Mapping and Pseudo-Inverse Algorithms for Data Assimilation

(8)

Paul Fieguth Systems Design Engineering, University of Waterloo

FFT-

Abstract:

Among existing ocean data assimilation methodologies, reduced-state Kalman filters are a widely-studied compromise between resolution, and computational feasibility. Such reduced-state filters require mapping operators from the fine grid to the reduced state and vice-versa; that is, that the state-reduction and interpolation operators be pseudo-inverses of each other.

This poster investigates a variety of approaches to computing the pseudoinverse and also evaluates the mapping performance of eleven interpolation kernels.

Introduction

Goal: to understand and predict the general circulation of the oceans.

Existing approaches remain a compromise between resolution, optimality, error specification, and com-putational feasibility. Widely-studied compromise: reduced-state Kalman filter in which the measurement update takes place on a reduced state compared to the full state of the Ocean General Circulation Model (OGCM).

Main challenge: require mapping operators from the fine (OGCM) state to the reduced state and vice-versa. Let \mathbf{x}_f and \mathbf{x}_c represent the fine and coarse state vectors. State reduction \mathbf{B}^* and interpolation \mathbf{B} operations defined such that

 $\mathbf{x}_c = \mathbf{B}^* \mathbf{x}_f, \qquad \mathbf{x}_f = \mathbf{B} \mathbf{x}_c + \boldsymbol{\epsilon}, \qquad \mathbf{B}^* \mathbf{B} = \mathbf{I}.$ (1) B* and B are pseudoinverses, a condition which ensures that repeated subsampling and interpolation do not lead to a degradation of the coarse-scale data: - B*Bv (2)

$$\mathbf{x}_c = \mathbf{D} \mathbf{D} \mathbf{x}_c$$
 (2)
a define fast storage-efficient methods of

finding B* from B. Existing mapping and pseudo-inverse schemes often involve the brute-force computation:

 $\boldsymbol{B} = \boldsymbol{B}^{*T} \left(\boldsymbol{B}^{*} \boldsymbol{B}^{*T} \right)^{-1}, \quad \boldsymbol{B}^{*} = \left(\boldsymbol{B}^{T} \boldsymbol{B} \right)^{-1} \boldsymbol{B}^{T}.$ (3)

Where the matrices are of size $n_f \times n_c$, where n_f and n_c are the fine-grid dimension of the ocean model and the coarse-grid dimension of the reduced state, respectively.

Magnitude of challenge: Suppose we have a global problem with $1/12^{\circ}$ -spacing: $n_f \simeq 10^7$. Suppose the coarse grid has grid spacing of 2°: $n_c \simeq 10^4$. Then the mapping and pseudo-inverse operations, stored as dense matrices, are each 1 TERABYTE in size!

Inversion Criteria

Objective: t

In addition to a computationally efficient approach to identifying a pseudoinverse, the interpolation kernel in B must satisfy at least two other requirements.

First: sensitivity to lateral translations must be minimized, to ensure that a slow, advective flow is not progressively corrupted by repeated mappinginterpolations:

$$SBB^* \approx BB^*S$$
,

(4)

where $\mathcal S$ represents a spatial translation on the fine scale. This is effectively an antialiasing or bandlimiting

Second: insensitivity to noise, that is, we wish to limit the coarse-scale amplification of fine-scale perturbations. The noise sensitivity is proportional to

$$\frac{\left| \vec{x}_{c} - x_{c} \right| \left| x_{f} \right|}{\left| \delta \right| \left| x_{c} \right|} = \frac{\left| B^{*} \delta \right| \left| B x_{c} \right|}{\left| \delta \right| \left| x_{c} \right|}.$$
(5)

 $\sigma_{\max}(\mathbf{B}) * \sigma_{\max}(\mathbf{B}^*) = \operatorname{cond}(\mathbf{B}) = \operatorname{cond}(\mathbf{B}^*) \ge 1.$

Computing the pseudoinverse by brute force requires enormous storage and computational effort. A simple intuitive approach is to use the FFT: $\boldsymbol{x}_{f} = \mathcal{F}_{2}^{-1}[\mathcal{W}(k_{x}, k_{y}) \mathcal{F}_{2}(\uparrow \boldsymbol{x}_{c})],$ (7)

 $\boldsymbol{x}_{c} = \downarrow \ \boldsymbol{\mathcal{F}}_{2}^{-1}[\ \boldsymbol{\mathcal{W}}^{*}(k_{x}, k_{y}) \ \boldsymbol{\mathcal{F}}_{2}(\boldsymbol{x}_{f})].$

Very efficient and fast, however it makes strict stationarity and periodicity assumptions, are incompatible with irregularities (e.g., coastlines).

Subsampling methods allow a straightforward alternative to the brute-force approach; define x_s of intermediate resolution:

 $oldsymbol{x}_c \stackrel{oldsymbol{B}^*_0}{\longleftarrow} oldsymbol{x}_s \stackrel{oldsymbol{B}^*_1}{\longleftarrow} oldsymbol{x}_f$ (9) $x_c \xrightarrow{B_0} x_s \xrightarrow{B_1} x_f$

Key Idea — The pseudoinverse of B_1^* is very easily found:

 $\boldsymbol{B}_1 = \boldsymbol{B}_1^{*T} + \boldsymbol{B}_2,$ (10)

such that a row in B_2 is zero if the corresponding row of B_1^*T is non-zero. Problem: the subsampling oper-ator introduces aliasing and leads to substantial shiftsensitivities.

Implicit Inversion.

Implicit methods avoid explicitly computing B* from

 $\mathbf{x}_{c} = \mathbf{B}^{*} \mathbf{x}_{f} = \left(\mathbf{B}^{T} \mathbf{B}\right)^{-1} \mathbf{B}^{T} \mathbf{x}_{f} = \mathbf{Q}^{-1} (\mathbf{B}^{T} \mathbf{x}_{f}) \quad (11)$ However even the "small" dense matrix Q^{-1} can be unwieldy, both for storage and inversion complexity, for global-sized problems.

Iterative Inversion.

tem

which is vastly simpler because of the sparsity of **Q**. We apply the Conjugate Gradient method because of its efficiency and simplicity.

Following table compares storage and computational complexity for 100 × 100 coarse-scale and 1000 × 1000 fine-scale problem:

		Storage	Initialization	Effort Per
		B^*, Q^{-1}, Q	Effort	Mapping
	Brute	$n_c \cdot n_f$	$n^3 + \alpha^2 n_f^2$	$n_c \cdot n_f$
	Force	100 GB	10 ¹³	10^{10}
	Implicit	n_c^2	p^3	$n_c^2 + \alpha^2 n_f$
	Method	Method 1 GB	10^{12}	108
	Iterative	$\alpha^2 n_c$	$\alpha^3 n_f / \beta$	$\alpha^2 n_f + i \alpha^2 n_c$
	Method	1 MB	107	2×10^{7}

The iterative approach offers tremendous reduction in

storage and computational complexity! Actual reduction in complexity depends on sparsity of

Q and i, the number of conjugate-gradient iterations required for convergence:

	Problem	Q	Interpolator Size τ							
	Size	Density	(fine-scale pixels)							
			2	3	5	8	12	17	28	
	33×33	0.09	4	6	11	41	174	303	240	
	29×29	0.12	3	6	11	43	165	291	245	
	25×25	0.15	3	6	11	41	169	283	233	
	21×21	0.21	3	6	11	40	158	290	223	
	17×17	0.30	3	6	11	41	155	238	195	
	13×13	0.45	3	6	11	38	115	232	168	
	9×9	0.73	4	6	11	27	117	172	115	
We show the average number of conjugate-gradient i										
erations to achieve a root-mean-squared accuracy										
0.5%										

Dimitris Menemenlis and Ichiro Fukumori

Ocean Science Research Element, Jet Propulsion Laboratory

All tests were carried out in 20 × 20-coarse-scale, 200 × 200-fine-scale domains. The theoretical tests measure aliasing (4) and condition number (6):

We can validate these tests experimentally. The shift sensitivity is defined as the root-mean-square ratio rms { $S(\mathbf{B}\boldsymbol{\delta}_i) - \mathbf{B}\mathbf{B}^*[S(\mathbf{B}\boldsymbol{\delta}_i)]$ } (13)

rms { $B\delta_i$ } where δ_i is a coarse unit-vector with pixel *i* set to one and the rest to zero.

Noise sensitivity is measured by computing the reac tion to noise: $rms(\mathbf{B}^*N_f)$

(14) $\{ E_i w^2(i) \}^1$

where N_f is an array of unit-variance, independent, Gaussian random variables.

nential, Gaussian, and sinc functions performed only moderately well

IV. Results

Scale Sensitivity. A summary illustration of the sensitivity of various interpolants to the choice of scale. Generally, a larger scale leads to smoother interpolants, less aliasing (shift sensitivity), and larger condition number:

Kernel Conclusions:

Based on our test results we propose that the Hybrid, Thin-Plate, or Objective Analysis kernels have superior properties and should be recommended for mapping exercises:

Weight	Positivity	Properties	Comments
Gaussian	+	+	Numeric issues
Nonsep. Exp.	+	-	
Separable Exp.	+		
Bilinear	-		
Cone-shaped	-	-	
Neglobe		-	
Nonsep. Sinc		-	
Sep. Sinc		+	Regular Grid
Smooth	+	+	Recommended
Thin-Plate	+	+	Recommended
Optimal Interp.	+	+	Recommended

Real Data Example

Mapping test for global-scale problem. We have a 71 × 62 coarse grid and a 2160 × 960 fine grid. The centered locations of the 3551 interpolants are shown as white dots in the top panel; each interpolant has a footprint of 121×81 pixels, or 20×13 degrees. The bottom panel shows the result of fine-coarse-fine mapping.

Instead, we propose to iteratively solve the linear sys-(12) $\mathbf{Q}\mathbf{x}_f = \mathbf{\bar{x}}_f$