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I. Overview

Abstract:

Among existing ocean data assimilation methodolo-
gies, reduced-state Kalman filters are a widely-studied
compromise between resolution, and computational
feasibility. Such reduced-state filters require mapping
operators from the fine grid to the reduced state and
vice-versa; that is, that the state-reduction and interpo-
lation operators be pseudo-inverses of each other.

This poster investigates a variety of approaches to com-
puting the pseudoinverse and also evaluates the map-
ping performance of eleven interpolation kernels.

Introduction:

Goal: to understand and predict the general circulation
of the oceans.

Existing approaches remain a compromise between
resolution, optimality, error specification, and com-
putational feasibility. Widely-studied compromise:
reduced-state Kalman filter in which the measurement
update takes place on a reduced state compared to
the full state of the Ocean General Circulation Model
(OGCM).

Main challenge: require mapping operators from the
fine (OGCM) state to the reduced state and vice-versa.

Let ��� and ��� represent the fine and coarse state vec-
tors. State reduction ��� and interpolation � operations
defined such that� �	� � � � ��
 � ��� � � �����
 � � � ����� (1)

��� and � are pseudoinverses, a condition which en-
sures that repeated subsampling and interpolation do
not lead to a degradation of the coarse-scale data:� �	� � � � ��� (2)

Objective: to define fast, storage-efficient methods of
finding � � from � .

Existing mapping and pseudo-inverse schemes often
involve the brute-force computation:����� � ���� ����� � ��� ! " 
 � � � �� � � � � ! " � � �

(3)

Where the matrices are of size # �%$ # � , where # � and# � are the fine-grid dimension of the ocean model and
the coarse-grid dimension of the reduced state, respec-
tively.

Magnitude of challenge: Suppose we have a global
problem with 1/12 & -spacing: # �('*) +�, . Suppose the
coarse grid has grid spacing of 2 & : # �-'.) +0/ . Then
the mapping and pseudo-inverse operations, stored as
dense matrices, are each 1 TERABYTE in size!

Inversion Criteria:

In addition to a computationally efficient approach to
identifying a pseudoinverse, the interpolation kernel in� must satisfy at least two other requirements.

First: sensitivity to lateral translations must be min-
imized, to ensure that a slow, advective flow is
not progressively corrupted by repeated mapping-
interpolations: 1 �-� �32 �-� �

1 
 (4)

where

1
represents a spatial translation on the fine

scale. This is effectively an antialiasing or bandlimiting
criterion.

Second: insensitivity to noise, that is, we wish to limit
the coarse-scale amplification of fine-scale perturba-
tions. The noise sensitivity is proportional to4 56 �87 6 � 44 9:4 4 6 � 44 6 � 4 �

4 � � 9:44 9;4 4 � 6 � 44 6 � 4 � (5)

The upper bound for this sensitivity is given by the con-
dition number of � or ��� :<�=8> ?A@ �-B�C <D=	> ?A@ � � B ��E F0GAH @ �-B ��E F0GAH @ � � B8I )0�

(6)

II. Fast Inversion

FFT:

Computing the pseudoinverse by brute force requires
enormous storage and computational effort. A simple
intuitive approach is to use the FFT:6 � ��J ! "KML N @ O�P 
 O�Q B J K @ R 6 � B�S 
 (7)6 �	��TUJ ! "KML N � @ OVP 
 O�Q B J K @ 6 � BVS � (8)

Very efficient and fast, however it makes strict sta-
tionarity and periodicity assumptions, are incompatible
with irregularities (e.g., coastlines).

Subsampling:

Subsampling methods allow a straightforward alterna-
tive to the brute-force approach; define 6XW of interme-
diate resolution: 6:� �-YZ[ 7 6 W �-Y\[ 7 6 �

6 � � Z7�] 68W � \7�] 6 � (9)

Key Idea — The pseudoinverse of
� � " is very easily

found: � " � � � �"  � K 
 (10)

such that a row in
� K is zero if the corresponding row

of
� � �" is non-zero. Problem: the subsampling oper-

ator introduces aliasing and leads to substantial shift-
sensitivities.

Implicit Inversion:

Implicit methods avoid explicitly computing �%� from� , i.e.,� �	� � � � ��� �� � � � � ! " � � � ���_^ ! " @ � � � � B (11)

However even the “small” dense matrix ^ ! " can be
unwieldy, both for storage and inversion complexity,
for global-sized problems.

Iterative Inversion:

Instead, we propose to iteratively solve the linear sys-
tem ^ � �U�a`� � (12)

which is vastly simpler because of the sparsity of ^ .
We apply the Conjugate Gradient method because of
its efficiency and simplicity.

Following table compares storage and computational
complexity for ) +0+b$-) +0+ coarse-scale and ) +0+0+b$-) +0+0+
fine-scale problem:

Storage Initialization Effort Per� � 
 c ! " 
 c Effort Mapping
Brute # �8d # � #�e� �f K # K� # �8d # �
Force 100 GB ) + " e ) + " g

Implicit # K� #�e� # K� �f K # �
Method 1 GB ) + " K ) +0h
Iterative f K # � f e # ��i0jkf K # �3ml f K # �
Method 1 MB ) + , n $�) + ,

The iterative approach offers tremendous reduction in
storage and computational complexity!

Actual reduction in complexity depends on sparsity ofo
and l , the number of conjugate-gradient iterations

required for convergence:

Problem c Interpolator Size p
Size Density (fine-scale pixels)

2 3 5 8 12 17 28q0q $ q0q 0.09 4 6 11 41 174 303 240nsr $ nsr 0.12 3 6 11 43 165 291 245n0t $ n0t 0.15 3 6 11 41 169 283 233n )3$ n ) 0.21 3 6 11 40 158 290 223) ub$�) u 0.30 3 6 11 41 155 238 195) q $�) q 0.45 3 6 11 38 115 232 168r $ r 0.73 4 6 11 27 117 172 115

We show the average number of conjugate-gradient it-
erations to achieve a root-mean-squared accuracy of
0.5%.

III. Kernels

Kernels Tested:

We have evaluated the shift and noise sensitivities for
eleven different interpolation kernels:

v !	w x y z�{ | v !	w x y zV{ v ! } P } y z v ! } Q } y z
Gaussian Nonsep. Exp. Sep. Exp.

�~� )	7 } P }z � � �~� )	7
} Q }
z � � )X7 xz ): xz 7

"
e
� xz
� e v !;x y z

Bilinear Nonsep. Linear Smooth

sinc @ � i p B sinc � � � � � � sinc � � � � ��� � ��� � � � � � � � � � �� ��� � � � � � �
Nonsep. Sinc Separable Sinc Hybrid

(Implicit) (Implicit)
Thin-Plate Obj. Analysis

Kernel Assessments:

All tests were carried out in n +	$ n + -coarse-scale, n +0+	$n +0+ -fine-scale domains. The theoretical tests measure
aliasing (4) and condition number (6):
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We can validate these tests experimentally. The shift
sensitivity is defined as the root-mean-square ratio

rms �
1 @ � 9D� B 7 �-� � L

1 @ � 9D� B S �
rms � � 9�� � 
 (13)

where
9 �

is a coarse unit-vector with pixel l set to one
and the rest to zero.

Noise sensitivity is measured by computing the reac-
tion to noise:

rms @ � �s� � B� � ��� K @ l B � " y K

 (14)

where � � is an array of unit-variance, independent,
Gaussian random variables.
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Surprisingly, common kernels such as bilinear, expo-
nential, Gaussian, and sinc functions performed only
moderately well.

IV. Results

Scale Sensitivity:

A summary illustration of the sensitivity of various in-
terpolants to the choice of scale. Generally, a larger
scale leads to smoother interpolants, less aliasing (shift
sensitivity), and larger condition number:
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Kernel Conclusions:

Based on our test results we propose that the Hybrid,
Thin-Plate, or Objective Analysis kernels have supe-
rior properties and should be recommended for map-
ping exercises:

Weight Positivity Properties Comments
Gaussian   Numeric issues
Nonsep. Exp.  7
Separable Exp. 
Bilinear 7
Cone-shaped 7 7
Neg.-lobe 7
Nonsep. Sinc 7
Sep. Sinc  Regular Grid
Smooth   Recommended
Thin-Plate   Recommended
Optimal Interp.   Recommended

Real Data Example:
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Mapping test for global-scale problem. We have a uV)8$� n coarse grid and a n ) � +U$ r � + fine grid. The centered
locations of the 3551 interpolants are shown as white
dots in the top panel; each interpolant has a footprint of) n ) $-¡A) pixels, or n +�$() q degrees. The bottom panel
shows the result of fine-coarse-fine mapping.


