN
- Conclusions

Data -> Models -> Interpretation

- Collisional ionization rate coefficients
- Photoionization rate coefficients
- Radiative recombination rate coefficients
- Dielectronic recombination rate coefficients
- Collisional excitation rate coefficients
- Oscillator strengths
- Wavelengths
- All elements < Z=30
- All ionization states in X-ray regime
- Fluorescence yields
- Inner shell lines
- Charge exchange rate coefficients
- Brehmsstrahlung
- Molecular/solid absorption cross sections
- Nuclear cross sections, r- and s- process
- MHD/Hydro simulations and experiments
- High power lasers/photoionization
- Particle physics

Charge State
Electron Temperature
Electron Density
Elemental Abundance
Absorbing Column
Optical Depth
Velocity

Charge Exchange Spectrum

Chandra ACIS observations of Comet Linear compared with LLNL EBIT/ microcalorimeter measurements of slow solar wind species

He-like Ne IX G-ratio Theory and Experiment

New calculations (Chen et al. 2006, PRA)

G-ratio agrees with LLNL EBIT measurements of Wargelin (PhD Thesis 1993)

Derived T from Capella in better agreement (Smith et al. in prep)

Diagnostics for T_e, N_e, N_H, R

Mauche et al. 2001

Charge State Balance for Collisional Ionization Equilibrium

Results for Iron

Bryans et al. 2007

Relative Mn/Cr Abundances in Type Ia SNe to 10% Accuracy?

- T from H- and He-like line ratios and fluence (n_et) from NEI charge state distribution of "uninteresting" ions
- NEI charge state distribution for Mn and Cr
- Κα fluorescence yields for Mn and Cr (or at least their spectral signatures)
- Fe experiments on LLNL EBIT demonstrate ability to produce Kα spectra during ionization
- Absolute normalization of Cr to Mn difficult
- Simulated spectra (e.g. Monte Carlo) to test systematic errors

Time-Dependent Photoionization to Study Feedback in AGN

NGC 4051 XMM-Newton

Krongold et al. 2007

Effects of Atomic Data on Thermal Stability in Photoionized Plasmas

Locating the Warm Absorber

- Time-dependent photoionization models not yet selfconsistent
- Radiative transfer?
- Low ionization species not well benchmarked (Fe M-shell Unresolved Transition Array)
- Accurate wavelengths for velocity studies
- Develop new density diagnostics

Conclusions

- Of atomic, molecular, solid/dust, plasma, particle, and nuclear, we focus on *atomic physics* because of its immediate impact on high resolution X-ray spectroscopy.
- Controlled experiments and complete, detailed theory is required to understand the atomic physics.
- X-ray astronomy is a model for interaction among astrophysics, plasma modeling and atomic physics.
- X-ray astronomy currently benefits from an active, responsive "laboratory astrophysics" effort. Stable funding, in particular for experimental groups with large infrastructure, needs to be in place.
- Planning for the future requires that we first identify areas of greatest uncertainty, highest science priority, and means for improvement.

Electron Density and Photoexcitation

