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Computational Methods Used in
Experimental Mathematics

 Symbolic computation for algebraic and calculus manipulations.
 Integer-relation methods, especially the “PSLQ” algorithm.
 High-precision integer and floating-point arithmetic.
 High-precision evaluation of integrals and infinite series summations.
 The Wilf-Zeilberger algorithm for proving summation identities.
 Iterative approximations to continuous functions.
 Identification of functions based on graph characteristics.
 Graphics and visualization methods targeted to mathematical objects.
 Highly parallel implementations of the above algorithms.
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Arbitrary Precision Arithmetic:  The
“Electron Microscope” of Computer Math

 High-precision integer arithmetic is required in symbolic computing
packages.

 High-precision floating-point arithmetic is required to permit
identification of mathematical constants using PSLQ or online constant
recognition facilities.

 The most common requirement is for 200-500 digits, although
thousands of digits are sometimes required.

 One problem required 50,000-digit arithmetic.
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Schemes for High-Precision Floating-
Point Arithmetic

 A high-precision number is typically represented as a string of n + 4
integers (or a string of n + 4 floating-point numbers with integer values):
 First two words give sign and “exponent.”
 The next n words contain the mantissa (say 48 bits per word).
 The two end words are used for “scratch space” in certain operations.

 For basic arithmetic operations, straightforward adaptions of elementary
schemes suffice up to about 1000 digits.  Arithmetic is typically
performed base 232 or 248 instead of base 10.

 Beyond about 1000 digits, Karatsuba’s algorithm or FFTs can be used
for significantly faster multiply performance.

 Division and square roots can be performed by Newton iterations.
 For transcendental functions, Taylor’s series evaluations or (at higher

precision levels) quadratically convergent algorithms are used.
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LBNL’s High-Precision Software:
ARPREC and QD

 QD:  Double-double (32 digits) and quad-double (64 digits) .
 ARPREC:  Arbitrary precision (hundreds or thousands of digits).
 Low-level routines written in C++.
 High-level C++ and F-90 translation modules permit use with existing

programs with only minor code changes.
 Integer, real and complex datatypes.
 Many common functions:  sqrt, cos, exp, gamma, etc.
 PSLQ, root finding, numerical integration.
 An interactive “Experimental Mathematician’s Toolkit.”

Available at:  http://www.experimentalmath.info

Other widely used high-precision software:
 GMP:  http://gmplib.org
 MPFR:  http://www.mpfr.org

David H. Bailey, Yozo Hida, Xiaoye S. Li and Brandon Thompson, "ARPREC: An Arbitrary Precision
Computation Package," manuscript, Sept 2002, http://crd.lbl.gov/~dhbailey/dhbpapers/arprec.pdf.
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The PSLQ Integer Relation Algorithm

Let (xn) be a given vector of real numbers.  An integer relation algorithm
finds integers (an) such that

1.  H. R. P. Ferguson, D. H. Bailey and S. Arno, “Analysis of PSLQ, An Integer Relation Finding Algorithm,”
Mathematics of Computation, vol. 68, no. 225 (Jan 1999), pg. 351-369.
2.  D. H. Bailey and D. J. Broadhurst, “Parallel Integer Relation Detection: Techniques and Applications,”
Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736.

(or within “epsilon” of zero, where epsilon = 10-p and p is the precision).

At the present time the “PSLQ” algorithm of mathematician-sculptor
Helaman Ferguson is the most widely used integer relation algorithm.  It
was named one of ten “algorithms of the century” by Computing in Science
and Engineering.

A “multi-pair” variant of PSLQ has been found that is well-suited for parallel
computation.
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PSLQ, Continued

 PSLQ constructs a sequence of integer-valued matrices Bn that reduces
the vector y = x * Bn, until either the relation is found (as one of the
columns of Bn), or else precision is exhausted.

 At the same time, PSLQ generates a steadily growing bound on the size
of any possible relation.

 When a relation is found, the size of smallest entry of the vector y
suddenly drops to roughly “epsilon” (i.e. 10-p, where p is the number of
digits of precision).

 The size of this drop can be viewed as a “confidence level” that the
relation is real and not merely a numerical artifact -- a drop of 20+ orders
of magnitude almost always indicates a real relation.

 PSLQ (or any other integer relation scheme) requires very high precision
(at least n*d digits, where d is the size in digits of the largest ak), both in
the input data and in the operation of the algorithm.
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Decrease of log10(min |xi|) in PSLQ
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Application of PSLQ:
Bifurcation Points in Chaos Theory

exhibits 8-way periodicity instead
of 4-way periodicity.

By means of an iterative scheme,
one can obtain the numerical
value of t to any desired precision:

Let t be the smallest r such that
the “logistic iteration”

3.54409035955192285361596598660480454058309984544457367545781…

Applying PSLQ to the vector (1, t, t2, t3, …, t12), one finds that t is a root of

J. M. Borwein and D. H. Bailey, Mathematics by Experiment, A.K. Peters, 2004, pg. 50.
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Some Supercomputer-Class PSLQ
Solutions

 Identification of B4, the fourth bifurcation point of the logistic iteration:
Integer relation of size 121.  10,000-digit arithmetic.

 Identification of Apery sums.
15 integer relation problems, with size up to 118.  5,000-digit arithmetic.

 Identification of Euler-zeta sums.
Hundreds of integer relation problems, each of size 145.   5,000-digit arithmetic.

 Finding recursions in Ising integrals.
Over 2600 high-precision numerical integrations.  1000-digit arithmetic.  Run on

Apple-based parallel system at Virginia Tech – 12 hours on 64 CPUs.
 Finding a relation involving a root of Lehmer’s polynomial.

Integer relation of size 125.  50,000-digit arithmetic. Utilizes 3-level, multi-pair
parallel PSLQ program. Run on IBM parallel system – 16 hours on 64 CPUs.

But in most problems the dominant cost is computing the constants involved.

1.  D. H. Bailey and D. J. Broadhurst, "Parallel Integer Relation Detection: Techniques and Applications,"
Mathematics of Computation, vol. 70, no. 236 (Oct 2000), pg. 1719-1736.

2.  D. H. Bailey, D. Borwein, J. M. Borwein and R. Crandall, “Hypergeometric Forms for Ising-Class Integrals,"
Experimental Mathematics, to appear, 2007, http://crd.lbl.gov/~dhbailey/dhbpapers/meijer.pdf.
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The Borwein-Plouffe Observation

In 1996, Peter Borwein and Simon Plouffe observed that the following well-
known formula for loge 2

leads to a simple scheme for computing binary digits at an arbitrary starting
position (here {} denotes fractional part):
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Fast Exponentiation Mod n

The exponentiation (2d-n mod n) in this formula can be evaluated very rapidly
by means of the binary algorithm for exponentiation, performed modulo n:

Simple example problem:  Calculate the 317 mod 10.

Algorithm A:  3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3x3 = 129140163.  Ans =3.
Algorithm B:  317 = (((32)2)2)2 x 3 = 129140163.   Ans = 3.
Algorithm C:

317 mod 10 = ((((32 mod 10)2 mod 10)2 mod 10)2 mod 10) x 3 mod 10 = 3.
In detail:  32 mod 10 = 9;  92 mod 10 = 1;  12 mod 10 = 1;  12 mod 10 = 1;
1 x 3 = 3.    Ans = 3.

Note that with Algorithm C, we never have to deal with integers > 81.
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The BBP Formula for Pi

In 1996, Simon Plouffe used DHB’s PSLQ program and arbitrary
precision software to discover this new formula for pi:

This formula permits one to compute binary (or hexadecimal) digits of pi
beginning at an arbitrary starting position, using a very simple scheme
that can run on any system with standard 64-bit or 128-bit arithmetic.

Recently it was proven that no base-n formulas of this type exist for pi,
except n = 2m.

1.  D. H. Bailey, P. B. Borwein and S. Plouffe, “On the Rapid Computation of Various Polylogarithmic
Constants,” Mathematics of Computation, vol. 66, no. 218 (Apr 1997), pg. 903-913.
2.  J. M. Borwein, W. F. Galway and D. Borwein, “Finding and Excluding b-ary Machin-Type BBP
Formulae,” Canadian Journal of Mathematics, vol. 56 (2004), pg 1339-1342.
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Proof of the BBP Formula

Thus
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Some Other BBP-Type Identities

Papers by D. H. Bailey, P. B. Borwein, S. Plouffe, D. Broadhurst and R. Crandall.
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Normality of Mathematical Constants

A real number x is said to be b-normal (or normal base b) if every m-long
string of base-b digits appears, in the limit, with frequency b-m.

Whereas it can be shown that almost all real numbers are b-normal (for any
b), there are only a handful of proven explicit examples.

It is still not known whether any of the following are b-normal for any b:
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A Connection Between BBP Formulas
and Normality

Let {} denote fractional part.  Consider the sequence defined by x0 = 0,

Result:  log(2) is 2-normal if and only if this sequence is equidistributed in
the unit interval.

In a similar vein, consider the sequence x0 = 0, and

Result:  pi is 16-normal if and only if this sequence is equidistributed in the
unit interval.

A similar result holds for any constant that possesses a BBP-type formula.

D. H. Bailey and R. E. Crandall, "On the Random Character of Fundamental Constant Expansions,"
Experimental Mathematics, vol. 10, no. 2 (Jun 2001), pg. 175-190.
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A Class of Provably Normal Constants

We have also shown that the following constant is 2-normal:

This was originally proven by Stoneham in 1970, but we have generalized
this to case where (2,3) is replaced by any relatively prime pair > 2.  We
have also extended this to an uncountably infinite class.

These results have led to a practical and efficient pseudo-random number
generator based on the binary digits of alpha.

1.  D. H. Bailey and R. E. Crandall, “Random Generators and Normal Numbers,” Experimental Mathematics,
vol. 11, no. 4 (2002), pg. 527-546.
2.  D. H. Bailey, "A Pseudo-Random Number Generator Based on Normal Numbers," manuscript, Dec 2004,
http://crd.lbl.gov/~dhbailey/dhbpapers/normal-random.pdf.
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The “Hot Spot” Lemma for Proving
Normality

We are now able to prove normality for these alpha constants very simply,
by means of a new result that we call the “hot spot” lemma, proven using
ergodic theory:

Hot Spot Lemma: Let {} denote fractional part.  Then x is b-normal if and
only if there is no y in [0,1) such that

Paraphrase:  x is b-normal if and only if it has no base-b hot spots.

Sample Corollary:  If, for each m and n, no m-long string of digits appears in
the first n digits of the base-2 expansion of x more often than 1,000 n 2-m

times, then x is 2-normal.

D. H. Bailey and M. Misiurewicz, "A Strong Hot Spot Theorem," Proceedings of the American Mathematical
Society, vol. 134 (2006), no. 9, pg. 2495-2501.
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The Euler-Maclaurin Formula and
Infinite Series Summation

The Euler-Maclaurin summation formula approximates a finite sum as an
integral with high-order corrections:

[Here h = (b - a)/n, xj = a + j h, B2k are Bernoulli numbers, and Dm f(x) means m-th
derivative of f.]

One can use the E-M to compute a high-precision sum for an infinite series:
Explicitly compute, to high precision, the sum of the first N terms of the series,
where N = 10p (we typically set p = 8, so that N = 100,000,000). Then use the
E-M formula to calculate a high-precision value for the “tail.”  Each term of the
E-M formula adds roughly p more correct digits.

D. H. Bailey, et. al, Experimental Mathematics in Action, A.K. Peters, 2007, pg. 63-70.
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Example:  Computing Catalan’s
Constant to High Precision

Let f(x) = (2x+1) / [(4x+1)2 (4x+3)2].  Then for n = 106 we can write
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Euler’s Transformation for
Summing Alternating Infinite Series

For example, Catalan’s constant can be computed to 500-digit precision by
setting n = 1000, then evaluating 400 terms of the second series (a total of
1400 function evaluations).

William H. Press, et al, Numerical Recipes, Cambridge University Press, 1966, pg. 133-134.
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Converting All-Positive Series to
Alternating Series

Given an all-positive series (xn), one can construct an alternating series (yn)
with the same sum as follows:  Set y0 = x0, then for n > 0

Each of these individual summations converges quite rapidly, so only a
modest number of terms typically need to be computed.  Euler’s
transformation can then be applied to find the sum

This method works fairly well, but is many times more costly than the
alternating series case.  Is there an efficient, general-purpose, numerically
robust scheme for finding high-precision values for infinite series sums?
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Multivariate Zeta Sums

In April 1993, Enrico Au-Yeung, an undergraduate at the University of
Waterloo, brought to the attention of Jonathan Borwein the result

Borwein was very skeptical, but subsequent computations affirmed this to
high precision.  This is a special case of the following class:

where sj are integers and σj = sign of sj.  These can be rapidly computed
using the online tool http://www.cecm.sfu.ca/projects/ezface+.

1.  J. M. Borwein and D. H. Bailey, Mathematics by Experiment, A.K. Peters, 2004, pg. 56.

2.  J. M. Borwein and D. H. Bailey, Experimentation in Mathematics, A.K. Peters, 2004, pg 142-160.
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Multivariate Zeta Example

Consider this example:

Using the EZFACE+ tool, we obtain the numerical value:
    0.1561669333811769158810359096879881936857767098403038729
    57529354497075037440295791455205653709358147578...

Using PSLQ, we then found this evaluation:
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Evaluation of Ten Constants from
Quantum Field Theory

where

J. M. Borwein and D. H.
Bailey, Mathematics by
Experiment, A.K. Peters,
2004, pg. 58.
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PSLQ and Sculpture

The complement of the figure-eight knot,
when viewed in hyperbolic space, has finite
volume

2.029883212819307250042…

Recently physicist David Broadhurst found,
using PSLQ, that this constant is given by
the formula:

and thus is a base-3 BBP-type constant.

J. M. Borwein and D. H. Bailey, Mathematics by Experiment,
A.K. Peters, 2004, pg. 53.
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New Ramanujan-Like Identities

Guillera has recently found some Ramanujan-like identities, including:

where

Guillera proved the first two of these using the Wilf-Zeilberger algorithm.  He
ascribed the third to Gourevich, who found it using integer relation methods.
Are there any higher-order analogues?
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PSLQ Searches for Additional
Formulas

We searched for additional formulas of either the following forms:

where c is some linear combination of

where each of the coefficients pi is a linear combination of

and where alpha is chosen as one of the following:
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Relations Found by PSLQ
(in addition to Guillera’s three relations)

D. H. Bailey, et. al, Experimental Mathematics in Action, A.K. Peters, 2007, pg. 46-49.
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The Wilf-Zeilberger Algorithm
for Proving Identities

The Wilf-Zeilberger algorithm is a slick, computer-assisted scheme to prove
certain types of sum identities.  It provides a nice complement to PSLQ:

 PSLQ permits one to discover new identities, but provides no clue as to
how the identities may be rigorously proven.

 The Wilf-Zeilberger scheme permits one to prove certain types of
identities, but provides no means to discover the identity.

 Together they make a great combination!
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Illustrating the Wilf-Zeilberger Method to
Prove  (1 + 1)n = 2n

Define

We wish to show that L(n) = F(n,1) + F(n,2) + … + F(n,n) = 1 for every n.
To that end, use the Wilf-Zeilberger algorithm (implemented in both Maple
and Mathematica) to construct the function

and observe that

This establishes that L(n+1) – L(n) = 0 for all n.  Since L(0) = 1, we are done.

By applying obvious telescoping properties, one can deduce that
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An Experimental Math Application of
the Wilf-Zeilberger Scheme

Recall these experimentally-discovered identities:

Guillera started by defining

He then used the EKHAD software package to obtain the companion



34

Example Usage of W-Z, Cont.

When we define

Zeilberger's theorem  gives the identity

which when written out is

A limit argument completes the proof of Guillera’s identities.
D. H. Bailey, et. al, Experimental Mathematics in Action, A.K. Peters, 2007, pg. 53-55.
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Apery-Like Summations

The following formulas for zeta(n) have been known for many years:

These results have led some to speculate that

might be some nice rational or algebraic value.

Sadly, PSLQ calculations have established that if Q5 satisfies a polynomial
with degree at most 25, then at least one coefficient has 380 digits.
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Apery-Like Relations Found Using
Integer Relation Methods

Formulas for 7 and 11 were found by Jonathan Borwein and David Bradley;
5 and 9 are due to Koecher.  This general formula was found by Koecher:
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Newer Results

Using bootstrapping and an application of the “Pade” function, Borwein and
Bradley produced the following remarkable result:

Following an analogous – but more deliberate – experimental-based
procedure, DHB, Borwein and Bradley obtained a similar general formula
for zeta(2n+2) that is pleasingly parallel to above:

Note that this gives an Apery-like formula for zeta(2n), since the LHS equals

This experimental discovery will be sketched in the new few slides.
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The Experimental Scheme

We first conjectured that zeta(2n+2) is a rational combination of terms of the
form:

where r + a1 + a2 + ... + aN = n + 1 and ai are listed in nonincreasing
order.  We can then write:

where Π(m) denotes the additive partitions of m.  We can then deduce that

where Pk(x) are polynomials whose general form we hope to discover.
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The Bootstrap Process
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Coefficients Obtained
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Resulting Polynomials
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After Using “Pade” Function in
Mathematica

which immediately suggests the general form:
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Confirmations of Zeta(2n+2) Formula

 We  symbolically computed the power series coefficients of the LHS and
the RHS , and have verified that they agree up to the term with x100.

 We verified that Z(1/6), Z(1/2),  Z(1/3), Z(1/4), where Z(x) is the RHS, give
numerically correct values (analytic values are known for LHS, using the
cot formula).

 We then affirmed that the formula gives numerical values with LHS=RHS
(to available 400-digit) for 100 pseudorandomly chosen arguments x.

 We subsequently proved this formula two different ways, including using
the Wilf-Zeilberger method.

D. H. Bailey, J. M. Borwein and D. Bradley, “Experimental Determination of Apery-Like Identities
for Zeta(2n+2),“ 2006, http://crd.lbl.gov/~dhbailey/dhbpapers/apery.pdf.

D. H. Bailey, et. al, Experimental Mathematics in Action, A.K. Peters, 2007, pg. 63-70.
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History of Numerical Quadrature

 1670: Newton devises Newton-Coates integration.
 1740: Thomas Simpson develops Simpson's rule.
 1820: Gauss develops Gaussian quadrature.
 1950-1980: Adaptive quadrature, Romberg integration, Clenshaw-Curtis

integration, others.
 1985-1990: Maple and Mathematica feature built-in numerical quadrature

facilities.
 2000: Very high-precision quadrature (1000+ digits).

With these high-precision values, we can now use PSLQ to obtain analytical
evaluations of integrals.
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The Euler-Maclaurin Formula of
Numerical Analysis

[Here h = (b - a)/n and xj = a + j h.  Dm f(x) means m-th derivative of f.]

Note when f(t) and all of its derivatives are zero at a and b (as in a bell-
shaped curve), the error E(h) of a simple trapezoidal approximation to the
integral goes to zero more rapidly than any power of h.

K. Atkinson, An Introduction to  Numerical Analysis, John Wiley, 1989, pg. 289.
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Trapezoidal Approximation to a
Bell-Shaped Function
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Tanh-Sinh Quadrature

Given f(x) defined on (-1,1), define g(t) = tanh (pi/2 sinh t).  Then setting
x = g(t) yields

where xj = g(hj) and wj = g’(hj).   Since g’(t) goes to zero very rapidly for
large t, the product  f(g(t)) g’(t)  typically is a nice bell-shaped function for
which the E-M formula applies.  Thus the simple summation above is
remarkably accurate.  Reducing h by half typically doubles the number of
correct digits.

Tanh-sinh quadrature is the best integration scheme for functions with
vertical derivatives or blow-up singularities at endpoints, or for any function
at very high precision (> 1000 digits).

1.  D. H. Bailey, X. S. Li and K. Jeyabalan, “A Comparison of Three High-Precision Quadrature Schemes,”
Experimental Mathematics, vol. 14 (2005), no. 3, pg. 317-329.
2.  H. Takahasi and M. Mori, “Double Exponential Formulas for Numerical Integration,” Publications of
RIMS, Kyoto University, vol. 9 (1974), pg. 721–741.
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Original and Transformed Integrand
Functions

Original function (on [-1,1]):

Transformed function using g(t) =
tanh(sinh t):
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Test Integrals
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Quadratic Convergence with Tanh-Sinh
Quadrature

At level k, h = 2-k – i.e., each level halves h and doubles n = # of abscissas.
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Error Estimation in Tanh-Sinh
Quadrature

Let F(t) be the desired integrand function on [a,b].  Define f(t) = F(g(t)) g'(t),
where g(t) = tanh (sinh t)  (or one of the other g functions above).  Then
an estimate of the error of the quadrature result, with interval h, is:

First order (m = 1) estimates are remarkably accurate.  Higher-order
estimates (m > 1) can be used to obtain “certificates” on the accuracy of
a tanh-sinh quadrature result.

This formula was originally discovered due to a “bug” in our computer
program – by mistake we implemented this formula and found it to be
extremely accurate.
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Error Estimation Results

Results for using tanh-sinh quadrature to integrate the function

D. H. Bailey and J. M. Borwein, “Effective Error Estimates in Euler-Maclaurin Based Quadrature Schemes,”
2006, http://crd.lbl.gov/~dhbailey/dhbpapers/em-error.pdf.
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Quadrature and PSLQ:
Example 1

Let

Then PSLQ yields

Several general results have now been proven, including
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Example 2

where

is the Dirichlet series.  Numerous other results have been found.

D. H. Bailey, et. al, Experimental Mathematics in Action, A.K. Peters, 2007, pg. 43,44,61.
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A Log-Tan Integral Identity from
Mathematical Physics

This conjectured identity arises in
mathematical physics from
analysis of volumes of ideal
tetrahedra in hyperbolic space.

We have verified this numerically
to 20,000 digits using highly
parallel tanh-sinh quadrature, but
no formal proof is known.
D. H. Bailey, J. M. Borwein, V. Kapoor and E.
Weisstein, “Ten Problems in Experimental
Mathematics,” American Mathematical Monthly,
vol. 113, no. 6 (Jun 2006), pg. 481-409 .
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Example 4

Define

Then

This has been verified to over 1000 digits.  The interval for J23 is the interval
that includes the singularity.
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Integrals from Ising Theory of
Mathematical Physics

We recently applied our methods to study three classes of integrals that
arise in the Ising theory of mathematical physics:

D. H. Bailey, J. M. Borwein and R. E. Crandall, “Integrals of the Ising Class,” Journal of Physics A:
Mathematical and General, vol. 39 (2006), pg. 12271-12302.

where (in the last line)
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Computing and Evaluating Cn

where K0 is the modified Bessel function.

We used this formula to compute 1000-digit numerical values of various
Cn, from which the following results and others were found, then proven:

We first showed that the multi-dimensional Cn integrals can be
transformed to much more manageable 1-D integrals:
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Limiting Value of Cn

The Cn numerical values approach a limit:

What is this limit?  We copied the first 50 digits of this numerical value into
the online Inverse Symbolic Calculator (ISC), now available at
http://ddrive.cs.dal.ca/~isc.  The result was:

where gamma denotes Euler’s constant.  This result is now proven and has
been generalized to an asymptotic expansion.
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Other Ising Integral Evaluations
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The Ising Integral E5

We were able to reduce E5, which is a 5-D integral, to an extremely
complicated 3-D integral (see below).

We computed this 3-D integral to 250-digit precision, using a parallel high-
precision 3-D quadrature program.  Then we used PSLQ to discover the
evaluation given on the previous page.
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Recursions in Ising Integrals

Consider the 2-parameter class of Ising integrals

(odd k has a direct connection to QFT).  After computing 1000-digit
numerical values for all n <= 36 and all k <= 75 (2660 individual quadrature
calculations, performed in parallel), and applying PSLQ, we found linear
relations in the rows of this array.  For example, when n = 3:

These recursions have been proven for n = 1, 2, 3, 4.  Similar, but more
complicated, recursions have been found for larger n (see next page).
D. H. Bailey, D. Borwein, J. M. Borwein and R. E. Crandall, “Hypergeometric Forms for Ising-Class Integrals,”
Experimental Mathematics, to appear, http://crd.lbl.gov/~dhbailey/dhbpapers/meijer/pdf.
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Experimental Recursion for n = 24

Jonathan Borwein and Bruno Salvy have now given an explicit form for
these recursions, together with code to compute any desired case.
Jonathan M. Borwein and Bruno Salvy, “A Proof of a Recursion for Bessel Moments,” manuscript, 2007,
http://users.cs.dal.ca/~jborwein/recursion.pdf.
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Some New Ising Results (Oct 2007)

where cn,k = n! k! 2-n Cn,k, where K(y) is the complete elliptic integral function,
and
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Cautionary Example

These constants agree to 42 decimal digit accuracy, but are NOT equal:

Richard Crandall has now shown that this integral is merely the first term of
a very rapidly convergent series that converges to pi/8:

1.  D. H. Bailey, J. M. Borwein, V. Kapoor and E. Weisstein, “Ten Problems in Experimental Mathematics,”
American Mathematical Monthly, vol. 113, no. 6 (Jun 2006), pg. 481-409 .

 2.  R. E. Crandall, “Theory of ROOF Walks, 2007, available at
http://people.reed.edu/~crandall/papers/ROOF.pdf
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Summary

 Advanced techniques for computing high-precision definite integrals,
infinite series, etc., combined with the PSLQ algorithm, have yielded
hundreds of new results of mathematics and mathematical physics.

 These methods typically do not suggest proofs, but often it is much easier
to find a proof when one “knows” the answer is right.

Questions:
 Can we better understand the theoretical underpinnings of these

computational methods?
 Can we develop better methods for tasks such as infinite series

summation and multi-dimensional quadrature?
 Can we adapt these methods to extremely highly parallel computer

systems?
 Can we better incorporate advanced developments in computer science –

multi-core processors, advanced visualization, database management,
compiler and language tools, etc?

 How can we train students in experimental math?


