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Abstract

Practical M-FSK systems experience a combination of time and frequency offsets
(errors). This paper assesses the deleterious effect of these offsets, first individually
and then combined, on the average bit error probability performance of the system.
Exact expressions for these various error probability performances are derived and.
evaluated numerically for system parameters of interest. Also presented is an upper
(Chernoff-type)  bound on average symbol error probability for the case of frequency
error alone which is useful in assessing the relative performance of the system.
Both continuous and discontinuous phase M-FSK  cases are considered when
timing error is present, the latter being much less robust to this type of offset.
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1.0 Introduction

Noncoherent orthogonal M-ary frequency-shift-keying (M-FSK) is a simple and robust
form of digital communication when the transmission channel is such that fast reliable
carrier recovery is difficult or impractical to achieve and the bandwidth requirements
are not overly stringent. Most studies of this modulation/demodulation technique for
the additive white Gaussian noise (AWGN) channel have focused on the error
probability performance when the receiver is assumed to be perfectly time and frequency
synchronized. That is, the receiver is assumed to have perfect knowledge of the instants
of time at which the modulation can change state and also perfect knowledge of the
received carrier frequency. In practical systems, such perfect knowledge is never
available and thus the receiver must derive this information from the received signal
imbedded in the AWGN. Since the estimates of the time epoch and received carrier
frequency derived at the receiver are, in general, random variables (because of the
presence of the AWGN),  there will exist an error between these estimates and their true
values. This lack of perfect time and frequency synchronization gives rise to a
degradation in error probability performance relative to that corresponding to the ideal
case where perfect knowledge of time and frequency is assumed known.

The purpose of this paper is to evaluate this performance degradation, first by
treating the two sources of degradation separately, and then by considering their
simultaneous effect. In particular, we shall present exact expressions for the symbol and
bit error probability performances of noncoherent orthogonal M-FSK  conditioned on
the presence of time and frequency errors, These expressions involve integrals of
Marcum-Q  functions and, as such, their numerical evaluation is cumbersome. Thus,
for the case of frequency only, we present an upper (Chernoff-type) bound on error
probability performances that, because of its exponential behavior, is simpler to
evaluate. Numerical results are obtained for cases of practical interest.

Before going into the details of the analysis, we wish to point out  the existence of
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several papers that relate to the subject at hand [1-5]. The paper that, in principle, bears
the closest resemblance to what we are trying to accomplish here is a paper by
Nakamoto, Middlestead, and Wolfson [1]. The one primary difference is that the
authors of [1] considered frequency-hopped M-FSK whereas here we are not allowing
for any spread spectrum modulation. Despite this difference, however, many of the
results in [1] could still be used if it were not for the following. In evaluating the bit
error probability in terms of the expressions the authors of [1] derive for the symbol
error probability, they assume that the signals remain orthogonal in the presence of
timing and frequency error which facilitates the use of a well-known result [see [5], Eq.
(5-54)] relating bit and symbol error probabilities of orthogonal M-FSK. Unfortunately,
however, this assumption is not valid and hence the bit error probability results found
in [1] are incorrect. In fact, to properly evaluate the bit error probability y in the presence
of synchronization errors, one must specify an appropriate mapping, for example, a C;ray
code of the symbols to bits. In the perfectly synchronized case, the bit error probability
performance is completely independent of the symbol-to-bit mapping since all errors are
equally  likely  to occur. The significance of these statements will become apparent later
on in the paper.

The organization of the paper is as follows, Section 2 exactly treats the effect of
frequency error alone (perfect time synchronization is assumed) on orthogonal M-FSK
noncoherent detection. Section 3 exactly treats the effect of timing error alone (perfect
frequency synchronization is assumed) on the same detection scheme. Section 4 exactly
treats the combined effect of timing and frequency errors. Finally, Section 5 presents an
upper bound on the performance in the presence of frequency error,

2.0 Effect of Frequency Error on Orthogonal M-FSK Noncoherent Detection

Consider the transmission of orthogonal M-FSK  over an AWGN channel where the
signal set has a one-to-one correspondence with the set of M equiprobable  messages
69w9...9mM_l. The optimum receiver (assuming perfect synchronization) is illustrated
in Fig. 1. When the received frequency is not perfectly known, the observed signal,
assuming that message mj was sent, is given by

r(t) = @cos(27r(~  +J + Af)t+ 8)+ n(r), O < r < T (1)
where P denotes the signal power in Watts, T denotes the symbol time in seconds, ~c
is the carrier frequency in Hertz, /i = i/T is the transmitted frequency corresponding to
message ~i, A/ is the error in the carrier frequency, and O is the unknown carrier
phase assumed to be uniformly distributed, Also, n(t)  denotes the AWGN with
single-sided power spectral density NO Watts/Hertz, Alternatively, the received signal
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can be interpreted as a carrier at frequency ~c shifted by the appropriate signal frequency
fi + Af, rather than fi. This scenario is illustrated in Fig. 2 where the dashed lines
denote start and end of integration times with the depicted frequencies. The inphase
integrator output, zC,~, matched to signal Sk(t) (corresponding to message rn~)
becomesl

= 2~~:cos(2~(&  + x + &)~)cos(2z(~c  + 
fk )@  + ‘c,k

(2)

where nc ~ is a zero-mean Gaussian random variable with variance 02 = NO / 2E$. Here,
No denotes the single-sided power spectral density of the AWGN in Watts/Hertz and

E$ ~ PT is the symbol energy in joules, Simplifying (2) reduces to

= E sin(2z(~,k  + Af)T)
zc,k +ncks 27r(&  + Af)T  ‘

(3)

where j,~ denotes the difference between the frequencies representing messages m i and
mk, that is,

d,k%-h (4)
Similarly, the quadrature integrator output, z~,k, is given by

Z,,k ‘J~~(f)@sin(2n(~  +fi)t)dt

os(27r(J,~  + Af )T) – 1

2z(& + Af)T (5)
The envelope statistic ~~ = ~~ will then be Rician distributed with parameter s:
given by

,{[sin(2~(f,k+Af)T)~  +[cos(2~(&+Af)T)- 1~}
s; = (E. )

[2z(t,~  +Af)T]2

=(E)
z sh2(7r(J,k  +Af)T)

[z(L +Af)Tr (6)
Normalizing zC,~  and Z,,i by 1 / cr = ~~, the parameter s: is then normalized by

lSincc  we are dealing with noncoherent  detection, we can, without any loss in generality, set O = 0,
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2 / NOE,  and since, as mentioned above,

( 1

2E$ sin’(z(i  - k+p))
s;= —

~o [z(i-k+p)]’

4

fi = i/T for orthogonal signals, then

where p ~ Afl denotes the normalized frequency error, The probability y
(pdf) of <~ is given by (note that o’ = 1 after the above normalization)

{( 11

_ d+~f’(i,k)  ~0ft, (g)= ~ew 2NOP
where we let

f~(i,k) =
sin’(z(i  – k +p))

[m(i - k +p)]’

(7)

density function

,/-), 0s,s-  03,

First, note that the detector matched to the incoming signal suffers from signa’
attenuation equal to

(lo)

which, as expected, reduces to unity if p = O. Simultaneously, loss of signal
orthogonality occurs as a result of signal spill-over into the remaining M-1 detectors;
hence, the nonzero means and the resulting Rician (as opposed to Rayleigh for p = O)
pdfs. Note that for zero frequency error (p = O), then

f:.o(i,k)=
{

sin’(z(i–  k)) O,  i  # k

[ m ( i - k ) ] ’  =  1,, i = k
(11)

and signal orthogonality is restored. Despite loss of orthogonality, the variables
g,, ~,,..., ~~-., remain independent since the Gaussian random variables resulting from
the noise integration are still independent as the local signals remain orthogonal. In
this case, the probability of correct symbol detection, assuming that message ~i is
transmitted, is given by

8(clmi)=  ‘{~i  =  m:x~m, ~= 0,1,...,1}1}

(12)
In terms of the Marcum Q-function [6] defined by
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J, [-x’~a’)’”(m)h
Q(a,b)~ ‘xexp (13)

we have

(~~-ft.(x.)~.  ‘1-Q ~$(~>~)>xi ) (14)
o

Hence, the conditional probability of symbol error, assuming that message ~i is
transmitted, is given by

R(Elmi) =  1 –  j~xi w{-[++:(s::;p))}Io[xiim

and the unconditional probability of symbol error becomes

P#(E)=+&J+ni)
1-0

(15)

(16)

As previously mentioned, the average bit error probability cannot be obtained
directly from the average symbol error probability as is customary in perfectly
synchronized M-FSK systems, the reason being that, for a given transmitted message,
the symbol errors are not equally likely. To compute the average bit error probability we
must first compute the probability of a particular symbol error for a given transmitted
message. Analogous to (12), the probability of choosing VZk when message rni is
transmitted is given by

{~k(Elrni)=R  gk=rn~xfm,  ~=o,l,...,l-l
}

[1

‘j~fL(xk)  fi~~~+m(x.)~.  d.x,, k # im.
mek (17)

If w(k,i) denotes the Hamming weight of the difference between the code words (bit
mappings) assigned to messages (symbols) m i and m~, that is, the number of bits in
which the two differ, then the average bit error probability is
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(18)

We now discuss the mapping from which the set of Hamming weights
w(k, i), k,i=O,l,..., M – 1, k # i is computed.

It is clear that if a symbol error occurs, it is more likely to occur in an adjacent
frequency than in any other. Thus, a Gray code mapping is appropriate to this type of
modulation. Figure 3 depicts the average bit error probability versus Eb /No  in dB with
p as a parameter for binary, 4-ary and 8-ary FSK and a conventional Gray code
assignment.

3.0 Effect of Timing  Error on Orthogonal M-FSK  Detection

When the receiver carrier frequency is precisely known but the symbol epoch is not, the
receiver implements its integrate-and-dump (I&D) circuits using its own estimate of the
symbol epoch which is offset from the true epoch by At sec. This phenomenon is depicted
in Fig. 4 where the integration overlaps two successive symbol intervals. This lack of time
synchronization results in signal attenuation in the detector matched to the incoming
frequency and moreover, loss of orthogonality due to signal spillover into the remaining
detectors, In the presence of timing error, the received signal can be modeled as

{

@cos(2z(~+ J)t+e,)+fz(0, osrs T
r(t) =

@COS(2Z(~C +~)t + 02)+4),  T <t S2T
(19)

where we have assumed that signal Si (t) is transmitted folowed by signal s,(t) and have
allowed for the possibility of a carrier phase discontinuity from symbol to symbol (so-
called discontinuous phase M-FSK  modulation). Since, for noncoherent detection, the
absolute  carrier phase is inconsequential, we can, without loss in generality, set 01 = O
and 82 =Ofori#jor~ =Ofori=j. For so-called confiuuom phase M-FSK
(CPFSK),  we can, in addition, set O = O. Since the local epoch estimate is not perfect, the
receiver I&Ds operate in the interval (At, Al + T) to obtain at the kth detector

2.,, ~jj+Tr(t)@cos(2z(~  +jk)t)dt

{(= 2P J:cos 27r(~ + J)t)co@r(& + L )t)~t

+j;+Tcos(21r(fc  +~)r+e)cos(27r(L  +fi)t)dr +~ck1 (20)
and



Normalizing zC,~ and ZJ,~ by 1 / o = ~2 / liOE$,  the pdf of <~ can be expressed as

{( ‘2+?’’(’’9’)11’0(’-)3  0’”- ’2 2 )
ft, ($)=gexp -  ~ ~

where

, - 2 / . . , \ sin2(n(i –k)(l – 1)] si.’(~(~– ~)a)
J~\l,J,K)  =

‘n2(i–~)2  ‘ + n;(j–k)’ ‘

sin’(?r[(i - j)- (j - k)l.]  -~) sin2(m[(i - k)2 -(j - k)]- ~)

z’(i – k)(j – k) – n2(i–k)(j–k)

([s i n2 z(k–j)–(j–i)l]–~
+ )+sin2(n(i-’)-;) i+k  j$~

z2(i–k)(j–k) n2(i–k)(j–k) ‘ ‘ (23)

with 2 ~ At / T denoting the normalized timing error. Some special cases of (23) are

sin2(n(i – k))
/

1, i = k
ff(iji)k)=  ,,. ..2 = - . . (24a).

Z“(l  – k)” ~U, l#k

f~(i, j,i) = 1
m2(i – j)2 {z2(i-j)2(l-l)2  +sin2(z(i-j)A)

+n(i – j)(l –A)sin(2z(i  – j)(l + A) – 0)

–z(i– j)(l –A)sin(2z(i  – j))– (3}, i # j (24b)

f~(i,k,k) = 1
m’(i – k)

z {sin2(z(i-k)(l- 2))+ z2(i-k)2A2

–di(i –k)cosf3sin(2z(i  -k)l)

–zA(i –k)sin  O[l -cos(2n(i – k) A)]}, i # k (24c)

(24d)f~(i,i,i)  = 1, Vi
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From (15), the conditional probability of symbol error, assuming that message mi was
sent followed by message rrz~,  is then given by

(25)
The unconditional (with respect to the data) probability of symbol error is then

x[x(R(EIO) = +:-’ +;:’? EImi,mj, e)
t-o j-o 1 (26)

As was the case for frequency error in Section 2.0, the presence of timing error
produces a lack of orthogonality  which results in the symbols errors not being equally
likely. Hence to compute the average bit error probability we must once again compute
the probability of a particular symbol error for a given transmitted message. Analogous
to (17), ihe probability of choosing mk when message rni was sent followed by message
tn~, is given by

M-1

[ (

2E
x~ 1–Q

)F
~.f~(i,.i$~),xi  i

.?$.0 o
m+k (27)

with f<, (~) as in (22). Finally, the average (over the data) bit error probability y is,
analogous to (18),

(28)

Here again the evaluation of (28) will depend on the mapping of the symbols to
bits. For a conventional Gray code mapping, Figure 5 depicts average bit error
probability versus Eb / No in dB for binary, 4-ary and 8-ary FSK with Las a parameter
and the case of continuous phase M-FSK. The numerical results in this figure are
obtained by setting 8 = O in (28). Digital computer simulations were used to confirm
some of the cases, in particular, the results corresponding to M =4 in Fgure 5b. For
purposes of comparison, the corresponding results for the discontinuous phase case
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with M = 4 are illustrated in Figure 6 and are obtained by averaging (28) over a uniform
distribution for 0. We observe that discontinuous phase M-FSK is much more
sensitive to timing offset than continuous phase M-FSK  is. When the timing is perfect
(A= O), the two performances are, of course, identical. This can be seen by noting that
(23) becomes independent of O when A = O.

4.0 Effect of Timing and Frequency Errors on Ortho&onal  M-FSK  Noncoherent
Detection

When both the incoming carrier frequency and symbol epoch are unknown (see Fig. 7),
then the received signal is still given by (19) but with ~c replaced by ~c + Af The

- inphase and quadrature outputs now become

z.,k =2P{J:C ( (os 27r ~ + Af + ~)t)cos(27r(&  + &)t)dl

+~;+’cos(2n(~  +A~+fi)f+ 0)cos(2z(t +jk)l)dl}+~.,~
(29)

and

zs,k
{

= 2P j;cos(27C(f  + Af + f)r)Sin(27r(f + fk)t)~l

+~~+’cos(2n(f+Af  +J)t+O)sin(2~(f +&),)~, +K,
1 (30)

Normalizing as before and following a similar procedure, we obtain the pdf of <k given

b

f~l(i, j,k) =
sin2(z(i –k+p)(l -A)) + sin2(n(j-k+p)A)

z2(i–k+p)2 m2(j–k+p)2

sin2(z[(i-j)-(j -k+p)A]-~)  sin2(z[(i-  k+p)A-(j-k+p)] -~)
—

m2(i–k+p)(j–k+p)  – z2(i–k+p)(j–k+p)

sin2(m[(k - j-p)- (j - i)2]- ~)
+ +  ‘in*(z(i-j)-:) i~k  j~k

z2(i–k+p)(j–k+p) n2(i–k+p)(j–k+p)’  ‘

(32)
If p = O, then $1 (i, j,k) reduces to f~(i, j,k) of (23) as expected. Similarly, if A = O, then
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~~~ (i,j,~) reduces to $(i,k) of (9). The probability of bit and symbol error are still given
by (26) together with (25) and (28) together with (27), respectively, with ff(i,  j,k) replaced
by fp~l (i,~,k)  of (32). For a conventional Gray code mapping, Fig. 8 depicts average bit
error probability versus Eb /NO in dB for binary, 4-ary and 8-ary FSK with p and A as
parameters and the case of continuous phase M-FSK. The numerical results in this
figure are obtained by setting O = O in (32). Digital computer simulations were again
used to confirm some of the cases, in particular, those illustrated in Figs. 8c, and 8d.
Note that when the timing and frequency errors occur simultaneously, the losses are
not additive. In particular, the interaction of the two types of error results in a
degradation larger than the sum of the degradations due to each error acting alone.

5.0 A Bound on the Performance of Ortho~onal M-FSK  Detection in the Presence of
Freauencv  Error

A number of years back, Jim K, Omura developed a Chernoff-type  bound on the error
probability performance of certain types of M-ary  communicated systems. This
unpublished result [7] has particular application in noncoherent M-FSK
communications.

In this section, we apply a slightly generalized version of the bound to predicting
the error probability performance of noncoherent M-FSK  with frequency error. Upper
union bounds for this performance have been previously obtained in [3] in terms of the
exact result for the performance of binary FSK with frequency error. The latter is
expressed in terms of the Marcum Q-function, which in general, is cumbersome to
compute. Here, we shall derive a simpler-to-compute bound on this performance that
will enable system comparisons to be made. The result is obtained in a form that is
similar to the exact error probability performance of noncoherent M-FSK with no
frequency error which is exponential in behavior,

Since as mentioned above, Omura’s bound was never published but rather
privately communicated to the authors, Appendix A presents the derivation of the
bound in its generalized form. Assuming that signal n (message vzn) is transmitted,
then the detector matched to ~n produces Ljn with pdf as given by (8) with i = k = n

while the remaining M -1 detectors produce independent {i’s with pdf as given by (8)
with i = nand  k = i. As required by the results in Appendix A, we need to evaluate
the characteristic functions of the these two pdfs. In particular, letting pi = <~, then

(33)
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Letting XO = 2x, then applying (A.8) gives after some manipulations

for M

(34)

(35)

(36) “

Figure 9 illustrates the upper bound on K(E) as given by (36) versus E,/ No in dB
= 4 and various values of normalized frequency error, p, assuming minimum

frequency spacing for orthogonality.  It is to be emphasized that the results in Fig. 8 are
upper bounds and thus should not be used to predict the true error probability
performance. Rather, their value is for making system comparisons and trade-offs since
the relative tightness of the bound to the exact result should be about the same in all
cases considered. As is true for most Chernoff-type bounds, they are asymptotically
loose by about 1 to 1,5 dB.

6.0 Conclusions

The error probability performance of noncoherent M-FSK  is quite sensitive to the
presence of timing and frequency offsets (errors) in the system. For a given number of
frequencies, M, and fractional offset, the performance is much more sensitive to timing
error than it is to frequency error. By studying these errors individually and then
combined, we are able to note that the losses due to these errors are not additive. In
particular, the interaction of the two types of error results in a degradation larger than
the sum of the degradations due to each error acting alone, Furthermore, for the case of
timing error (either alone or in combination with frequency error), the performance is
much less robust for discontinuous phase M-FSK  than it is for continuous phase M-
FSK.
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Appendix A
Generalized ~-ary Symbol Error

Probability Bound

Consider an M-ary communication system whose decisions are made based on a relation
a m o n g  M  ou tpu t s  ZO, XI, . “ “, XM-I. I.et these outputs be represented by independent
random variables with pdfs as follows:

Xn + .fI(xn)

Xi + .fO(xi; <in) for ~cO,l, ”””,  n–l, n+l, ”.., M–l ‘(A.])

That is to say, for some particular n, the random variable ~i has a fixed pdf whereas the
remaining M – 1 r.v.’s ~i,  i # n, all have the identical form pdf (perhaps different than that
for X.)l which, however, depend on a parameter (in that varies with both i and n. Assuming
that sigqal  s.(t) is transmitted, then a correct decision is made at the receiver when x. > xi
for all i # n. Then,  the conditional probability of a correct decision is

P. (c/ m.) = Prob{Correct decision/ m.}
= Prob{x. > ~i for all i + n/ m.}

= j“’prob{x. ‘zifOralli  #n/m. ‘.=a}.fl(a)do

=
J:

Prob {xi < a for all i # n/ m.} ~l(CY)&Y

c ~m ~ Prob{xi  <~/TTZn}.f](~]~~
‘i= O,i+n

(A.2)

If Prob{xi  ~ cr/ m.} is hard to evaluate, then use the Chernoff bound

*If the two pdfs have identical form, then we shall ignore the “0” and “l” subscripts on them and simply
write f(z) or f(z; <), as appropriate, An example of where the two pdfs are, in principle, different in form
would correspond to the case of ideal (zero frequency error) noncoherent detection of A4-FSK, in which
case ~1 (z) would be Rician and ~o(z) would be Rayleigh. Also in this ideal situation, jo(z)  would not be
dependent on a parameter < which varies with the random variable being characterized.
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91(}) ~ E{ J’”

90(~;  (in) s E{e~”/ m.} =
L- ewcw; ‘&w (A.4)

Then

and

Finally

P.(E/ ?-nn) =

x

i#n

1 – P.(c/7nn)

/_{ [
- 1 -  V 1 -  .-’”go(A;  (,.)]

8=0
8#n

/:{1-  [l+~(-l)’e-’ka

or using (A,4), simplifying and minimizing ovel

M -1

the Chernoff parameter, we get

–l)k+lg@nk)

(A.6)

(A.7)

Assuming equiprobable signals, then the average probability of symbol error is given by

1 y P.(E/ m.)P.(E) = ~
n=O

(A,9)

Note that if the parameter <in is independent of i, that is, all ~i, i # n, have identical pdfs
~o(x), then



where
,o(~)  =  /:.”Afo(@@

Thus, (A.9) together with (A.8) simplify to

( A l l )

()M – 1
P.(E) < mjn~~l(–l)~+l  ~ 91(–~H9$(N

k=l

(A.12)
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