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Abstract 

ML is a multigrid preconditioning package intended to  solve linear systems of equations Az = b 
where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and x is a vector 
of length n to be computed. ML should be used on large sparse linear systems arising from partial 
differential equation (PDE) discretizations. While technically any linear system can be considered, ML 
should be used on linear systems that correspond to things that work well with multigrid methods 
(e.g. elliptic PDEs). ML can be used as a stand-alone package or to generate preconditioners for a 
traditional iterative solver package (e.g. Krylov methods). We have supplied support for working with 
the AZTEC 2.1 and AZTECOO iterative package [15]. However, other solvers can be used by supplying 
a few functions. 

This document describes one specific algebraic multigrid approach: smoothed aggregation. This 
approach is used within several specialized multigrid methods: one for the eddy current formulation 
for Maxwell’s equations, and a multilevel and domain decomposition method for symmetric and non- 
symmetric systems of equations (like elliptic equations, or compressible and incompressible fluid dy- 
namics problems). Other methods exist within ML but are not described in this document. Examples 
are given illustrating the problem definition and exercising multigrid options. 
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1 Notational Conventions 

In this guide, we show typed commands in this font: 

% a-really-long-command 

The character % indicates any shell prompt1. Function names are shown as ML-Gen-Solver. 
Names of packages or libraries as reported in small caps, as EPETRA. Mathematical entities 
are shown in italics. 

2 Overview 

This guide describes the use of an algebraic multigrid method within the ML package. The 
algebraic multigrid method can be used to solve linear system systems of type 

(1) Ax = b 

where A is a user supplied n x n sparse matrix, b is a user supplied vector of length n and 
z is a vector of length n to be computed. ML is intended to be used on (distributed) large 
sparse linear systems arising from partial differential equation (PDE) discretizations. While 
technically any linear system can be considered, ML should be used on linear systems that 
correspond to things that work well with multigrid methods (e.g. elliptic PDEs). 

The ML package is used by creating a ML object and then associating a matrix, A, and 
a set of multigrid parameters which describe the specifics of the solver. Once created and 
initialized, the ML object can be used to solve linear systems. 

This manual is structured as follows. Multigrid and multilevel methods are briefly re- 
called in Section 3. The process of configuring and building ML is outlined in Section 4. 
Section 5 shows the basic usage of ML as a black-box preconditioner for EPETRA matrices. 
The definition of (parallel) preconditioners using ML-Epetra::MultiLevelPreconditioner is 
detailed. This class only requires the linear system matrix, and a list of options. Available 
parameters for ML-Epetra::MultiLevelPreconditioner are reported in Section 6 .  More ad- 
vanced uses of ML are presented in Section 7. Here, we present how to define and fine-tune 
smoothers, coarse grid solver, and the multilevel hierarchy. Multigrid options are reported 
in Section 8. Smoothing options are reported in Section 9, where we also present how to 
construct a user’s defined smoother. Advanced usage of ML with EPETRA objects is re- 
ported in Section 10. Section 11 reports how to define matrices in ML format without 
depending on EPETRA. Section 12  detailes the (limited) visualization capabilities of ML. 

3 Multigrid Background 

A brief multigrid description is given (see [l], [6], or [7] for more information). A multigrid 
solver tries to approximate the original PDE problem of interest on a hierarchy of grids and 
use ‘solutions’ from coarse grids to accelerate the convergence on the finest grid. A simple 
multilevel iteration is illustrated in Figure 1. In the above method, the Si()’s and Si()’s 

‘For simplicity, commands are shown as they would be issued in a Linux or Unix environment. Note, however, that ML 
has and can be built successfully in a Windows environment. 
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/* Solve Ak u = b (k is current grid level) */ 
proc multilevel(Ak, b, u, k) 

if ( k # Nlevel - 1) 
‘11 = sk(Ak,b,u); 

P k  = determineinterpolant( Ak ); 
r^ = P,T(b - AkU) ; 

&+I = PFAkPk; V = 0; 
multilevel(&+l, i ,  v ,  IC + 1); 
21 = ‘zL+Pk v; 
U = si(Ak,b,U); 

Figure High level multigrid V cycle conuting of [level’ grids to solve ( ), with A0 = . 1. 

are approximate solvers corresponding to IC steps of pre and post smoothing, respectively. 
These smoothers are discussed in Section 8. For now, it suffices to view them as basic it- 
erative methods (e.g. Gauss-Seidel) which effectively smooth out the error associated with 
the current approximate solution. The Pk’s (interpolation operators that transfer solutions 
from coarse grids to finer grids) are the key ingredient that are determined automatically by 
the algebraic multigrid method2. For the purposes of this guide, it is important to under- 
stand that when the multigrid method is used, a hierarchy of grids, grid transfer operators 
(Pk), and coarse grid discretizations (Ak) are created. To complete the specification of the 
multigrid method, smoothers must be supplied on each level. There are several smoothers 
within ML or an iterative solver package can be used, or users can write their own smoother 
(see Section 8). 

4 Configuring and Building ML 

ML is configured and built using the GNU autoconf [4] and automake [5] tools. It can 
be configured and build as a standalone package without or with AZTEC 2.1 support (as 
detailed in Section 4.1 and 4.2), or as a part of the TRILINOS framework [8] (as described 
in Section 4.3). Even though ML can be compiled and used as a standalone package, the 
recommended approach is to build ML as part of the TRILINOS framework, as a richer set 
of features are then available. 

ML has been configured and built successfully on a wide variety of operating systems, 
and with a variety of compilers (as reported in Table 1). 

IFUX N32, I R E  64, HPUX, Solaris, DEC Native 
ASCI Red Native and Portland Group 
CPlant Native 
Windows Microsoft 

Table 1: Main operating systems and relative compilers supported by ML. 

2The Pk’s are usually determined as a preprocessing step and not computed within the iteration. 
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Although it is possible to configure directly in the ML home directory, we strongly advise 
against this. Instead, we suggest working in an independent directory and configuring and 
building there. 

4.1 Building in Standalone Mode 

To configure and build ML as a standalone package without any AZTEC support, do the 
following. It’s assumed that the shell variable $ML-HOME identifies the ML directory. 

X cd $ML-HOME 
% mkdir standalone 
X cd standalone 
X $ML-HOME/ c onf igure - -di s able - epe t r a --d i s ab1 e - az t e c o o \ 

% make 
X make install 
The ML library file libml . a and the header files will be installed in the directory specified 
in --prefix. 

--prefix=$ML-HOME/standalone 

4.2 

To enable the supports for AZTEC 2.1,  ML must be configured with the options reported 
in the previous section, plus --with-ml-aztec2-1 (defaulted to no). 

In principal by creating a similar file, other solver packages could work with ML in the same 
way. For the AZTEC users there are essentially three functions that are important. The 
first is AZ-ML-SetAmat which converts AZTEC matrices into ML matrices by making ap- 
propriate ML calls (see Section 11.1 and Section 11.2). It is important to note that when 
creating ML matrices from AZTEC matrices information is not copied. Instead, wrapper 
functions are made so that ML can access the same information as AZTEC. The second 
is ML-GenSmootherAztec that is used for defining AZTEC iterative methods as smoothers 
(discussed in Section 8 and Section 13). The third function, AZset-M L-preconditioner, can 
be invoked to set the AZTEC preconditioner to use the multilevel ‘V’ cycle constructed in 
ML. Thus, it is possible to invoke several instances of AZTEC within one solve: smoother 
on different multigrid levels and/or outer iterative solve. 

Building wi th  AZTEC 2.1 Support 

All of the AZTEC 2.1 functionality that ML accesses is contained in the file ml-aztec-utils . c. 

4.3 

We recommend to configure and build ML as part of the standard TRILINOS build and 
configure process. In fact, ML is built by default if you follow the standard TRILINOS con- 
figure and build directions. Please refer to the TRILINOS documentation for information 
about the configuration and building of other TRILINOS packages. 

To configure and build ML through TRILINOS, you may need do the following (actual 
configuration options may vary depending on the specific architecture, installation, and 
user’s need). It’s assumed that shell variable $TRILINOS-HOME identifies the TRILINOS di- 
rectory, and, for example, that we are compiling under LINUX and MPI. 

Building with TRILINOS Support (RECOMMENDED) 
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cd $TRILINOS-HOME 
mkdir LINUX-MPI 
cd LINUX-MPI 
$TRILINOS-HOME/conf igure --with-mpi-compilers \ 

make 
make install 

--prefix=$TRILINOS,HOME/LINUX-MPI 

If required, other TRILINOS and ML options can be specified in the configure line. A 
complete list of ML options is given in Section 4.3.1 and 4.3.2. You can also find a complete 
list and explanations by typing ./configure --help in the ML home directory. 

4.3.1 

ML can be configured with the following third party libraries (TPLs): SUPERLU, SU- 
PERLU-DIST, METIS, and PARMETIS. It can take advantage of the following TRILI- 
NOS packages: IFPACK, TEUCHOS, TRIUTILS, AMESOS. Through AMESOS, ML can in- 
terface with the direct solvers KLU, UMFPACK , SUPERLU, SUPERLU-DIST3, MUMPS. It 
is assumed that you have already built the appropriate libraries (e.g., 1ibsuperlu.a) and 
have the header files. To configure ML with one of the above TPLs, you must enable the 
particular TPL interface in ML. All of the options below are disabled by default. 

The same configure options that one uses to enable certain other Trilinos packages also 
enables the interfaces to those packages within ML: 
--enable-epetra 

--enable-aztecoo 

Enabling Third Party Library Support 

Enable support for the EPETRA package. 

Enable support for the AZTECOO package. 

--enable-amesos 

--enable-teuchos 

--enable-triutils 

Enables support for the AMESOS pack- 
age. AMESOS is an interface with sev- 
eral direct solvers. ML supports UMF- 
PACK [2], KLU, SUPERLUDIST (1.0 and 2.0), 
MUMPS [14]. This package is used only in func- 
tion M L-Gen-SmootherAmesos. 
Enables support for the TEUCHOS package. 
This package is used only in the definition 
of class ML-Epetra::MultiLevelPreconditioner 
(see Section 5) .  and by the Amesos smoother 

Enables support for the TRIUTILS package. 
ML uses TRIUTILS only in some examples, to 
create the linear system matrix. 

--enable-ifpack Enable support for the IFPACK package [9]. 
IFPACK is used only to create smoothers via 
ML-Gen-Smootherlfpack. 

3Currently, ML can support SUPERLUDIST directly (without AMESOS support), or through AMESOS. 
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--enable-anasazi Enable support for the ANASAZI package. 
ANASAZI is a high level interface package for 
various eigenvalue computations. 

The following configure line options enable interfaces in ML to certain TPLs. 
--wit h-ml m e  t is 

--wit h-ml-parmet is 2x 

Enables interface for METIS [12]. 

Enables interface for PARMETIS, version 2.2. 

--with-ml-parmet is3x 

--with-ml-superlu 

--with-ml-superlu-dist 

Enables interface for PARMETIS [ll], version 
3.x. 
Enables ML interface for serial SUPERLU [3]. 
The ML interface to  SUPERLU is deprecated 
in favor of the AMESOS interface. 

Enables ML interface for SUPERLU-DIST [3]. 
The ML interface to SUPERLUDIST is depre- 
cated in favor of the AMESOS interface. 

For METIS, PARMETIS, and the ML interface to SUPERLU and SUPERLU-DIST, the 
user must specify the location of the header files, with the option 
--with-incdirs=include-locations 
(Header files for TRILINOS libraries are automatically located if ML is built through the 
TRILINOS configure.) In order to link the ML examples, the user must indicate the 
location of all the enabled packages' libraries4 , with the option 
--with-ldflags=lib-locations 
The user might find useful the option 
--disable-examples 
which turns off compilation and linking of the examples. 

http://software.sandia.gov/Trilinos 
and [lo, Chapter 13. 

More details about the installation of TRILINOS can be found at  the TRILINOS web site, 

4.3.2 Enabling Profiling 

All of the options below are disabled by default. 
--enable-ml-t iming This prints out timing of key ML routines. 

--enable-ml-flops This enables printing of flop counts. 

Timing and flop counts are printed when the associated object is destroyed. 
4An example of configuration line that enables METIS and PARMETIS might be aa follows: 

./configure --vith-mpi-compilers --enable-mlnetis --enable-ml-pannetis3x --vith-cflags="-I$HOME/include" 
--vith-cppflags="-I$HOME/include" --vith-ldflags="-L$HOME/lib/LINUX-MPI -1parmetis-3.1 -1metis-4.0" . 
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5 ML and Epetra: Getting Started with the MultiLevelPrecon- 
ditioner Class 

In this Section we show how to use ML as a preconditioner to EPETRA and AZTECOO through 
the MultiLevelPreconditioner class5 in the MLEpetra namespace.6 Although limited to al- 
gebraic multilevel preconditioners, this allows the use of ML as a black-box preconditioner. 

The MultiLevelPreconditioner class automatically constructs all the components of the 
preconditioner, using the parameters specified in a TEUCHOS parameter list. The construc- 
tor of this class takes as input an EpetraRowMatrix pointer and a TEUCHOS parameter 
list7. 

In order to compile, it may also be necessary to include the following files: ml-conf ig . h 
(as first ML include), Epetra-Conf igDefs . h (as first EPETRA include), Epetra-RowMatrix. h, 
Epetra-MultiVector . h, Epetra-Linearproblem. h, and AztecOO . h. Check the EPETRA 
and AZTECOO documentation for more details. Additionally, the user must include the 
header file "ml-epetra-preconditioner . h". Also note that the macro HAVE-CONFIG-H 
must be defined either in the user's code or as a compiler flag. 

5.1 Example 1: ml-example-epetra-preconditioner.cpp 

We now give a very simple fragment of code that uses the MultiLevelPreconditioner. For the 
complete code, see $ML,HOME/examples/ml,example-epetra-precondit ioner . cpp. (In 
order to be effectively compiled, this example requires ML to  be configured with op- 
tion --enable-triutils; see Section 4.) The linear operator A is derived from an Epe- 
tra-RowMatrix, Solver is an AztecOO object, and Problem is an EpetraLinearProblem 
object. 

#include "ml-include . h" 
#include "ml-epetra-preconditioner.h" 
#include "Teuchos-ParameterList.hpp" 

. .  

Teuch0s::ParameterList MList; 

// set default values f o r  smoothed aggregation in MLList 
ML-Epetra: : SetDefaults("SA" ,MLList) ; 

// overwrite with user's defined parameters 
MLList . set ("max levels" , 6 )  ; 
MLList . set ("increasing or decreasing", "decreasing") ; 
MLList . set ("aggregation: type" , "MIS") ; 
MLList . set ("coarse : type" , llAmesos-KLU") ; 
5The MultiLevelPreconditioner class is derived from the EpetraRowMatrix class. 
6ML does not rely on any particular matrix format or iterative solver. Examples of using of M L  a8 a preconditioner for 

user-defined matrices (Le., non-Epetra matrices) are reported in Section 11.1 and 11.2. 
71n order to use the MultiLevelPreconditioner class, ML must be configured with options -enable-epetra 

--enable-teuchos. 
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. // create the preconditioner 
ML-Epetra::MultiLevelPreconditioner * MLPrec = 
new ML-Epetra: : MultiLevelPreconditioner (A, MLList , true) ; 

set  (Name ,Value) 

get (Name ,Def Value) 

subL i st (Name) 

// create an AztecOO solver 
AztecOO Solver(Prob1em) 

Add entry Name with value and type specified by Value. Any 
C++ type (like int, double, a pointer, etc.) is valid. 
Get value (whose type is automatically specified by DefValue). If 
not present, return DefValue. 
Get a reference to sublist List. If not present, create the sublist. 

// set preconditioner and solve 
Solver.SetPrecOperator(MLPrec); 
Solver. SetAztecOption(AZ-solver , AZ-pres) ; 
Solver. Iterate (Niters, le-12) ; 

. . .  

delete MLPrec; 

We now detail the general procedure to define the MultiLevelPreconditioner. First, the user 
defines a TEUCHOS parameter list'. Table 2 briefly reports the most important methods of 
this class. 

Table 2: Some methods of Teuch0s::ParameterList class. 

Input parameters are set via method set (Name ,Value), where Name is a string defining 
the parameter, and Value is the specified parameter, that  can be any C++ object or pointer. 
A complete list of parameters available for class MultiLevelPreconditioner is reported in 
Section 6. 

The parameter list is passed to the constructor, together with a pointer to the matrix, 
and a boolean flag. If this flag is set to false, the constructor will not create the multilevel 
hierarchy until when MLPrec-XomputePreconditioner (1 is called. The hierarchy can be 
destroyed using MLPrec->DestroyOg. For instance, the user may define a code like: 

// A is still not filled with numerical values 
ML,Epetra::MultiLevelPreconditioner * MLPrec = 
new ML-Epetra : : Mult iLevelPrecondit ioner (A, MLList , false) ; 

// compute the elements of A 

/ /  now compute the preconditioner 
. . .  

8See the TEUCHOS documentation for a detailed overview of this class. 
9We suggest to create the preconditioning object with new and to free memory with delete. Some MPI calls occur in 

Destroy() ,  so the user should not call MPI_FinalizeO or delete the communicator used by ML before the preconditioning 
object is destroyed. 
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MLPrec->ComputePreconditioner (1 ; 

/ /  solve the linear system 

// destroy the previously define preconditioner, and build a new one 
MLPrec->Destroy 0 ; 

. . .  

/ /  re-compute the elements of A 
// now re-compute (if required) the preconditioner 
MLPrec-XomputePreconditionerO; 

/ /  re-solve the linear system 

In this fragment of code, the user defines the ML preconditioner, but the preconditioner 
is created only with the call ComputePreconditioner 0. This may be useful, for example, 
when ML is used in conjunction with nonlinear solvers (like NOX [13]). 

5.2 Example 2: ml-example-epetra-preconditionerZlevel.cpp 

As a second example, here we explain with some details the construction of a 2-level domain 
decomposition preconditioner, with a coarse space defined using aggregation. 

File $MLHOME/examples/ml-example-epetra-precondit ioner-2level. cpp reports the 
entire code. In the example, the linear system matrix A, coded as an Epetra-CrsMatrix, 
corresponds to the discretization of a 2D Laplacian on a Cartesian grid. x and b are the 
solution vector and the right-hand side, respectively. 
The AztecOO linear problem is defined as 

Epetra-Linearproblem problem(&A , &x , &b) ; 
AztecOO solver (problem) ; 

We create the TEUCHOS parameter list as follows: 

ParameterList MLList; 
ML-Epetra: :SetDefaults (IIDDI' , MLList) ; 
MLList .set ("max levels" , 2) ; 
MLList .set ("increasing or decreasing" ,"increasing") ; 

MLList .set ("aggregation: type" , 'WETIS'') ; 
MLList .set ("aggregation: nodes per aggregate", 16) ; 
MLList . set ("smoother : pre or post'', "both") ; 
MLList .set ("coarse : type" , "Amesos-KLU") ; 
MLList .set ("smoother: type" , "Aztec") ; 

The last option tells ML to use the AZTEC preconditioning function as a smoother. All 
AZTEC preconditioning options can be used as ML smoothers. AZTEC requires an integer 
vector options and a double vector params. Those can be defined as follows: 

int options [AZ,OPTIONS-SIZEl; 
double params [AZ-PARAMS-SIZE] ; 
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AZ-def aults (options ,params) ; 
optionsCAZ-precondl = AZ-dom-decomp; 
options[AZ~subdomain~solve] = AZ-icc; 
MLList .set ("smoother: Aztec options", options) ; 
MLList .set ("smoother: Aztec params" a params) ; 

The last two commands set the pointer to  options and params in the parameter list". 
The ML preconditioner is created as in the previous example, 

ML-Epetra: :MultiLevelPreconditioner * MLPrec = 

and we can check that no options have been mispelled, using 

new ML-Epetra: :MultiLevelPreconditioner(A, MLList a true) ; 

MLPrec->Printunused (1 ; 

The Aztec00 solver is called using, for instance, 

solver. SetPrecOperator (MLPrec) ; 

solver. SetAztecOption(AZ-solver a AZ-cg-cmdnum) ; 

solver. SetAztecOption(AZ-kspace, 160) ; 

solver. Iterate(l550, le-12) ; 

Finally, some (limited) information about the preconditioning phase are obtained using 

cout << MLPrec->GetOutputList 0 ; 
Note that the input parameter list is copied in the construction phase, hence later changes 

to MLList will not affect the preconditioner. Should the user need to  modify parameters in 
the MLPrec's internally stored parameter list, he can get a reference to the internally stored 
list: 

ParameterList & List = MLPrec->GetList 0 ; 

and then directly modify List. 

6 Parameters for the ML-Epetra::MultiLevelPreconditioner Class 

In this section we give general guidelines for using the MultiLevelPreconditioner class effec- 
tively. The complete list of input parameters is also reported. 

loonly the pointer is copied in the parameter list, not the array itself. Therefore, options and params should not go out of 
scope before the destruction of the preconditioner. 
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6.1 

Some of the parameters that affect MultiLevelPreconditioner can in principle be different 
from level to level. By default, the set method for the MultiLevelPreconditioner class affects 
all levels in the multigrid hierarchy. In order to change a setting on a particular level (say, d), 
the string "(level d)" is appended to the option string (note that a space must separate 
the option and the level specification). For instance, assuming decreasing levels starting 
from 4, one could set the aggregation schemes as follows: 

Setting Options on a Specific Level 

MLList . set ("aggregation: type" , "Uncoupled") ; 
MLList . set ("aggregation : type (level 1) I' , "METIS") ; 
MLList . set ("aggregation: type (level 3)", ''MIS'') ; 

If the finest level is 0, and one has 5 levels, the code will use Uncoupled for level 0, METIS 
for levels 1 and 2, then MIS for levels 3 and 4. 

In $6.5, parameters that can be set differently on individual levels are denoted with 
the symbol * (that is not part of the parameter name). Note that 6ome parameters (e.g., 
Uncoupled-MIS aggregation) correspond to  quantities that must be the same at all levels. 

6.2 

All ML options can have a common prefix, specified by the user in the construction phase. 
For example, suppose that we require ML: (in this case with a trailing space) to be the 
prefix. The constructor will be 

char Prefix[] = "ML: "; 
ML-Epetra::MultiLevelPreconditioner * MLPrec = 

General Usage of the Parameter List 

new ML-Epetra::MultiLevelPreconditioner(*A, MLList, true, Prefix); 

A generic parameter, say aggregation: type, will now be defined as 

MLLIst . set ("ML: aggregation: type" , IIMETISII) ; 
It is important to point out that some options can be effectively used only if ML has been 
properly configured. In particular: 

0 METIS aggregation scheme requires --with-ml-metis, or otherwise the code will in- 

0 PARMETIS aggregation scheme required --with-mlmetis --enable-epetra and 
--wit h-ml-parmet is2x or -- w ith-ml-parmet is3x. 

0 AMESOS coarse solvers require --enable-amesos. Moreover, AMESOS must have been 
configure to support the requested coarse solver. Please refer to the AMESOS docu- 
mentation for more details; 

clude all nodes in the calling processor in a unique aggregate; 

0 IFPACK smoother requires --enable-if pack. 
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6.3 

The MultiLevelPreconditioner class provides default values for four different preconditioner 
types: 

Default Parameter Settings for Common Problem Types 

1. Linear elasticity 

2. Classical 2-level domain decomposition for the advection diffusion operator 

3. 3-level algebraic domain decomposition for the advection diffusion operator 

4. Eddy current formulation of Maxwell’s equations 

Default values are listed in Table 3. In the table, SA refers to  “classical” smoothed aggre- 
gation (with small aggregates and relative large number of levels), DD and DD-ML to domain 
decomposition methods (whose coarse matrix is defined using aggressive coarsening and 
limited number of levels). Maxwell refers to the solution of Maxwell’s equations. 

Default values for the parameter list can be set by MLXpetra: :SetDefaultsO. The 
user can easily put the desired default values in a given parameter list as follows: 

Teuch0s::ParameterList MLList; 
ML-Epetra::SetDefaults(ProblemType, MLList); 

or as 

Teuch0s::ParameterList MLList; 
ML-Epetra::SetDefaults(ProblemType, MLList, Prefix); 

Prefix (defaulted to an empty string) is the prefix to assign to each entry in the param- 
eter list. 

For DD and DD-ML, the default smoother is Aztec, with an incomplete factorization ILUT, 
and minimal overlap. Memory for the two AZTEC vectors is allocated using new, and the 
user is responsible to free this memory, for instance as follows: 

int * options; 
options = MLList .get (“smoother: Aztec options” , options) ; 
double * params; 
params = MLList .get (“smoother : Aztec params” , params) ; 

// Make sure solve is completed before deleting options & params!! 
delete [I options; 
delete [I params; 

The rational behind this is that  the parameter list stores a pointer to those vectors, not 
the content itself. (As a general rule, the vectors stored in the parameter list should not be 
prematurely destroyed or permitted to go out of scope.) 
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Option Name 
max levels 
output 
increasing or decreasing 
PDE equations 
null space dimension 
null space vectors 
aggregation: type 
aggregation: type (level I) 
aggregation: type (level 8) 
aggregation: local aggregates 
aggregation: nodes per aggregate 
aggregation: damping factor 
eigen-analysis: type 
coarse: max size 
aggregation: threshold 
aggregation: next-level aggregates 
per process 
smoother: sweeps 
smoother: damping factor 
smoother: pre or post 
smoother : type 
smoother: Aztec as solver 
smoother: MLS polynomial order 
smoother: MLS alpha 
coarse : type 
coarse : sweeps 
coarse : damping factor 
coarse: max processes 
print unused 

- 
- 

Type 
int 
int 
string 
int 
int 
double * 
string 
string 
string 
int 
int 
double 
string 
int 
double 
int 

- 
- 

int 
double 
string 
string 
boo1 
int 
double 
string 
int 
double 
int 
-int 

SA 
16 
8 
increasing 
1 
1 
NULL 
Uncoupled 

MIS 
- 

- 
- 

413 
Anorm 
128 
0.0 
- 

0.67 
both 
Gauss-Seidel 

- 

Arne s o s XLU 
1 
1 .o 
16 
n 

DD I DD-ML 

increasing increasing 

NULL 
METIS 

NULL 
METIS 

1 
- 

413 
Anorm 
128 
0.0 
- 

ParMETIS 
- 
- 

512 
413 
Anorm 
128 
0.0 
128 

- 

both 
Aztec 
false 

maxwell 
5 
10 
decreasing 
- 

NULL 
Uncoupled-MIS 
- 
- 
- 
- 

0.0 
Anorm 
128 
0.0 
- 

0.67 
both 
- 
- 

3 
30.0 
SuperLU 
1 
1 .o 

0 

Table 3: Default values for ML-Epetra::MultiLevelPreconditioner for the 4 currently supported problem types SA, DD , DD-ML , Maxwell. 
means not set. 
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Uncoup 1 ed 

Coupled 
MIS 

Uncoupled-MIS 

METIS 

ParMETIS 

Attempts to construct aggregates of optimal size (3d nodes in d 
dimensions). Each process works independently, and aggregates 
cannot span processes. 
As Uncoupled, but aggregates can span processes (deprecated). 
Uses a maximal independent set technique to define the aggre- 
gates. Aggregates can span processes. May provide better qual- 
ity aggregates than either Coupled or uncoupled. Computation- 
ally more expensive than either because it requires matrix-matrix 
product. 
Uses Uncoupled for all levels until there is 1 aggregate per pro- 
cessor. Then switches over to MIS. The coarsening scheme on a 
given level cannot be specified with this option. 
Use a graph partitioning algorithm to  creates the aggregates, 
working process-wise. The number of nodes in each aggregate is 
specified with the option aggregation: nodes per aggregate. 
Requires M L  to be configured with --with-mlmetis. 
As METIS, but partition the global graph. Requires 
--with-mlgarmetis2x or --with-ml-parmetis3x. Aggregates 
can span arbitrary number of processes. Global number of ag- 
gregates can be specified with the option aggregation: global 
number. 

Table 4: ML-Epetra::MultiLevelPreconditioner: Available coarsening schemes. 

6.4 Commonly Used Parameters 

Table 4 lists parameter for changing aggregation schemes. Table 5 lists common choices for 
smoothing options. Table 6 lists common choices affecting the coarse grid solve. 
Note that, in the parameters name, spaces are important: Do not include non- 
required leading or trailing spaces, and separate words by just one space! Mis- 
pelled parameters will not be detected. One may find useful to print unused param- 
eters by calling Printunused 0 after the construction of the multilevel hierarchy. 

6.5 

6.5.1 General Options 

List of All Parameters for MultiLevelPreconditioner Class 

output Output level, from 0 to 10 (10 being verbose). 

print unused If non-negative, will print all the unused param- 
eter on the specified processor. 

m a x  levels Maximum number of levels. 

increasing or decreasing If set to  increasing, level 0 will correspond 
to the finest level. If set to decreasing, max 
levels - 1 will correspond to  the finest level. 
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Jacobi 

Gauss-Seidel 

Aztec 

MLS 

Point-Jacobi. Damping factor is specified using smoother : 
dampig factor, and the number of sweeps with smoother: 
sweeps 
Point Gauss-Seidel. Damping factor is specified using smoother : 
dampig factor, and the number of sweeps with smoother: 
sweeps 
Use AZTECOO’S built-in preconditioning functions as smoothers. 
Or, if smoother: Aztec as solver is true, use approximate 
solutions with AZTEcOO(with smoothers : sweeps iterations 
as smoothers. The AzTEcOOvectors options and params can 
besetusingsmoother: Aztec optionsandsmoother: Aztec 
params. 
Use MLS smoother. The polynomial order is specified by 
smoother: MLS polynomial order, and the alpha value by 
smoother: MLS alpha. 

Table 5: ML3petra::MultiLevelPreconditioner: Commonly used smoothers. 

Jacobi 

Gauss-Seidel 

Ame so s-KLU 

Amesos-UMFPACK 

Amesos-Superludist 
Amesos-MUMPS 
Amesos-ScaLAPACK 
SuDerLU 

Use coarse: sweeps steps of Jacobi (with damping parameter 
coarse: 
Use coarse : sweeps steps of Gauss-Seidel(with damping pa- 
rameter coarse: 
Use KLuthrough AMESOS. Coarse grid problem is shipped to proc 
0, solved, and solution is broadcast 
Use UMFPACK through AMESOS. Coarse grid problem is shipped 
to proc 0, solved, and solution is broadcasted. 
Use SUPERLU-DISTthrough AMESOS. 
Use double precision version of MUMPS through AMESOS. 
Use double precision version of SCALAPACK through AMESOS. 
Use ML interface to SUPERLU. 

damping parameter) as a solver. 

damping parameter) as a solver. 

Table 6: ML3petra::MultiLevelPreconditioner: Some of the available coarse matrix solvers. Note: Amesos 
solvers requires ML to be configured with with-ml-amesos, and Amesos to be properly configured to 
support the specified solver. 

PDE equations 

null space dimension 

nu l l  space vec tors  

Number of PDE equations for each grid 
node. This value is not considered for 
Epetra-VbrMatrix objects, as in this case is ob- 
tained from the block map used to  construct the 
object. Note that only block maps with con- 
stant element size can be considered. 

Dimension of the null space. 

Pointer to the null space vectors. If NULL, ML 
will use the default null space. 
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6.5.2 Aggregation Parameters 

aggregation: type * 

aggregation: global aggregates * 

aggregation: local aggregates -k 

Define the aggregation scheme. Can 
be: Uncoupled, Coupled, MIS, METIS, 
ParMETIS. See Table 4. 

Defines the global number of aggregates (only 
for METIS and ParMETIS aggregation schemes). 

Defines the number of aggregates of the calling 
processor (only for METIS and ParMETIS aggre- 
gation schemes). Note: this value overwrites 
aggregation: global aggregates. 

aggregation: nodes per aggregate *Defines the number of nodes to  be as- 
signed to each aggregate (only for METIS 
and ParMETIS aggregation schemes). Note: 
this value overwrites aggregation: local 
aggregates. If none among aggregation: 
global aggregates, aggregation: local 
aggregates and aggregation: nodes per 
aggregate is specified, the default value is 1 
aggregate per process. 

aggregation: damping factor Damping factor for smoothed aggregation. 

eigen-analysis: type Defines the numerical scheme to be used to com- 
pute an estimation of the maximum eigenvalue 
of P I A ,  where D = diag(A) (for smoothed 
aggregation only). I t  can be: cg (use 10 steps 
of conjugate gradient method), Anorm (use A- 
norm of matrix), Anasazi (use the ANASAZI 
package; the problem is supposed to be non- 
symmetric), or power-method. 

aggregation: threshold Threshold in aggregation. 

aggregation : 
per process * 

next-level aggregates Defines the maximum number of next-level ma- 
trix rows per process (only for ParMETIS aggre- 
gation scheme). 

6.5.3 Smoothing Parameters 

smoother: sweeps * Number of sweeps of smoother. 
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smoother: damping factor * 

smoother: pre or post * 

smoother: type * 

smoother: Aztec options * 

smoother: Aztec params * 

smoother: Aztec as solver * 

Smoother damping factor. 

If set to pre, only pre-smoothing will be used. 
If set to post, only post-smoothing will be used. 
If set to both, pre- and post-smoothing will be 
used. 

Type of the smoother. It can be: Jacobi, 
Gauss-Seidel, sym Gauss-Seidel, Aztec, 
IFPACK. See Table 5. 

Pointer to AZTEC’S options vector (only for 
aztec smoother) . 

Pointer to AZTEC’S params vector (only for 
aztec smoother) . 

If true, smoother: sweeps iterations of 
AZTEC solvers will be used as smoothers. If 
false, only the AZTEC’S preconditioner func- 
tion will be used as smoother (only for aztec 
smoother) . 

smoother: MLS polynomial order * Polynomial order for MLS smoothers. 

smoother: MLS alpha * Alpha value for MLS smoothers. 

6.5.4 Coarsest Grid Parameters 

coarse: max size 

coarse: type 

coarse : sweeps 

coarse : damping factor 

Maximum dimension of the coarse grid. ML 
will not coarsen further is the size of the current 
level is less than this value. 

Coarse solver. It can be: 
Jacobi, Gauss-Seidel, AmesosXLU, 
Amesos-UMFPACK, Amesos-Superludist, 
AmesosMUMPS. See Table 6. 

(only for Jacobi and Gauss-Seidel) Number 
of sweeps in the coarse solver. 

(only for Jacobi and Gauss-Seidel) Damping 
factor in the coarse solver. 
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coarse: max processes Maximum number of processes to be 
used in the coarse grid solution (only 
for Amesos-Superludist, Amesos-MUMPS, 
Ame sos-ScaLAPACK) . 

7 Advanced Usage of ML 

Sections 5 and 6 have detailed the use of ML as a black box preconditioner. In some cases, 
instead, the user may need to explicitly construct the ML hierarchy. This is reported in 
the following sections. 

A brief sample program is given in Figure 2. The function ML-Create creates a mul- 

ML-Create (&ml-ob j ect , N-grids) ; 

ML-Init ,Amatr ix (ml-object, 0, nlocal, nlocal, (void *) A-data); 
ML-Set_Amatrix-Getrow(ml-object, 0, 
ML-Set-Amatrix-Matvec(m1-object, 0, user-matvec); 

user-getrow , NULL, nlocal-allcolumns) ; 

N-levels = ML-Gen-MGHierarchy-UsingAggregation(m1-object, 0, 

ML-Gen-Smoother-Jacobi(m1-object, ML-ALL-LEVELS, ML-PRESMOOTHER, I, 

ML-Gen-Solver 
ML-Iterate(ml,object, sol, rhs); 
ML-Destroy (&ml-obj ect) ; 

ML-INCREASING, NULL) ; 

ML-DEFAULT) ; 
(ml-obj ect , ML-MGV, 0 , N-levels-I) ; 

Figure 2: High level multigrid sample code. 

tilevel solver object that is used to define the preconditioner. It requires the maximum 
number of multigrid levels be specified. In almost all cases, N-grids= 20 is more than 
adequate. The three ‘Amatrix’ statements are used to define the discretization matrix, A, 
that is solved. This is discussed in greater detail in Section 11.1. The multigrid hierarchy 
is generated via M L-Gen-MGHierarchy-UsingAggregation. Controlling the behavior of this 
function is discussed in Section 9. For now, it is important to understand that this function 
takes the matrix A and sets up relevant multigrid operators corresponding to the smoothed 
aggregation multigrid method [18] [17]. In particular, it generates a graph associated with 
A,  coarsens this graph, builds functions to transfer vector data between the original graph 
and the coarsened graph, and then builds an approximation to A on the coarser graph. 
Once this second multigrid level is completed, the same operations are repeated to the 
second level approximation to A generating a third level. This process continues until the 
current graph is sufficiently coarse. The function M L-Gen-Smoother-Jacobi indicates that a 
Jacobi smoother should be used on all levels. Smoothers are discussed further in Section 
8. Finally, M L-Gen-Solver is invoked when the multigrid preconditioner is fully specified. 
This function performs any needed initialization and checks for inconsistent options. After 
ML-Gen-Solver completes ML-Iterate can be used to solve the problem with an initial guess 
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of s o l  (which will be overwritten with the solution) and a right hand side of rhs. At the 
present time, the external interface to vectors are just arrays. That is, rhs and s o l  are 
simple one-dimensional arrays of the same length as the number of rows in A. In addition 
to ML-Iterate, the function MLSolve-MGV can be used to perform one multigrid ‘V’ cycle 
as a preconditioner. 

8 Multigrid & Smoothing Options 

Several options can be set to tune the multigrid behavior. In this section, smoothing and 
high level multigrid choices are discussed. In the next section, the more specialized topic 
of the grid transfer operator is considered. The details of the functions described in these 
next two sections are given in Section 13. 

For most applications, smoothing choices are important to the overall performance of 
the multigrid method. Unfortunately, there is no simple advice as to  what smoother will 
be best and systematic experimentation is often necessary. ML offers a variety of standard 
smoothers. Additionally, user-defined smoothers can be supplied and it is possible to use 
AZTECS a smoother. A list of ML functions that can be invoked to use built-in smoothers 
are given below along with a few general comments. 

M L-Gen-SmootherJacobi 

M L-Gen-SmootherlGaussSeidel 

M L-GenSmootherSymGaussSeidel 

Typically, not the fastest smoother. Should 
be used with damping. For Poisson problems, 
the recommended damping values are (lD), $ 
(2D), and (3D). In general, smaller damping 
numbers are more conservative. 

Probably the most popular smoother. Typi- 
cally, faster than Jacobi and damping is often 
not necessary nor advantageous. 

Symmetric version of Gauss Seidel. When us- 
ing multigrid preconditioned conjugate gradi- 
ent, the multigrid operator must be symmetriz- 
able. This can be achieved by using a symmetric 
smoother with the same number of pre and post 
sweeps on each level. 

M L-Gen-Smoother-BlockGaussSeidel Block Gauss-Seidel with a fixed block size. Of- 
ten used for PDE systems where the block size 
is the number of degrees of freedom (DOFs) per 
grid point. 

M L-GenSmoother-VBlockJacobi Variable block Jacobi smoother. This allows 
users to specify unknowns to be grouped into 
different blocks when doing block Jacobi. 
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M L-Gen-Smoother-VBlockSymGaussSeidel Symmetric variable block Gauss-Seidel smooth- 
ing. This allows users to specify unknowns to be 
grouped into different blocks when doing sym- 
metric block Gauss-Seidel. 

It should be noted that the parallel Gauss-Seidel smoothers are not true Gauss-Seidel. In 
particular, each processor does a Gauss-Seidel iteration using off-processor information from 
the previous iteration. 

AZTEC user’s [15] can invoke ML-Gen-SmootherAztec to use either AZTEC solvers or 
AZTEC preconditioners as smoothers on any grid level. Thus, for example, it is possible to 
use preconditioned conjugate-gradient (where the preconditioner might be an incomplete 
Cholesky factorization) as a smoother within the multigrid method. Using Krylov smoothers 
as a preconditioner could potentially be more robust than using the simpler schemes pro- 
vided directly by ML. However, one must be careful when multigrid is a preconditioner to 
an outer Krylov iteration. Embedding an inner Krylov method within a preconditioner to 
an outer Krylov method may not converge due to the fact that the preconditioner can no 
longer be represented by a simple matrix. Finally, it is possible to pass user-defined smooth- 
ing functions into ML via MLSet-Smoother. The signature of the user defined smoother 
function is 

int user-smoothing(void *data, int x-length, double x[] , 
int rhs-length, double rhs [I 

where data is a pointer given with the ML-Set-Smoother invocation, x is a vector (of length 
x-length) that corresponds to the initial guess on input and is the improved solution esti- 
mate on output, and rhs is the right hand side vector of length rhs-length. A simple (and 
suboptimal) damped Jacobi smoother for the finest grid of our example is given below: 
int user-smoothing(void *data, int x-length. double xc] , int rhs-length, double rhsfl) 
< 

int i; 
double apC51, omega = .5; /* temp vector and damping factor */ 

Poisson-matvec(data, x-length. x. rhs-length, ap) ; 
for (i = 0; i < x-length; i++) x[i] = xcil + omega*(rhs[il - ap[i])/2.; 

return 0; 
1 

A more complete smoothing example that operates on all multigrid levels is given in the file 
mlguide . c. This routine uses the functions M L-Operator-Apply, M L-Operator-Get-Diag, and 
M L-Get-Amatrix to access coarse grid matrices constructed during the algebraic multigrid 
process. By writing these user-defined smoothers, it is possible to tailor smoothers to a par- 
ticular application or to  use methods provided by other packages. In fact, the AZTEC meth- 
ods within ML have been implemented by writing wrappers to  existing AZTEC functions 
and passing them into ML via ML-Set-Smoother. 

At the present time there are only a few supported general parameters that may be 
altered by users. However, we expect that this list will grow in the future. When us- 
ing ML-Iterate, the convergence tolerance (ML-Set-Tolerance) and the frequency with which 
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residual information is output (MLSet-ResiduaiOutputFrequency) can both be set. Addi- 
tionally, the level of diagnostic output from either ML-iterate or MLSolve-MGV can be set 
via MLSet-OutputLevel. The maximum number of multigrid levels can be set via ML-Create 
or MLSet-MaxLevels. Otherwise, ML continues coarsening until the coarsest grid is less 
than or equal to a specified size (by default 10 degrees of freedom). This size can be set via 
M LAggrega teSet-MaxCoarseSize. 

9 Smoothed Aggregation Options 

When performing smooth aggregation, the matrix graph is first coarsened (actually vertices 
are aggregated together) and then a grid transfer operator is constructed. A number of 
parameters can be altered to change the behavior of these phases. 

9.1 Aggregation Options 

A graph of the matrix is usually constructed by associating a vertex with each equation 
and adding an edge between two vertices i and j if there is a nonzero in the ( i , j ) t h  or 
( j ,  i)th entry. It is this matrix graph whose vertices are aggregated together that  effectively 
determines the next coarser mesh. The above graph generation procedure can be altered in 
two ways. First, a block matrix graph can be constructed instead of a point matrix graph. 
In particular, all the degrees of freedom (DOFs) at a grid point can be collapsed into a 
single vertex of the matrix graph. This situation arises when a PDE system is being solved 
where each grid point has the same number of DOFs. The resulting block matrix graph is 
significantly smaller than the point matrix graph and by aggregating the block matrix graph, 
all unknowns at a grid point are kept together. This usually results in better convergence 
rates (and the coarsening is actually less expensive to compute). To indicate the number 
of DOFs per node, the function MLAggregate-Set-Nullspace is used. The second way in 
which the graph matrix can be altered is by ignoring small values. In particular, it is often 
preferential to ignore weak coupling during coarsening. The error between weakly coupled 
points is generally hard to smooth and so it is best not to coarsen in this direction. For 
example, when applying a Gauss-Seidel smoother to a standard discretization of 

u x x  + EUyy = f 
(with 0 5 E 5 , there is almost no coupling in the y direction. Consequently, simple 
smoothers like Gauss-Seidel do not effectively smooth the error in this direction. If we apply 
a standard coarsening algorithm, convergence rates suffer due to this lack of y-direction 
smoothing. There are two principal ways to  fix this: use a more sophisticated smoother or 
coarsen the graph only in the 5 direction. By ignoring the y-direction coupling in the matrix 
graph, the aggregation phase effectively coarsens in only the 2-direction (the direction for 
which the errors are smooth) yielding significantly better multigrid convergence rates. In 
general, a drop tolerance, told, can be set such that an individual matrix entry, A ( i , j )  is 
dropped in the coarsening phase if 

IA(i, j )  I 5 t o l d  * d lA( i ,  i ) A ( j ,  j )  1 -  
This drop tolerance (whose default value is zero) is set by MLAggregate-Set-Threshold. 

There are two different groups of graph coarsening algorithms in ML: 
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0 schemes with fixed ratio of coarsening between levels: uncoupled aggregation, coupled 
aggregation, and MIS aggregation. A description of those three schemes along with 
some numerical results are given in (161. As the default, the Uncoupled-MIS scheme 
is used which does uncoupled aggregation on finer grids and switches to the more 
expensive MIS aggregation on coarser grids; 

0 schemes with variable ratio of coarsening between levels: METIS and PARMETISaggregation. 
Those schemes use the graph decomposition algorithms provided by METIS and PARMETIS, 
to create the aggregates. 

Poorly done aggregation can adversely affect the multigrid convergence and the time per 
iteration. In particular, if the scheme coarsens too rapidly multigrid convergence may suffer. 
However, if coarsening is too slow, the number of multigrid levels increases and the number 
of nonzeros per row in the coarse grid discretization matrix may grow rapidly. We refer the 
reader to the above paper and indicate that users might try experimenting with the different 
schemes via M LAggregate-Set-Coarsenscheme-Uncoupled, M LAggregateSet-Coarsenscheme-Coupled, 
MLAggregate-Set-CoarsenScheme-MIS, MLAggregateSet-Coarsenscheme-METIS, and 
M L AggregateSet-Coarsenscheme-ParMETIS. 

9.2 Interpolation Options 

An interpolation operator is built using coarsening information, seed vectors, and a damping 
factor. We refer the reader to [17] for details on the algorithm and the theory. In this section, 
we explain a few essential features to help users direct the interpolation process. 

Coarsening or aggregation information is first used to create a tentative interpolation 
operator. This process takes a seed vector or seed vectors and builds a grid transfer operator. 
The details of this process are not discussed in this document. It is, however, important 
to understand that only a few seed vectors are needed (often but not always equal to 
the number of DOFs at each grid point) and that these seed vectors should correspond 
to components that are difficult to smooth. The tentative interpolation that results from 
these seed vectors will interpolate the seed vectors perfectly. It does this by ensuring that 
all seed vectors are in the range of the interpolation operator. This means that each seed \ 

vector can be recovered by interpolating the appropriate coarse grid vector. The general 
idea of smoothed aggregation (actually all multigrid methods) is that errors not eliminated 
by the smoother must be removed by the coarse grid solution process. If the error after 
several smoothing iterations was known, it would be possible to pick this error vector as the 
seed vector. However, since this is not the case, we look a t  vectors associated with small 
eigenvalues (or singular values in the nonsymmetric case) of the discretization operator. 
Errors in the direction of these eigenvectors are typically difficult to smooth as they appear 
much smaller in the residual (T = Ae where T is the residual, A is discretization matrix, and 
e is the error). For most scalar PDEs, a single seed vector is sufficient and so we seek some 
approximation to the eigenvector associated with the lowest eigenvalue. It is well known 
that a scalar Poisson operator with Neumann boundary conditions is singular and that the 
null space is the constant vector. Thus, when applying smoothed aggregation to Poisson 
operators, it is quite natural to choose the constant vector as the seed vector. In many cases, 
this constant vector is a good choice as all spatial derivatives within the operator are zero 
and so it is often associated with small singular values. Within ML the default is to choose 
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the number of seed vectors to be equal to the number of DOFs at each node (given via 
M LAggregateSet-Nullspace). Each seed vector corresponds to a constant vector for that  
DOF component. Specifically, if we have a PDE system with two DOFs per node. Then 
one seed vector is one at the first DOF and zero at the other DOF throughout the graph. 
The second seed vector is zero at the first DOF and one at  the other DOF throughout 
the graph. In some cases, however, information is known as to what components will be 
difficult for the smoother or what null space is associated with an operator. In elasticity, 
for example, it is well known that a floating structure has six rigid body modes (three 
translational vectors and three rotation vectors) that correspond to  the null space of the 
operator. In this case, the logical choice is to take these six vectors as the seed vectors in 
smoothed aggregation. When this type of information is known, i t  should be given to  ML 
via the command M LAggregateSet-NullSpace. 

Once the tentative prolongator is created, it is smoothed via a damped Jacobi it- 
eration. The reasons for this smoothing are related to the theory where the interpo- 
lation basis functions must have a certain degree of smoothness (see [17]). However, 
the smoothing stage can be omitted by setting the damping to zero using the function 
MLAggregate-Set-DampingFactor. Though theoretically poorer, unsmoothed aggregation 
can have considerably less set up time and less cost per iteration than smoothed aggrega- 
tion. When smoothing, ML has two ways to determine the Jacobi damping parameter and 
each require some estimate of the largest eigenvalue of the discretization operator. The cur- 
rent default is to use a few iterations of a conjugate-gradient method to estimate this value. 
However, if the matrix is nonsymmetric, the infinity norm of the matrix should be used 
instead via M LAggregateSet-SpectralNormScheme-Anorm. There are several other internal 
parameters that have not been discussed in this document. In the future, i t  is anticipated 
that some of these will be made available to users. 

10 Advanced Usage of ML and Epetra 

Class ML-Epetra::MultiLevelOperator is defined in a header file, that  must be included as 

#include "ml-epetra-operator.h" 

Users may also need to include ml-conf ig . h, Epetra-Operator . h, Epetra-MultiVector . h, 
Epetra-Linearproblem. h, AztecOO . h. Check the EPETRA and AztecOO documentation 
for more details. 

Let A be an Epetra-RowMatrix for which we aim to  construct a preconditioner, and let 
ml-handle be the structure ML requires to  store internal data (see Section 7), created with 
the instruction 

ML-Create (hl-handle ,N-levels) ; 

where N-levels is the specified (maximum) number of levels. As already pointed out, ML 
can accept in input very general matrices. Basically, the user has to specify the number of 
local rows, and provide a function to update the ghost nodes (that is, nodes requires in the 
matrix-vector product, but assigned to another process). For Epetra matrices, this is done 
by the following function 

EpetraMatrix2MLMatrix(ml-handle, 0, &A); 



and it is important to note that A is not converted to ML format. Instead, EpetraMa- 
trix2M LMatrix defines a suitable getrow function (and other minor data structures) that 
allows ML to work with A. 

Let agg-ob j ect a ML-Aggregate pointer, created using 

ML-Aggregate-Create (&agg-object) ; 

At this point, users have to create the multilevel hierarchy, define the aggregation schemes, 
the smoothers, the coarse solver, and create the solver. Then, we can finally create the 
ML-Epetra::MultiLevelOperator object 

ML-Epetra: :MultiLevelOperator MLop(m1-handle , commamapamap) ; 

(map being the Epetra-Map used to create the matrix) and set the preconditioning operator 
of our AZTECOO solver, 

Epetra-Linearproblem Problem(A,&x,&b); 
Aztec00 Solver (Problem) ; 
solver.SetPrecOperator(&MLop); 

where x and b are Epetra-MultiVector’s defining solution and right-hand side. The linear 
problem can now be solved as, for instance, 

Solver.SetAztecOption( AZ-solver, AZ-gmres 1; 
solver. Iterate (Niters , le-12) ; 

11 Using ML without Epetra 

11.1 

Matrices are created by defining some size information, a matrix-vector product and a 
getrow function (which is used to extract matrix information). We note that EPETRA and 
AZTEC users do not need to read this (or the next) section as there are special functions to 
convert EPETRA objects and AZTEC matrices to ML matrices (see Section 4.2). Further, 
functions for some common matrix storage formats (CSR & MSR) already exist within ML 
and do not need to be rewritten’’. 

Size information is indicated via ML-InitAmatrix. The third parameter in the Figure 2 
invocation indicates that a matrix with nlocal rows is being defined. The fourth parameter 
gives the vector length of vectors that can be multiplied with this matrix. Additionally, a 
data pointer, A-data, is associated with the matrix. This pointer is passed back into the 
matrix-vector product and getrow functions that are supplied by the user. Finally, the 
number ‘0’ indicates at what level within the multigrid hierarchy the matrix is to be stored. 
For discussions within this document, this is always ‘0’. It should be noted that there 
appears to be some redundant information. In particular, the number of rows and the 
vector length in ML-InitAmatrix should be the same number as the discretization matrices 
are square. Cases where these ‘apparently’ redundant parameters might be set differently 
are not discussed in this document. 

Creating a ML matrix: Single Processor 

“The functions CSR-matvec, CSR-getrows, MSRmatvec and MSR-getrows can be used. 
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The function M L-SetAmatrix-Matvec associates a matrix-vector product with the dis- 
cretization matrix. The invocation in Figure 2 indicates that  the matrix-vector product 
function usermatvec is associated with the matrix located at level ‘0’ of the multigrid 
hierarchy. The signature of usermatvec is 

int  user-matvec(void *A,data, int  in-length, double p[] , in t  out-length, 

where A-data is the user-defined data pointer specified in the ML-InitAmatrix, p is the vector 
to apply to the matrix, in-length is the length of this vector, and ap is the result after 
multiplying the discretization matrix by the vector p and out-length is the length of ap. 

Finally, MLSet-Amatrix-Getrow associates a getrow function with the discretization ma- 
trix. This getrow function returns nonzero information corresponding to specific rows. The 
invocation in Figure 2 indicates that a user supplied function user-getrow is associated 
with the matrix located at level ‘0’ of the multigrid hierarchy and that this matrix con- 
tains nlocal-allcolumns columns and that no communication (NULL) is used (discussed 
in the next section). I t  again appears that some redundant information is being asked as 
the number of columns was already given. However, when running in parallel this number 
will include ghost node information and is usually different from the number of rows. The 
signature of user-getrow is 

‘ in t  user-getrow (void *A-data, int  N-requested-rows , i n t  requested-rows [I , 
int  allocated-space, in t  columns[], double values[], i n t  row-lengths[]) 

where A-data is the user-defined data pointer in ML-InitAmatrix, Nrequested-rows is 
the number of matrix rows for which information is returned, requested-rows are the 
specific rows for which information will be returned, allocated-space indicates how much 
space has been allocated in columns and values for nonzero information. On return, the 
user’s function should take each row in order within requested-rows and place the column 
numbers and the values corresponding to nonzeros in the arrays columns and values. The 
length of the ith requested row should appear in row-lengthsCi1. If there is not enough 
allocated space in columns or values, this routine simply returns a ‘O’, otherwise it returns 
a ‘1’. 

To clarify, these functions, one concrete example is given corresponding to the matrix: 

double apC1) 

-1 
-1 2 -1 

-1 2 

To implement this matrix, the following functions are defined: 
int Poisson-getrow(void *A-data, int N-requested-rows, int requested-rows[]. 

int allocated-space, int columus [] , double values [I , int rov-lengths [I 

int count = 0 ,  i, s t a r t ,  row; 
.I 

for ( i  = 0;  i < N-requested-rows; i++) { 
i f  (allocated-space < count+d) return(0) ; 
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start = count; 
row = requested-rovs [i] ; 
if ( (row >= 0) I I (row <= 4) ) { 

co~umns[countl = rov; values[count++] = 2.; 
if (row != 0) { columns[countl = row-1; values[count++l = -1.; 1 
if (row != 4) { colunms[countl = row+l; values[count++l = -1.; 1 

1 
row-lengths[i] = count - start; 

1 
return(1) ; 

1 

and 
int Poisson-matvec (void *A-data, int in-length, double p n  , int out-length, 

double ap[]) 
3 

int i; 

for (i = 0; i < 5; i++ ) { 
april = 2*p[il; 
if (i != 0) apcil -= p[i-11; 
if (i != 4) apCi1 -= p[i+lI; 

1 
return 0; 

3 

Finally, these matrix functions along with size information are associated with the fine grid 
discretization matrix via 

ML-Init-Amatrix (ml-object, 0, 5, 5, NULL); 
ML-Set-Amatrix-Getrow(ml-object, 0, Poisson-getrow, NULL, 5); 
ML-Set-Amatrix-Matvec (ml-object , 0, Poisson-matvec) ; 

Notice that in these simple examples A-data was not used. In the next section we give a 
parallel example which makes use of A-data. The complete sample program can be found 
in the file mlguide . c within the M L  code distribution. 

11.2 

Creating matrices in parallel requires a bit more work. In this section local versus global 
indexing as well as communication are discussed. In the description, we reconsider the 
previous example (2) partitioned over two processors. The matrix row indices (ranging from 
0 to 4) are referred to as global indices and are independent of the number of processors 
being used. On distributed memory machines, the matrix is subdivided into pieces that are 
assigned to individual processors. ML requires matrices be partitioned by rows (i.e. each 
row is assigned to a processor which holds the entire data for that  row). These matrix pieces 
are stored on each processor as smaller local matrices. Thus, global indices in the original 
matrix get mapped to local indices on each processor. In our example, we will assign global 
rows 0 and 4 to processor 0 and store them locally as rows 1 and 0 respectively. Global 
columns 0, 1, 3, and 4 are stored locally as columns 1, 3, 2, and 0. This induces the local 
matrix 

Creating a ML matrix: Multiple Processors 

-I -1 ) .  
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Likewise, processor 1 is assigned global rows 1, 2, and 3 which are stored locally as rows 0, 
1, and 2 respectively. Global columns 0 - 4 are stored locally as columns 3, 0, 1, 2, and 4 
inducing the local matrix 

-1 2 -1 2 -1 - l ) .  
-1 2 -1 

At the present time, there are some restrictions as to what type of mappings can be used. In 
particular, all global rows stored on a processor must be mapped from 0 to  k - 1 where k is 
the number of rows assigned to this processor. This row mapping induces a partial column 
mapping. Any additional columns must be mapped with consecutive increasing numbers 
starting from k. 

ML has no notion of global indices and uses only the local indices. In most cases, 
another package or application already mapped the global indices to  local indices and so 
ML works with the existing local indices. Specifically, the parallel version of user-getrow 
and usermatvec should correspond to each processor’s local matrix. This means that when 
giving the column information with M LSet-Amatrix-Getrow, the total number of columns 
in the local matrix should be given and that when row k is requested, user-getrow should 
return the kth local row using local column indices. Likewise, the matrix-vector product 
takes a local input vector and multiplies it by the local matrix. It is important to note that 
this local input vector does not contain ghost node data (i.e. the input vector is of length 
nlocal where nlocal  is the number of matrix rows). Thus, useraatvec  must perform the 
necessary communication to  update ghost variables. When invoking M L-InitAmatrix, the 
local number of rows should be given for the number of rows and the vector lengthI2. A 
specific communication function must also be passed into ML when supplying the getrow 
function so that ML can determine how local matrices on different processors are ‘glued’ 
together. The signature of the communication function is 

int  user-comm(doub1e x c l ,  void *Adata) 

where A-data is the user-defined data pointer specified in the ML-InitAmatrix and x is a 
vector of length nlocal-allcolumns specified in ML-SetAmatrix-Getrow. This parameter 
should be set to the total number of matrix columns stored on this processor. On input, 
only the first nlocal  elements of x are filled with data where nlocal  is the number of 
rows/columns specified in ML-InitAmatrix. On output, the ghost elements are updated to 
their current values (defined on other processors). Thus, after this function a local matrix- 
vector product could be properly performed using x. To make all this clear, we give the 
new functions corresponding to our two processor example. 

int Poisson,getrow(void *A-data, int N-requested-rows, int requested,rovs[], 

I 
int allocated-space, int cols [I , double values 11 , int row-lengths [I ) 

int rn = 0. i, row, proc, *itemp, start; 

itemp = (int *) A-data; 
proc = *itamp; 

I2In contrast to MLSet-Amatrix-Getrow in which the number of local columns are given (including those that correspond to 
ghost variables), ML-Init-Amatrix does not include ghost variables and so both size parameters should be the number of local 
rows. 
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f o r  (i = 0; i < N-requested-rows; i++) C 
row = requested-rows C i ]  ; 
i f  (allocated-space < m+3) return(0) ; 
valuesCm1 = 2; values[m+ll = -1; valuesCm+21 = -1; 
star t  = m; 
i f  (proc == 0) I 

if (row == 0) IcolsCm++l = 0; colsCm++l = 2; 1 
i f  (row == 1) CcolsCm++l = 1; colsCm++l = 3 ; )  

1 
i f  (proc == 1) I 

i f  (row == 0) CcolsCm++l = 0; colsCm++l = 1; coh.Cm++l = 4;) 
if (row == 1) IcolsCm++l = 1; colsCm++l = 0; colsCm++l = 2;) 
if (row == 2) Cco~sCm++l = 2; colsCm++l = 1; colsCm++l = 3 ; )  

1 
row-lengths[i] = m - start; 

1 
return(1) ; 

1 

i n t  Poisson-matvec (void *A-data, i n t  in-length, double p[] , i n t  out-length. 
double ap[]) 

I 
i n t  i. proc. *itemp; 
double new-p C51; 

itemp = ( i n t  *) A-data; 
proc = *itamp; 

f o r  (i = 0; i < in-length; i++) new-p[il = p[i] ; 
Poisson-comm(new-p. A-data); 

f o r  (i = 0; i < out-length; i++) apci] = P.*new_p[i]; 

i f  (proc == 0) C 
apC01 -= nev-pC21; 
ap[1] -= neu-pC31; 

1 
i f  (proc == 1) C 

apCOl -= new-p [I1 ; apC01 -= new-p[4] ; 
apCll -= new-pC21; apC11 -= new-p[O] ; 
apC21 -= neu-pC31; apC21 -= new-p[1] ; 

re turn 0; 
1 

and 
i n t  Poisson-com(double x u ,  void *A-data) 
I 

i n t  proc,  neighbor, length,  *itemp; 
double send-buffer c21, recv-bufferC21; 

itemp = ( i n t  *> A-data; 
proc = *itemp; 

length = 2; 
if (proc == 0) I 
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neighbor = 1; 
send-buf f er 101 
send-msg (sendbuffer, 
recv-msg (recv-buffer , 
x [2] = recv-buffer [I] ; 

1 
else C 

X 101 ; 

neighbor = 0; 
send-buf f er [Ol = X [ol : 
send_msg(send-buffer, 
recv,msg(recv-buffer. 
x [3] = recv-buf fer 111 ; 

1 
return 0; 

1 

send-buf fer [I1 = X [I]; 
length, neighbor) ; 
length, neighbor) ; 
x[3] = recv-buffer[O] : 

send-buf f er [I1 = x [21; 
length, neighbor) ; 
length, neighbor) ; 
x [4] = recv-buff er CO] : 

Finally, these matrix functions along with size information are associated with the fine grid 
discretization matrix via 

if (proc == 0) (nlocal = 2;  nlocal-allcolumns = 4;) 
else if (proc == 1) (nlocal = 3; nlocal-allcolumns = 5;l 
else (nlocal = 0; nlocal-allcolumns = 0;) 

ML-Init-Amatrix (ml-object, 0, nlocal, nlocal, &proc) ; 
ML-Set-Amatrix-Getrow(ml,object, 0, Poisson-getrow, Poisson-comm, 

ML-Set-Amatrix-Matvec (ml-obj ect , 0, Poisson-matvec) ; 
nlocal-allcolumns) ; 

12 Visualization Capabilities 

ML supports limited capabilities for the visualization of the aggregates, with an interface 
to OpenDX. Currently, only Uncoupled , METIS and ParMETIS aggregation routines can 
dump files in OpenDX format. 

The procedure to create the OpenDX input files is as follows: 

1. Add the following line after the creation of the MLAggregate object 

ML-Aggregate,Viz,Stats,Setup( ag, MaxMgLevels ; 

where MaxMgLevels is the maximum number of levels (this is the same value used to 
create the ML object). 

2. Create the multilevel hierarchy; 

3. Write OpenDX file using the instruction 

where ml is the ML object, ag the MLAggregation object, and x,y,z are double 
vectors, whose size equals the number of local nodes in the fine grid, containing the 
coordinates of fine grids nodes. option is an integer value defined so that: 
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4. 

0 option = 1 : solution of 1D problem (y and z can be NULL); 

0 option = 2 : solution of 2D problems ( z  can be NULL); 

0 option = 3 : solution of 3D problems. 

Processor X will write its own file, filename-levelY-procX, where Y is the level. 
filename can be set to NULL (default value of .graph will be used in this case). 
Note that, as in smoothed aggregation there is no grid for coarser levels, 
MLAggregate-Visualize needs to assign to each aggregate a set of coordinates. This is 
done by computing the center of gravity of each aggregates (starting from the fine grid, 
up to the coarsest level). 

Deallocate memory using 

ML-Aggregate-Viz-Stats-Clean( ag, MaxMgLevels 1’. 

At this point, one should copy file viz-aggre .net and viz-aggre . cfg (located in 
$ML-HOME/util/) in the directory where the output files are located, and run OpendDX 
with the instruction 

X dx -edit viz-aggre.net 

Other instructions are reported in file $ML,HOME/util/viz-aggre . README. An example of 
code can be found in file $ML-HOME/examples/ml-aztec~simple-METIS.c. 
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13 ML Functions 

Prototype 

7 I 
int AZ-MLSet-Arnat(ML *mLobject, int k, int isize, int osize, AZ-MATRIX *Amat, 

in t * proc-config) 

Description 

Create an ML matrix view of an existing AzTECmatrix and store it within the ‘ml-object’ 
context. 

Parameters 

mLo bject On input, ML object pointer (see ML-Create). 
discretization matrix of level k is the same as given by Amat. 

On output, the 

IC 

isize 

osize 

Amat 

proc-config 

On input, indicates level within ml-object hierarchy (should be be- 
tween 0 and Nlevelst-l). 

On input, the number of local rows in the submatrix stored on this 
processor. 

On input, the number of columns in the local submatrix stored on 
this processor not including any columns associated with ghost un- 
knowns. 

On input, an AZTECdata structure representing a matrix. See the 
AZTECUser’s Guide. 

On input, an AZTEcdata structure representing processor informa- 
tion. See the AZTEcUser’s Guide. 

Prototype 

void AZset-ML-preconditioner(AZ-PRECOND **Precond, AZ-MATRIX *Amat, 
M L  *mlnbject, int options[]) 
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Description 

Associate the multigrid V cycle method defined in ml-object with an 
AzTEcpreconditioner. Thus, when Precond and options are passed into the 
AzTECiterative solver, it will invoke the V cycle multigrid algorithm described by 
ml-object. 

Parameters 

Precond 

Amat 

On input, an AzTEcdata structure representing a preconditioner. 
On output, the multigrid V cycle method described by ml-object 
will be associated with this preconditioner. See the AZTECUser’s 
Guide. 

On input, an AzTEcdata structure representing a matrix. See the 
AZTECUser’s Guide. 

ml-object On input, ML object pointer (see ML-Create) representing a V cycle 
multigrid method. 

options On input, an AZTECdata structure representing user chosen options. 
On output, set appropriately for multigrid V cycle preconditioner. 

Prototype 

int  M LAggregate-Create( M LAggregate  **agg-object) 

Description 

Create an aggregate context (or handle). This instance will be used in all subsequent 
function invocations that set aggregation options. 

Parameters 

agg- o bjec t On input, a pointer to a noninitialized MLAggregate object pointer. 
On output, points to an initialized ML-Aggregate object pointer. 
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Prototype 

i nt M L Aggregate-Destroy (M L Aggrega te  * *agg-object) 

Description 

Destroy the aggregate context, agg-object, and delete all memory allocated 
building and setting the aggregation options. 

by ML in 

Parameters 

agg-o bject On input, aggregate object pointer (see MLAggregate-Create). On 
output, all memory allocated by ML and associated with this con- 
text is freed. 

Prototype 

int M LAggregate-Set-CoarsenScheme-Coupled(M LAggregate *agg-object) 

Description 

Set the aggregate coarsening scheme to be used its ‘coupled’ (see Section 9). 

Parameters 

agg-object On input, aggregate object pointer (see MLAggregate-Create). On 
output, the ‘coupled’ aggregation will be used for automatic coars- 
ening. 

Prototype 

int M LAggregate-Set-CoarsenScheme-M IS( MLAggregate *agg-object) 
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Description 

Set the aggregate coarsening scheme to be used as ‘MIS’ (see Section 9). 

Parameters 

agg-object On input, aggregate object pointer (see MLAggregate-Create). On 
output, the ‘MIS’ aggregation will be used for automatic coarsening. 

Prototype 

int MLAggregate_Set-CoarsenScheme-Uncoupled(MLAggregate *agg-object) 

Description 

Set the aggregate coarsening scheme to be used as ‘uncoupled’ (see Section 9). 

Parameters 

agg-o bject On input, aggregate object pointer (see MLAggregate-Create). On 
output, the ‘uncoupled’ aggregation will be used for automatic coars- 
ening. 

Prototype 

int MLAggregate-Set-CoarsenScheme-METIS(MLAggregate “aggnbject) 

Description 

Set the aggregate coarsening scheme to be used as ‘METIS (see Section 9). 
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Parameters 

agg-o bject On input, aggregate object pointer (see MLAggregate-Create). On 
output, the ‘METIS’ aggregation will be used for automatic coars- 
ening. 

Prototype 

int MLAggregate_Set_CoarsenScheme_ParMETIS(MLAggregate ”gg-object) 

Description 

Set the aggregate coarsening scheme to be used as ‘ParMETIS (see Section 9). 

Parameters 

agg- o b j e c  t On input, aggregate object pointer (see MLAggregate-Create). On 
output, the ‘ParMETIS’ aggregation will be used for automatic 
coarsening. 

Prototype 

int M L-AggregateSet-dam pingfactor( MLAggregate *ag, double factor) 

Description 

Set the damping factor used within smoothed aggregation. In particular, the interpolation 
operator will be generated by 

W P = (I - yA)Pt  
P 

where A is the discretation matrix, w is the damping factor (default is f ) ,  p is an estimate 
of the spectral radius of A, and Pt are the seed vectors (tentative prolongator). 
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Parameters 

agg-object On input, aggregate object pointer (see MLAggregate-Create). On 
output, the damping factor is set to factor. 

factor On input, damping factor that will be associated with this aggrega- 
tion object. 

Prototype 

int M LAggregate-Set-MaxCoarseSize( MLAggregate *agg-object, int size ) 

Description 

Set the maximum coarsest mesh to ‘size’. No further coarsening is performed if the total 
number of matrix equations is less than this ‘size’ (see Section 8). 

Parameters 

agg- o b jec t On input, aggregate object pointer (see MLAggregate-Create). On 
output, the coarsest mesh size will be set. 

size On input, size indicating the maximum coarsest mesh size. 

Prototype 
I 

in t M L AggregateSet-N ullS pace( M L Aggrega t e  *agg-o bject, in t nu m -P DE-eq ns, in t 
nu Il-d i m , 

double *null-vect, int leng) 

I I 

Description 

Set the seed vectors (rigid body mode vectors) to be used in smoothed aggregation. Also 
indicate the number of degrees of freedom (DOF) per node so that the aggregation 
algorithm can group them together. 
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Parameters 

agg-o bject On input, an MLAggregate object pointer created by invoking 
MLAggregate-Create. On output, the seed vectors and DOFs per 
node are set to null-vect and num-PDE-eqns respectively. 

num-PDE-eqns 

null-dim 

null-vect 

leng 

On input, indicates number of equations that should be grouped 
in blocks when performing the aggregation. This guarantees that 
different DOFs at a grid point remain within the same aggregate. 

On input, number of seed vectors that  will be used when creating 
the smoothed aggregation grid transfer operator. 

On input, the seed vectors are given in sequence. Each processor 
gives only the local components residing on the processor. If null, 
default seed vectors are used. 

On input, the length of each seed vector 

Prototype 

int MLAggregateSetSpectralNormScheme-Calc( MLAggregate *ag ) 

Description 

Set the method to be used for estimating the spectral radius of A (the discretization 
matrix) to be conjugate gradient. This spectral radius estimate is used when smoothing 
the initial prolongation operator (see MLAggregateSet-DampingFactor). 

Parameters 

agg-o bject On input, aggregate object pointer (see MLAggregate-Create). On 
output, the spectral radius estimate will be determined by a conju- 
gate gradient routine. 

Prototype 

i n t  M LAggregate-Set-SpectralNormScheme-Anorm( M LAggregate *ag) 
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Description 

Set the method to be used for estimating the spectral radius of A (the discretization 
matrix) to be the infinity norm. This spectral radius estimate is used when smoothing the 
initial prolongation operator (see MLAggregateSet-DampingFactor). 

Parameters 

ugg-o bject On input, aggregate object pointer (see MLAggregate-Create). On 
output, the spectral radius estimate will be taken as the infinity 
norm of the matrix. 

Prototype 

int MLAggregateSet-Threshold(ML4ggregate *agg-object, double tolerance) 

Description 

Set the drop tolerance used when creating the matrix graph for aggregation. Entries in the 
matrix A are dropped when IA(i, j )  I 5 t o l d  * , / [A(& i )A(j ,  j )  I. See Section 9 for more 
details. 

Parameters 

agg- o b jec t On input, an MLAggregate object pointer created by invoking 
MLAggregate-Create. On output, drop tolerance for creating the 
matrix graph is set. 

tolerance On input, value to be used for dropping matrix entries. 

Prototype 

int ML-Create( ML **rnl-object, int Nlevels) 
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Description 

Create an ML solver context (or handle). This ML instance will be used in all subsequent 
ML function invocations. The ML object has a notation of levels where different 
multigrid operators corresponding to different grid levels are stored. 

Parameters 

ml- o bject On input, a pointer to a noninitialized ML object pointer. On out- 
put, points to  an initialized ML object pointer. 

Nlevels Maximum number of multigrid levels within this ML object. 

Prototype 

int ML-Destroy( ML **ml-object) 

Description 

Destroy the ML solver context, ml-object, and delete all memory allocated by ML in 
building and setting options. 

Parameters 

ml-o bject On input, ML object pointer (see ML-Create). On output, all mem- 
ory allocated by ML and associated with this context is freed. 

Prototype 

int ML-Gen-BlocksAggregates( MLAggregate *agg-object, int k, int *nblocks, int 
** block-list) 
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Description 

Use aggregates to partition submatrix residing on local processor into blocks. These 
blocks can then be used within smoothers (see for example 
ML-Gen-Smoother-VBlockJacobi or ML-GenSmoother-VBlockSymGaussSeidel). 

Parameters 

ml- o bject On input, ML object pointer (see ML-Create). 

IC 

nbloclcs 

block-list 

On input, indicates level within ml-object hierarchy where the ag- 
gregate information is found that defines partitioning. 

On output, indicates the number of partitions. 

On output, equation i resides in the blocklist[i]th partition. 

Prototype 
~~ 

ML-Gen-Blocks-Metis(ML *rnl-object, int k, int *nblocks, int **block-list) 

Description 

Use Metis to partition submatrix residing on local processor into blocks. These blocks can 
then be used within smoothers (see for example ML-Gen-Smoother-VBlockJacobi or 
ML-Gen-Smoother -VBlockSymGaussSeidel) . 

Parameters 

mLo b jec t 

IC 

On input, ML object pointer (see ML-Create). 

On input, indicates level within ml-object hierarchy where the dis- 
cretization matrix is found that will be partitioned. 

On input, indicates number of partitions desired on each processor. 
On output, indicates the number of partitions obtained. 

On output, equation i resides in the blocklist[i]th partition. 

nbloclcs 

block-list 
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Prototype 

int ML-Gen-CoarseSolverSuperLU(ML *ml-object, int k) 

Description 

Use SuperLU for the multigrid coarse grid solver on level k within ml-object and perform 
any initialization that is necessary. 

Parameters 

ml-object On input, ML object pointer (see ML-Create). On output, the 
coarse grid solver of level k is set to use SuperLU. 

IC On input, indicates level within ml-object hierarchy (must be the 
coarsest level in the multigrid hierarchy). 

Prototype 

int ML-Gen-MGHierarchy-UsingAggregation(ML *ml-object, int start, int inc-or-dec, 
M LAggregate *agg-object) 

Description 

Generate a multigrid hierarchy via the method of smoothed aggregation. This hierarchy 
includes a series of grid transfer operators as well as coarse grid approximations to the fine 
grid discretization operator. On completion, return the total number of multigrid levels in 
the newly created hiearchy. 

Parameters 

ml-o bject On input, ML object pointer (see ML-Create). On output, coarse 
levels are filled with grid transfer operators and coarse grid dis- 
cretizations corresponding to  a multigrid hierarchy. 
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start On input, indicates multigrid level within ml-object where the fine 
grid discretization is stored. 

inc-or-dec On input, MLJNCREMENT or ML-DECREMENT. Normally, set 
to MLJNCREMENT 'meaning that the newly created multigrid 
operators should be stored in the multigrid levels: start, start+l, 
startS-2, startS-3, etc. If Set to ML-DECREMENT, multigrid oper- 
ators are stored in start, start-1, start-2, etc. 

agg-o bject On input, an initialized aggregation object defining options to the 
generation of grid transfer operators. If set to NULL, default values 
are used for all aggregation options. See MLAggregate-Create. 

Prototype 

int M L-Gen-SmootherAmesos( ML *ml-object, int k, int AmesosSolver, 
int M axP rocs) 

Description 

Use Amesos interface to direct solvers for the multigrid coarse grid solver on level k within 
ml-object and perform any initialization that is necessary. 

Parameters 

mlobject  On input, ML object pointer (see ML-Create). On output, the 
coarse grid solver of level k is set to use Amesos. 

IC On input, indicates level within ml-object hierarchy (must be the 
coarsest level in the multigrid hierarchy). 

AmesosSolver On input, indicates the direct solver library to use in the coarse so- 
lution. It can be: MLAMESOS-UMFPACK, MLAMESOS-KLU, 
MLAMESOS-SUPERLUDIST, MLAMESOS-MUMPS, 
MLAMESOS-SCALAPACK. 

MaxProcs On input, indicates maximum number of processors to use in the 
coarse solution (only for MLAMESOS-SUPERLUDIST). 
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Prototype 

void ML-Gen-SmootherAztec( ML *ml-object, int k, int options[], double paramsn, 
int proc-config!, double status[], int N-iterations, 
int pre-or-post, void (*precfun)(double *, int *, int *, 
double *, AZ-MATRIX *, AZ-PRECOND *)) 

Description 

Set the smoother (either pre or post as indicated by pre-or-post) at level k within the 
multigrid solver context to invoke AZTEC. The specific AzTEcscheme is given by the 
AzTEcarrays: options, params, proc-config, and status and AzTEcpreconditioning 
function: precfunction. 

Parameters 

ml-o b ject 

IC 

options, params 
proc-config, status 

N-iterations 

pre-or-post 

prec-fun 

On input, ML object pointer (see ML-Create). 
smoother function is associated within ml-object at level k. 

On output, a 

On input, indicates where the smoother function pointer will be 
stored within the multigrid hierarchy. 

On input, AzTEcarrays that determine the AzTEcscheme and are 
used for AZTECto return information. See the AzTECUser’s Guide. 

On input, maximum AzTEciterations within a single smoother in- 
vocation. When set to AZ-ONLY-PRECONDITIONER, only one iteration 
of the preconditioner is used without an outer Krylov method. 

On input, ML-PRESMOOTHER or MLPOSTSMOOTHER indi- 
cating whether the smoother should be performed before or after 
the coarse grid correction. 

On input, AzTEcpreconditioning function indicating what precon- 
ditioner will be used within AZTEC. Normally, this is set to 
AZ-precondition. See the AZTECUser’s Guide. 

Prototype 
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int ML-Gen-Smoother-BlockGaussSeidel(ML *ml-object, int k, int pre-or-post, int ntimes, 
double omega, int blocksize) 

I 

Description 

Set the multigrid smoother for level k of ml-object and perform any initialization that is 
necessary. When using block Gauss Seidel, the total number of equations must be a 
multiple of blocksize. Each consecutive group of blocksize unknowns is grouped into a 
block and a block Gauss Seidel algorithm is applied. 

Parameters 

ml-object On input, ML object pointer (see ML-Create). On output, the pre 
or post smoother of level k is set to block Gauss Seidel. 

On input, indicates level within ml-object hierarchy (should be be- 
tween 0 and Nlevelst-1). MLALLLEVELS sets the smoothing on 
all levels in ml-object. 

On input, ML-PRESMOOTHER or MLPOSTSMOOTHER indi- 
cating whether the pre or post smoother is to be set. 

On input, sets the number of block Gauss Seidel iterations that will 
be performed. 

On input, sets the damping parameter t o  be used during this block 
Gauss Seidel smoothing. 

On input, sets the size of the blocks to be used during block Gauss 
Seidel smoothing. 

IC 

p re- o r-pos t 

ntimes 

omega 

bl ocksize 

Prototype 

int M L-Gen-Smoother-GaussSeidel( M L *ml-object, int k, int pre-or-post, int ntimes, 
double omega) 
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Description 

Set the multigrid smoother for level k of ml-object and perform any initialization that is 
necessary. 

Parameters 

ml-o bject On input, ML object pointer (see ML-Create). On output, the pre 
or post smoother of level k is set to Gauss Seidel. 

k On input, indicates level within ml-object hierarchy (should be be- 
tween 0 and Nlevelst-l). MLALLLEVELS sets the smoothing on 
all levels in ml-object. 

pre-or-post On input, ML-PRESMOOTHER or ML-POSTSMOOTHER indi- 
cating whether the pre or post smoother is to be set. 

ntimes On input, sets the number of Gauss Seidel iterations that will be 
performed. 

omega On input, sets the damping parameter to be used during this Gauss 
Seidel smoothing. 

Prototype 

int ML-Gen-Smoother-Jacobi(ML *ml-object, int k, int pre-or-post, int ntimes, 
double omega) 

I I 

Description 

Set the multigrid smoother for level k of ml-object and perform any initialization that is 
necessary. 

Parameters 

ml-o bject On input, ML object pointer (see ML-Create). On output, the pre 
or post smoother of level k is set to Jacobi. 

k On input, indicates level within ml-object hierarchy (should be be- 
tween 0 and Nlevelst-l). MLALLLEVELS sets the smoothing on 
all levels in ml-object. 
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pre-or-post 

ntirnes 

omega 

On input, ML-PRESMOOTHER or ML-POSTSMOOTHER indi- 
cating whether the pre or post smoother is to be set. 

On input, sets the number of Jacobi iterations that will be per- 
formed. 

On input, sets the damping parameter to be used during this Jacobi 
smoothing. ML-DEFAULT sets it to .5 

Prototype 

int ML-GenSmoother-SymGaussSeidel(ML *ml-object, int k, int pre-or-post, int ntimes, 
double omega) 

Description 

Set the multigrid smoother for level k of ml-object and perform any initialization that is 
necessary. 

Parameters 

ml-object On input, ML object pointer (see ML-Create). On output, the pre 
or post smoother of level k is set to symmetric Gauss Seidel. 

k 

pre-or-post 

ntimes 

omega 

On input, indicates level within ml-object hierarchy (should be be- 
tween 0 and Nlevelst-l). MLALLLEVELS sets the smoothing on 
all levels in ml-object. 

On input, ML-PRESMOOTHER or MLPOSTSMOOTHER indi- 
cating whether the pre or post smoother is to be set. 

On input, sets the number of symmetric Gauss Seidel iterations that 
will be performed. 

On input, sets the damping parameter to be used during this sym- 
metric Gauss Seidel smoothing. 

Prototype 
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int ML-Gen-Smoother-VBlockJacobi( ML *ml-object, int k, int pre-or-post, int ntimes, 
double omega, int nBlocks, int *blocklndices) 

Description 

Set the multigrid smoother for level k of ml-object and perform any initialization that is 
necessary. A block Jacobi smoothing algorithm will be used where the size of the blocks 
can vary and is given by nBlocks and blockIndices (see ML-GenBlocksAggregates and 
ML-Gen-Blocks-Metis). 

Parameters 

ml-object On input, ML object pointer (see ML-Create). On output, the pre 
or post smoother of level k is set to variable block Jacobi. 

IC On input, indicates level within ml-object hierarchy (should be be- 
tween 0 and Nlevelst-l). MLALLLEVELS sets the smoothing on 
all levels in ml-object. 

pre-or-post On input, ML-PRESMOOTHER or MLPOSTSMOOTHER indi- 
cating whether the pre or post smoother is to be set. 

On input, sets the number of block Jacobi iterations that will be 
performed. 

ntimes 

omega On input, sets the damping parameter to  be used during this block 
Jacobi smoothing. 

nBlocks On input, indicates the total number of block equations in matrix. 

blockIndices On input, blockIndices[i] indicates block to which ith element be- 
longs. 

Prototype 

int ML-GenSmoother-VBlockSymGaussSeidel(ML *ml-object, int k, int pre-or-post, 
int ntimes, double omega, int nBlocks, 
int *blocklndices) 
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Description 

Set the multigrid smoother for level k of ml-object and perform any initialization that is 
necessary. A block Gauss Seidel smoothing algorithm will be used where 'the size of the 
blocks can vary and is given by nBlocks and blockIndices (see ML,-Gen-BlocksAggregates 
and ML-Gen-Blocks-Metis). 

Parameters 

ml- o b ject On input, ML object pointer (see ML-Create). On output, the pre 
or post smoother of level k is set to variable block symmetric Gauss 
Seidel. 

IC 

pre-or-post 

ntimes 

omega 

nBlocks 

blockIndices 

On input, indicates level within ml-object hierarchy (should be be- 
tween 0 and Nlevelst-l). MLALLLEVELS sets the smoothing on 
all levels in ml-object. 

On input, ML-PRESMOOTHER or MLTOSTSMOOTHER indi- 
cating whether the pre or post smoother is to be set. 

On input, sets the number of block symmetric Gauss Seidel iterations 
that will be performed. 

On input, sets the'damping parameter to be used during this block 
symmetric Gauss Seidel smoothing. 

On input, indicates the total number of block equations in matrix. 

On input, blockIndices[i] indicates block to which ith element be- 
longs. 

Prototype 

int ML-GenSolver( ML *mLobject, int scheme, int finestlevel, int coarsest-level) 

Description 

Initialize the ML solver context, ml-object, so that i t  is ready to be used in a solve. 
ML-Gen-Solver should be called after the multigrid cycle is fully specified but before 
MLlterate or ML-Solve-MGV is invoked. 
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Parameters 

ml-o bject On input, ML object pointer (see ML-Create). On output, all nec- 
essary initialization is completed. 

scheme On input, must be set to ML-MGV indicating a multigrid V cycle 
is used. 

finest-level On input, indicates the location within ml-object where the finest 
level is stored. Normally, this is ‘0’. 

coarsest-level On input, indicates location within ml-object where the coarsest 
grid is stored. When doing smoothed aggregation, this can be de- 
termined using the total number of multigrid levels returned by 
ML-Gen-MGHierarchy-UsingAggregation. 

Prototype 

1 int ML-GetAmatrix(ML *mi-object, int k, ML-Operator **matrix) 

Description 

Set *matrix to point to the discretization matrix associated at level k within the multigrid 
solver context ml-object. This pointer can then be passed into functions like: 
ML-OperatorApply, ML-Operator-GetDiag, and ML-Operator-Getrow. 

Parameters 

ml- o b ject On input, ML object pointer (see ML-Create). 

k On input, indicates which level within the multigrid hierarchy should 
be accessed. 

matrix On output, *matrix points to the discretization matrix at level k 
within the multigrid hierarchy. This pointer can then be passed 
into the functions ML-OperatorApply, ML-Operator-GetDiag, and 
ML-Operator-Getrow. 

Prototype 
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int ML-lnitAmatrix(ML *ml-object, int k,  int ilen, int olen, void *data) 

Description 

Set the size information for the discretization matrix associated at level k within 
ml-object. Additionally, associate a data pointer that can be used when writting 
matrix-vector product and matrix getrow functions. 

Parameters 

ml-ob ject On input, ML object pointer (see ML-Create). On output, size 
information is associated with the discretization matrix at level k. 

IC 

ilen 

olen 

data 

On input, indicates where discretization size information will be 
stored within the multigrid hierarchy. 

On input, the number of local rows in the submatrix stored on this 
processor. 

On input, the number of columns in the local submatrix stored on 
this processor not including any columns associated with ghost un- 
knowns. 

On input, a data pointer that will be associated with the discretiza- 
tion matrix and could be used for matrix-vector product and matrix 
ge trow functions. 

Prototype 

int ML-Iterate( ML *ml-object, double *sol, double *rhs) 

Description 

Iterate until convergence to solve the linear system using the multigrid V cycle defined 
within ml-object. 
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Parameters 

ml-object On input, ML object pointer (see ML-Create). 

sol On input, a vector containing the initial guess for the linear sys- 
tem contained in ml-object. On output, the solution obtained by 
performing repeated multigrid V cycles. 

rhs On input, a vector contain the right hand side for the linear system 
contained in ml-object. 

Prototype 

int ML-OperatorApply( ML-Operator *A, int inlength, double p[], int out-length, 
double ap[]) 

Description 

Invoke a matrix-vector product using the ML-Operator A. That is perform up = A * p .  
Any communication or ghost variables work needed for this operation is also performed. 

Parameters 

A 

in-length 

P 

out-length 

aP 

On input, an ML-Operator (see ML-Get Amatrix). 

On input, length of vector p (not including ghost variable space). 

On input, vector which will be multiplied by A .  

On input, length of vector up. 

On output, vector containing result of A * p .  

Prototype 

int ML-Operator-Get-Diag(ML-Operator *A, int length, double **diag) 
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Description 

Get the diagonal of the ML-Operator A (which is assumed to be square). 

Parameters 

A 

length 

diag 

On input, an ML-Operator (see ML-GetAmatrix). 

On input, number of diagonal elements wanted. 

On output, sets a pointer to an array containing the diagonal ele- 
ments. NOTE: this is not a copy but in fact a pointer into an ML 
data structure. Thus, this array should not be freed. 

Prototype 

int ML-Operator-Getrow(ML-Operator *A, int N-requested-rows, int requested-rows[, 
int allocatedspace, int columns[], double values[], 
i nt row -len gt hs[] ) 

Description 

Get a row (or several rows) from the ML-Operator A. If there is not enough space in 
columns and values to hold the nonzero information, this routine returns a ‘0’. 
Otherwise, a ‘1’ is returned. 

Parameters 

A 

N-requested-ro ws 

request ed-rows 

a1 located-space 

columns 

On input, an ML-Operator (see ML-GetAmatrix). 

On input, number of matrix rows for which information is returned. 

On input, specific rows for which information will be returned. 

On input, length of columns and values. 

On output, the column numbers of each nonzero within each row re- 
quested in requested-rows (where column numbers associated with 
requested-rows Cil appear before column numbers associated with 
requested-rows [j] with i < j). 
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values On output, the nonzero values of each nonzero within each row re- 
quested in requested-rows (where nonzero values associated with 
requested-rows [i] appear before nonzero values associated with 
requested-rows [jl with i < j).  

ro w-lengths On output, row-lengths [il indicates the number of nonzeros in row 
i. 

Prototype 

int ML-Set-Amatrix-Getrow(ML *mLobject, int k, int (*getrow)(void *, int , int* , int, 
int*, double* , int*), int (*comm )(double *vec, void *data), 
int comm-vec-leng) 

Description 

Set the matrix getrow function for the discretization matrix associated at  level k within 
the multigrid solver context ml-object. 

Parameters 

ml-object On input, ML object pointer (see ML-Create). On output, matrix 
getrow function is associated with the discretization matrix at level 
k. 

k On input, indicates where the matrix getrow function pointer will 
be stored within the multigrid hierarchy. 

getrow On input, a function pointer to  the user-defined matrix getrow func- 
tion. See Section 11.1. 

comm On input, a function pointer to  the user-defined communication func- 
tion. See Section 11.2. 

Prototype 

int MLSet-Amatrix-Matvec(ML *ml-object, int k, int (*matvec)(void *, int, double *, 
int, double *)) 
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Description 

Set the matrix-vector product function for the discretization matrix associated at level k 
within the multigrid solver context ml-object. 

Parameters 

ml- o bject On input, ML object pointer (see ML-Create). On output, matrix- 
vector product function is associated with the discretization matrix 
at  level k. 

k On input, indicates where the matrix-vector product function 
pointer is stored within the multigrid hierarchy. 

matvec On input, a function pointer to the user-defined matrix-vector prod- 
uct function. See Section 11.1 

Prototype 

i nt M L-Set-Residua lout  put Frequency( M L *m 1-0 bject , i nt ou tput-freq ) 

Description 

Set the output frequency of residual information. MLlterate prints the two norm of the 
residual every outputfreq iterations. 

Parameters 

ml- o b jec t On input, ML object pointer (see ML-Create). On output, residual 
printing frequency is set. 

output-freq On input, value to use for printing frequency. 

Prototype 
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int ML-SetSmoother(ML *ml-object, int k , int pre-or-post, void *data, 
int (*func)(void *, int, double *, int, double *), char *label) 

Description 

Set the smoother (either pre or post as indicated by pre-or-post) at level k within the 
multigrid solver context to invoke the user-defined function ‘func’ and pass in the data 
pointer ‘data’. 

Parameters 

ml- o b jec t On input, ML object pointer (see ML-Create). 
smoother function is associated within ml-object at level k. 

On output, a 

k 

pre-or-post 

On input, indicates where the smoother function pointer will be 
stored within the multigrid hierarchy. 

On input, ML-PRESMOOTHER or MLPOSTSMOOTHER indi- 
cating whether the smoother should be performed before or after 
the coarse grid correction. 

data 

func 

On input, a data pointer that will be passed into the user-defined 
function ‘func’. 

On input, smoothing function to be used at level k when perform- 
ing a multigrid V cycle. The specific signature and details of this 
function are given in Section 8. 

label On input, a character string to be associated with Smoother. This 
string is printed by some routines when identifying the method. 

Prototype 

int ML-Set-Tolerance( ML *ml-object, double tolerance) 

Description 
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Set the convergence criteria for MLlterate. Convergence is declared when the 2-norm of 
the residual is reduced by 'tolerance' over the initial residual. This means that if the 
initial residual is quite small (i.e. the initial guess corresponds quite closely with the true 
solution), MLlterate might continue to iterate without recognizing that the solution can 
not be improved due to round-off error. Note: the residual is always computed after 
performing presmoothing on the finest level (as opposed to at the beginning or end of the 
iteration). Thus, the true residual should be a little bit better than the one used by ML. 

Parameters 

mLo bject On input, ML object pointer (see ML-Create). On output, tolerance 
is set for convergence of MLlterate. 

tolerance On input, value to use for convergence tolerance. 

Prototype 

int MLSolve-MGV(ML *ml-object, double *din, double *dout) 

Description 

Perform one multigrid V cycle iteration to  the solve linear system defined within ml-object. 

Parameters 

ml-object On input, ML object pointer (see ML-Create). 

din 

dout 

On input, the right hand side vector to be used when performing 
multigrid. 

On output, an approximate solution obtained after one multigrid V 
cycle. 

tNlevels refers to the argument given with %-Create. 
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