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Abstract

The optimum hop timing estimator (based on likelihood-ratio (LR) theory) is
derived for noncoherent slow and fast frequency-hopped M-FSK intercept
receivers. Such receivers have no a priori knowledge of the hopping code and thus
the solution to this estimation problem differs considerably from the more
commonly considered case of the friendly receiver. The implementation and
performance of the LR hop timing structures are presented and compared with that
of other suboptimum  schemes that have been discussed in the literature.
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1.0 Introduction

Over the last decade, there has been considerable interest in obtaining optimum
structures for coherent and noncoherent frequency-hopped (FH) M-FSK intercept
receivers, and analyzing their detection performance [1-8]. The structures have been
derived based on average-likelihood ratio (ALR) and maximum-likelihood ratio
(MLR) tests, and the performance has been obtained from various combinations of
analytical and simulation statistical models. In arriving at the results, one of the
assumptions that was made in all of the cases reported was that the hop timing, i.e.,
the location of the time epoch of each hop interval within the observation, was
known to the receiver. As such, the optimum structures and their associated
performances were ideal in that they represented the best that could be achieved in a
theoretical sense and thus serve as a standard against which more practical
structures and performances could be compared.

In this paper, we deviate from the above idealized contributions by
considering the important practical problem of how one goes about providing an
estimate of hop timing to the receiver. In particular, we shall primarily be
interested in theoretically optimum hop timing estimation structures since their
performance provides a benchmark against which more practical but suboptimum
structures can be compared, Two such suboptimum (ad hoc) structures will be
considered in this paper for the purpose of comparison with the optimum schemes.
As in the above-referenced papers, we shall again define optimum in the context of
structures derived from ALR and MLR tests. In fact, because of this underlying
theme, we shall see that there is a strong similarity between the optimum hop
timing structures so derived and the idealized optimum detector structures
previously obtained, The measure of performance used in evaluating the behavior
of these optimum hop timing stuctures will be the rms error between the true
received hop epoch and the receiver’s estimate of it. Such a performance measure is
typical of analyses of timing synchronization.
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Our interest here is in both the cases of slow frequency-hopped (SFH) and fast
frequency-hopped (FFH) noncoherent M-FSK. Because of the similarity of the
theory used to derive the optimum structures here and in the above-mentioned
papers, we shall be somewhat brief in our presentation and make direct reference to
the previous work on optimum FH detectors wherever appropriate. We begin by
presenting the system model from which we shall derive the structure of the
optimum hop timing estimator based on an ALR test.

2.0 The Optimum HOP Timing Estimator Based on an ALR Test

Consider a received signal of the form

r(l) = s(r; a) + n(f) (1)
which is observed for a T-see interval defined as O < r < T and which covers N~
hops each of duration ‘1’~ = T/N~. In (l), n(t) is a zero mean additive white
Gaussian noise (AWGN) process with single-sided power spectral density (PSD) iVO
and s(t; a) represents the noncoherent FH signal parameterized by the normalized
timing epoch cx which is taken to be a continuous random variable uniformly
distributed in the interval (O, 1). In the case of SFH, each of the hops contains hl~
data symbols of duration Ts = T~ /lVs. For the case of FFH, a data symbol contains
one or more hops. For FFH, it is sufficient to consider the case where there is only
single data symbol per hopl and thus from both the signal detection and hop
timing estimation standpoints, we may equivalently consider the signal as being
unmodulated.

In the view of the above, for FFH the signal S(I; a) can be represented as

s(f; a)=

mcos(27Q -OO); OS1<(XT*

mcos(2@jlt –O1); aT, <t<(l+a)T,

(~cos(2@jN,f-ON); (N,-l+a)T,<rSNhT’

(2)

a

1 It is a widely accepted terminology to distinguish between SFH and FFH according to whether

there are multiple data symbols per hop (SFH) or a single data symbol per hop (FFH).
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where S denotes the signal power, ~), is equally likely to be one of G possible hop
frequencies chosen from the uniformly spaced set {fi ,$z,...,  fG }, and because of the
assumption of noncoherence, the carrier phases associated with each hop within the
observation interval, i.e., 8.,81,..., ON are statistically independent (S1), uniformly
distributed on (O, 27r) random variables. For orthogonality,
1 / T~ must be provided between adjacent frequencies, i.e.,

a minimum spacing of

(3)

Similarly, for SFH the signal s(r; a) can be represented as

S(t; (x)=

mcos[27r(fio + 4,0R)1 – (?.];  max[O,(a - l)TA + i~] < r < (a- l)T,, + (f + 1)~,

f= N$– Na,NJ– Nail,...,  Nl–l

mcos[2n(fj,  + d,,,~.)f-  0,]; ~,+ ~. ~ t ~ ~, + (~+ 1X!

1=0,1,2,...,N1-1
...

~cos[2~(fjM, +d,,N,~.)t - ON, ] (NA -1+ a)~k +1~ S t S min[(Nk -1 + a)Tk + (1 + l)~,T],

1=0,1,2,...,  NNd Nd

(4)
where d,,i represents the hh bit on the ith hop which for the binary case takes on
values of 1,2,..., M with equal probability, R, is the data symbol rate, and

N. ~[aTA / T*1 = [aNJl  where rxl denotes the smallest integer
x.

In either case, the optimum estimator of a is derived

greater than or equal

from the likelihood

functional of the received signal r(t) conditioned on the parameters jg(~o, J_~~, ,)
e~(eo, fill,..., ON, ), a, and additionally in the SFH case, the data sequence

d~(do,d, . . .,dN, ) where di denotes the sequence of data symbols d,,i for the ith hop.

to
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It is well known that the likelihood functional for an observation as in (1) takes the
form2

p(r(r)lj,(l, ct,d) = Cexp {;lk)$(t;a)dt} (5)

where C is a constant that does not depend on the conditioning parameters.
Considering first the simpler FFI-I case, the correlation required in the argument of
the exponential in (5) can be obtained by substituting (2) into this integral with the
result

J~r(OS(f;~)~,=d~~zi,ji  Cos(ei  ‘@i,j,) (6)
i=o

where

y j,
Zi,ji k J=, f$i,ji  g tan-l - (7)Xi,ji

with

Xo,jo = ~Om’r(t)cos2~ofdt, Yo,j, = ~om’r(?)sin2@Otdt
(i+a)Th

‘itji =  j(i_~+~)~h

(i+a)Th
r(t)cos2rrfjit dt, “~, =  Jfi-~+~)~, r(t) sin2zfjitdt;

i=l,2,..., Nh–l, ji=l,2,...,G

xN,,jMh = J~~h~,+a)T,  r(f) cos27rfjN, t df, YNA,jN, = ~(~~1+~)~, t)sin 2RfjN, t dt
(8)

Since the components of 0 are uniformly indepen~ent  and identically distributed
(i.i.d.) random variables, then so m the members  of the set {Oi - $i,j, } in (6). Thus,

averaging the likelihood functional over 0 yields

{

e
2m “p(r(f)lj, a) = Cexp ~~zi,ji  Cos(ei  -  Oi,ji  )

o l-o }

= Cfiexp
{
~zi,j,  Cos(ei  -  @i,j,  )

i=O o r=c’bo(%z’) (9)
where C’ is another constant of proportionality. Finally, averaging over the i.i.d.
components of j, we get

21n the FFH case, wc would merely ignore the conditioning dependence on d in the notation.



,=0 0[~zi)ji]=c~[+$10(*zji))4AW(a)  (10)
p(r(t)la)  = C’fil

where the subscript ALR denotes the fact that the likelihood functional, A, is based
on an ALR test. The optimum estimate of a, denoted by &u is the value of a
that maximizes A ~ (a). We denote this as follows:

(im ‘m$wo(%zi’)) (11)

Note that the dependence of the right hand side of (11) on the timing offset a is
imbedded in Zi,j, in accordance with (7) and (8). In principle, a solution to (11) can be
obtained by differentiating Au(a) of (1 O) with respect to a and equating the result to
zero. Unfortunately, this leads to a transcendental equation for which an explicit
solution for &u cannot be determined. Thus, there is no advantage to this approach
and we shall resign ourselves to solving (11) by numerical methods. An
implementation of (11) is illustrated in Figure 1. Comparing this structure with the
optimum FFH/M-FSK  detector (assuming perfect hop timing) derived from an ALR
test in [8] (see Figure 5 of [8] with IVc = G) , we observe that the primary difference is
that the comparison of A with a threshold required for detection (hypothesis testing)
is replaced by a maximization over the unknown parameter a for hop timing
estimation. The only other difference between the two is that the integration limits
for each hop correlation in Figure 1 are synchronous with the assumed value of hop
timing epoch whereas in Figure 5 of [8] they are fixed because of the assumption
perfect hop timing.

of

By similar reasoning and analogy with the results in [8], the optimum
estimate of a for SFH is given by3

where Zi j, ,,,~ ‘IR=zL ‘ith

(12)

‘We assume that the phase of the hop carrier is discontinuous from data symbol to data symbol.

By analogy with the results given in [8], it is also possible to derive the optimum hop timing

estimator for the case where the hop carrier is continuous from data symbol to data symbol along a

given hop, i.e., continuous phase FSK (CPFSK). For the sake of brevity, we consider only the
discontinuous phase case in this paper.
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Xi,ji,,,m = J ‘a+i-’)TA+(’+l)T’  r(t) cos%r(jji  + fig )M> Y,ji,l,m  = J::;::;:; +l)TS ~(f)sin z~(fji  + fi$)l~f~(a+i-l)T*+rr$ s
1=0,1,2,...,Nl–l

‘Nh,ji,l,m  = J~~~~,_l)~k+m r(t) cos2z(fjNh + rrd?t)t dt, YNh,ji,l,m  = J(~~,_l)T,+r r(t) sin 2jr(fjN, + mR$)t dt,
, #

l=o,l,2,...,NN aNa
(13)

and

tmh = max(O, (cz– l)TA +lT~), t~X = min((cz+  Nh – l)TA +(1+ l)T,T) (14)
An implementation of (12) is illustrated in Figure 2.

Because of the symmetry of the likelihood functional with a, the estimators
in (11) and (12) are unbiased, i.e., E{&la} = a for all values of the system parameters.

Similarly, the conditional variance cT&
{

= E [6 - E{&la}]21a} is independent of a but

does depend on the system parameters.

2.1 The Optimum HoP Timing  Estimator Based on an MLR Test

In certain situations it might be desirable to jointly determine the hop
frequency sequenee $0 ,~, ,.. .~.fj~, (equivalently, the vector j= (A,A,..  .JN, )) and the
normalized timing offset a. In this case, we maximize (rather than average) the
likelihood functional of (5) over j. Starting with (9) for FFH, we now get

:0 [%zi’l=c’i30[%m~zi’’)4AMu(a) ’15)p(r(t)la) = C’ fimylo

where the subscript MLR now denotes the fact that the likelihood function, A, is
based on an MLR test. As before, the optimum estimate of a, denoted by &~u is the
value of a that maximizes A ~u(cz). We denote this as follows:

N , (2m&Mu = m:x-l ~ 10 ~ max Z,,ji
,=0 o i i

)

(16)

where the maximization was allowed to be carried inside the argument of the Bessel
function because of the monotonicity of lo(x) with x in the interval 0< x <~.
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the ML estimate of j, denoted by ~~~ has components determined

ji = max-l Zi,j, (17)ji
The quantities ~~~ and ~~u are the optimum joint estimates of the hop sequence
and the hop timing offset based on an observation of r(t) over the interval O < t < T.
Of course, if we are only interested in hop timing, then &m is preferred over ~~n.

By similar reasoning and analogy with (12), the optimum MLR estimate of a
for SFH is given by

(18)

For the sake of brevity, we do not draw the implementations of (16) and (18) since
they are easily envisioned as modifications of Figs. 1 and 2.

3.0 Suboptimum HoP Timirw Estimators

In order to assess the performance benefits of the optimum ALR and MLR
hop timing estimates, we shall compare them with two other schemes, both of
which are theoretically suboptimum but more practical from an implementation
point of view. The first of these was suggested by Chung and Polydoros [9] and is
based on autocorrelation techniques analogous to those used for the LPI detection
technique described by Polydoros and Woo in [10]. In fact, many of the analysis
results used in [9] to describe the performance of the hop timing estimator are taken
from [10], Here we briefly summarize the results obtained in [9] with emphasis on
expressing them in a form that allows comparison with the optimum hop timing
estimators considered in this paper.

3.1 Hop Timing Estimation Using Autocorrelation Techniques

Figure 3 is an illustration of a maximum-likelihood hop timing estimator
based on using a single-hop autocorrelation  (SHAC) device as a preprocessor. The
observed signal plus noise is characterized by (1) where s(t; a) is model led as an
unmodulated random FH signal. After bandpass filtering4 (bandwidth W~J, the
signal is correlated with itself over a hop interval producing

4For analytical simplicity, a filter with ideal brick-wall frequency response is assumed in [9].
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Y(oq: ~Bp(t)~~p(t  – T)df (19)

This signal is comprised of SXS, SXN, and NxN terms. Assuming that the hop
frequencies for successive signal hops are sufficiently far apart, then the SXS term is
composed of two terms consisting of harmonics at the two (because of the hop
misalignment) signal hop frequencies present in the hop interval. Each of these
harmonics is weighted by a triangular correlation function whose duration is
proportional to the fraction of time that each occupies the hop interval, i.e., tih and
(1 – a)7’~.  For values of input SNR y = S / NOIV= much less than unity, the SXN term can
be ignored with little loss in accuracy [9,10]. With this in mind, Y(t) is next power
sampled5 at a rate Wss samples/see producing the set of samples
l?’, = y’(t~~w = y2(HV;’~U;  k = 1,2,...,G, where Gh = WMT, is the bandwidth-hop time
product. The process of power sampling in the SHAC domain suppresses the
dependence on the actual hopping pattern, the candidate hop frequencies, and the
carrier phases (herein lies the simplicity of this scheme) while at the same maintaining
the hop timing information in the signal.

Next, a weighted sum of a fraction, A, of the total number of power samples in a
hop time, G~, is formulated as

(20)

and based on the behavior of the conditional mean E{Y/a} when IGA >>1 (see [9] for the
details), a new statistic linearly related to Y is defined as

Al 1 (Y-P@, Gh,S)-@,G,,ZVO,WBp))
‘=~+@,G,>$

where

aa(A,Gh,S)~2GJ2n

{
p(A,GA,S)~S2GA 2A +21n(l– A)+~ 1

(21)

(22)
5By “power” samp glin is meant the process of producing a set of samples proportional to the power

of the signal. This is accomplished by sampling, squaring the resulting samples, and then lowpass

filtering to remove harmonics of the hop frequencies,
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Based on the properties of a similar statistic in [10], for AGA <0.1 and fixed a, the
statistic Z is approximately Gaussian [9] with conditional mean and variance
approximately given by

()2 1E{Zla}~flz(a)+ a-~ =Z+a(a-l)

var{z}~dz =(~&)
(23)

Finally, appending the parenthetical argument u to Y and Z in (20) and (21),
respective y, to denote these power sum statistics corresponding to the n th observation
cell (n – l)Th < r < nTh (YO and Z. would then by Y and Z as defined above in view of the
limits of integration in (19)), then an N~-hop ML estimator of a is given by

&*c =

1
—92

(24)

It should be emphasized that the ML hop timing estimator in (24) is only maximum-
likelihood conditioned  on the assumpfim o~ an SHAC preprocessor (which removes some

.

relevant timing information from the input observable) and is thus suboptimum
relative to the (unconditional) ML hop timing estimator derived in Section 2.1. Also,
since pZ (a) of (23) is symmetric around the value a = 0.5, the estimator in (24)
possesses an (a,l – a) ambiguity in that values of a and 1- a cannot be distinguished by
this estimator. Various approaches for resolving this ambiguity are mentioned in [9].
For our purposes here, it is sufficient to note that in view of this ambiguity, the
statistical behavior of &Ac as a function of a is limited to the interval 0< as 0,5,

The conditional moments of d~c are given by [9]

(25)



*

10

where

and

~(t,s)~ *J~xi(l-2.)..p{-*[(1 -2.)2 -t’]}dx; i= 1 , 2

(26)

(27)
Note from (25) that &m is a biased estimator of a. Thus, the performance of this
estimator as measured by its conditional rms value [the square root of O~Acla  in (25)]
depends on a.

3.2 HoP Time Estimation Using a “Ping-PonE” Approach

Another suboptimum scheme for performing hop timing estimation is based on
a “ping-pong” approach which is discussed in [11] in connection with a technique
primarily developed in the context of hop rate estimation. In particular, with reference
to Figure 4, the received FH signal plus noise is passed through two adjoint BITs
(assumed to have ideal rectangular frequency responses) which split the W~~ Hz input
spread spectrum passband into two contiguous segments each of bandwidth Wss / 2.
As such, in each hop interval, the output of one of these two BPF’s will be the sum of
signal plus noise and the other will contain only noise. The particular BPF which
contains the signal plus noise bounces (at the hop rate) between BPF1 and BPF2 in
accordance with whether the corresponding hop is in the upper or lower half of the
input spread spectrum band, hence the colloquial term “ping-pong”.  The outputs of
the two BPF’s are squared and difference producing a signal whose SXS term ideally
has a rectangular envelope with potential transitions that occur at multiples of the hop
time Th and are synchronous with the hopping carrier transition instants. Passing this
signal through a lowpass filter extracts this envelope. Next, a delay (by half a hop
time) -and-multiply type operation produces a dc biased square wave at the hop rate
whose first harmonic has zero crossings that are synchronous with the hop transition
instants. Extracting this harmonic with a narrowband bandpass filter and then
processing this signal by a MAP phase estimator (based on a Gaussian assumption at the
narrowband BPF output) produces the desired hop timing epoch estimate, Figure 4 is a
discrete version of the MAP estimator. It is straightforward to show (and has been
verified by computer simulation) that the “ping-pong “ hop timing estimator is
unbiased. Finally, it should be noted that, in principle, the “ping-pong  “ hop timing
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scheme is analogous to a closed loop cross-spectrum bit synchronizer [12] which tracks the
zero crossings of a binary (~1 ) equiprobable rectangular data waveform in additive
white Gaussian noise,

4.0 Numerical Results

Computer simulations have been written for evaluating the performance of the
optimum (ALR and MLR) and suboptimum  (“ping-pong”  ) schemes.b  To allow a fair
comparison, we have assumed the case of no modulation in all evaluations. For
numerical expediency, the region for & has been quantized into 20 steps (5?40 of the hop
interval), Such quantization introduces an error floor into the calculation of the
conditional rms error crtila , that is, in the limit of infinite input SNR o&la approaches

the value O. =j-=1.02 x 10-2. In order for this level of quantization to

have negligible effect on the results corresponding to the true situation where & can
take on a continuum of values, i.e., 0< & <1, we must require that in the input SNR
region of interest, the numerical values of o&la found from the simulation are well
above this quantization error floor. Shortly, we shall demonstrate that this is indeed
the case. In the limit of zero input SNR, the conditional pdf of ~ given a approaches a
uniform distribution in the interval -0.5< &s 0.5 and hence Oala approaches the value

%= J=..289.

Figure 5 illustrates results obtained from a computer simulation of the ALR FFH
timing estimation “scheme. The set of system parameters chosen for these simulation
are similar to those used in arriving at the comparable signal detection results in [7],
namely, G = 100, hl~ = 20, 1 /T~ = 100 hops/see, and Wss = 104 Hz. Also shown are
analogous results for the suboptimum  MHAC scheme discussed in Section 3.1, A
value of A = 0.1 was chosen for these curves which, as discussed in [9], assures that the
SHAC power sum behaves as a Gaussian random variable. As was shown in [9] and
can be determined from (25), the MHAC estimator is biased; hence we must decide on a
value of a to use for computing the rms timing error. In this regard, we considered
three different cases. The curve labelled “best a“ corresponds to the value of a that
yields the minimum conditional rms error O&la at each SNR. From the results in [9] it
can be deterermined that, independent of SNR, the value of a that yields the
minimum d~la is a = O which is intuitively satisfying. The curve labelled “worst a“

‘Recall that the suboptimum autocorrelation  approach lends itself to analytical results and thus a

computer simulation was not necessary here.
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corresponds to the value of cx that yields the maximum conditional rms error Oala at
each SNR. Finally, the curve labelled “average a“ assumes a uniform distribution for
a and averages the conditional rms error CT&la over this distribution. Clearly, its
performance lies between the curves corresponding to the best and worst values of a,
We note that the limiting value of all three of these MHAC curves as input SNR
approaches zero is identical but different in value than that achieved by the ALR
scheme. The reason for this goes back to the observation made in Section 3.1
concerning the (a, 1 – a) ambiguity associated with the MHAC estimator. It can be
shown that in addition to a being restricted to lie in the interval O < a <0.5, the
limiting form of the conditional pdf of & given a approaches the two-point discrete
distribution P(&la) = 0.5, a = 0,0.5. Thus, in the limit as input SNR approaches zero,

~la approaches 0.25.a

Comparing the MHAC curve labelled “average a“ with the ALR results for
detection-independent performance, we see that there is about a 15 dB difference
between the two! At first it might be conjectured that this large difference in
performance stems from the fact that the optimum ALR scheme requires complete
knowledge of the set of hopping frequencies and indeed exploits this knowledge in its
channelized structure, whereas the MHAC scheme neglects this information.
To demonstrate the degree to which this conjecture is valid, we evaluated the
performance of the optimum ALR scheme for the case when the actual received
hopping frequencies are displaced from those assumed by the receiver implementation
by one-half the hop rate. Since the frequency spacing between the G hop channels in
Figure 1 is equal to the hop rate, 1 /Th, then a frequency offset of 1 /2Th represents a
worst case situation with regard to the receiver’s knowledge of the true hop frequency
set. The numerical results are illustrated in Figure 5 by the curve labelled FFH/ALR -
(A~ = 1 /2Th). Comparing this curve with that corresponding to exact knowledge of
the hop frequency set (the curve simply labelled FFH/ALR), we see that the worst case
lack of hop frequency knowledge only results in a degradation of about 1.8 dB. If the
optimum ALR receiver had no knowledge whatseover of the set of hop frequencies,
then the relative offset between the receiver’s G hop frequency channels and the actual
hop frequencies in the received waveform would always lie between zero (no offset)
and one-half the hop rate. As such, the average performance in the complete absence
of hop frequency information would lie between that corresponding to the ideal case of
exact knowledge of the hop frequency set (as has already been discussed) and that
corresponding to the worst case described above.

Figure 6 illustrates analogous computer simulation results to those in Figure 5
for the ALR SFH timing estimation scheme. The set of system parameters chosen for
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these simulations is identical to that in Figure 5 with the addition of N, = 100
corresponding to 100 symbols per hop. When the SFH results of Figure 6 are compared
with those for FFH in Figure 5, we see that the presence of the data modulation causes
about a 2 dB performance penalty asymptotically as SNR becomes large.

Figures 7 and 8 illustrate the computer simulation results for the MLR hop
timing estimator of Section 2.1 corresponding respectively to FFH and SFH
modulations. Shown for comparison are the results for the corresponding ALR
structures. We note that MLR schemes show only a small performance degradation
relative to the ALR schemes as was the case for the comparable signal detection
configurations in [6] and [8].

Finally, the performance of the “ping-pong”  scheme of Figure 4 is superimposed
on the curves of Figure 5. As is done for cross-spectrum bit synchronizers [12], the
bandwidth of the lowpass filter preceding the delay-and-multiply operation should be
optimized to provide the best performance. The optimum bandwidth for this filter in
the “ping-pong” hop timing scheme is equal to 1.4 times the hop rate. This filter
bandwidth results in the best compromise between signal x signal envelope distortion
and reduction of the power in the signal x noise and noise x noise components that
arise as a result of the square-law operations following the bandpass filters. We observe
that the performance of the “ping-pong”  scheme tracks that of the autocorrelation
scheme (based on the average value of a) with about a 2.5 dB additional degradation in
input SNR.

Conclusions

The optimum hop timing estimators (based on likelihood-ratio (LR) theory) for
noncoherent slow and fast frequency-hopped M-FSK have been analytically derived
and their performance in terms of rms timing jitter have been evaluated via computer
simulation. When compared to previously documented suboptimum schemes such as
the multiple-hop autocorrelation approach and the “ping-pong” approach, the average-
likelihood ratio (ALR) and maximum-likelihood ratio (MLR) optimum estimators
offer an improvement in performance on the order of 15 dB or better in input SNR. As
a result of this large disparity in performance, it is reasonable to justify further
investigation into finding suboptimum schemes with performances closer to the
optimum ones and which offer the advantage of implementational practicality.
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. Figure 6. RMS Timing Error Performances of the ALR Estimator for SFH
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Figure 8. A Comparison of the RMS Timing Error Performances of the
ALR and MLR Estimators for SFH
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