
# Inflation Without a Beginning

Anthony Aguirre (IAS) Steven Gratton (Princeton)

#### Inflation and Eternal Inflation

#### **\*** Inflation:

exponential phase inserted to produce FRW cosmology from "more general" initial condition.



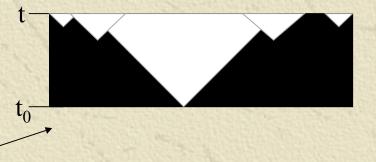
 Semi-eternal
 Inflation: but generically, inflation does not end! It keeps going, ⇒ "steadystate", giving birth to FRW-regions.

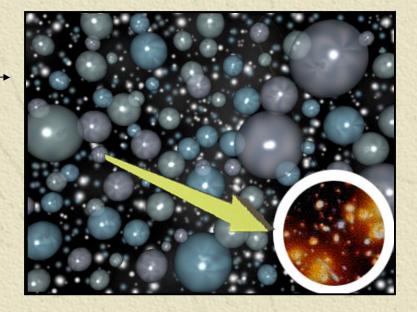
FRW inflation Quasi-flat, Quasihomogeneous, Quasi-FRW

Flat, homogeneous,

Can we have truly (past- and future-) eternal inflation, and avoid an initial singularity/beginning of time? Apparently not!

**\*** Requiring "local Hubble const."  $H > H_{min} > 0$  (Borde, Guth & Vilenkin 2001).

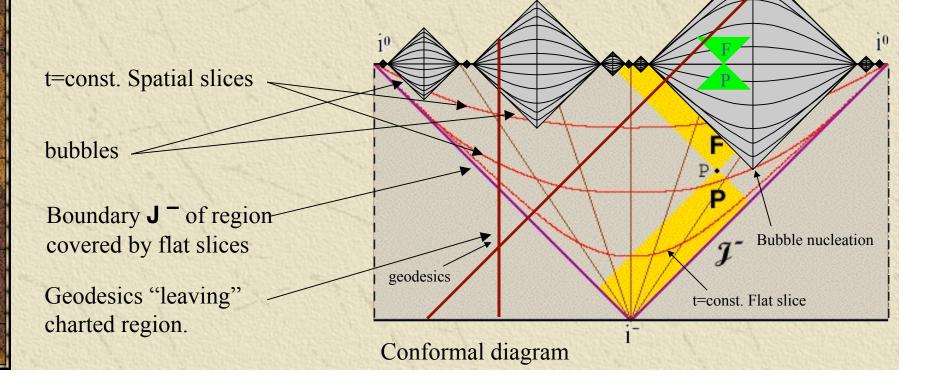

#### Steady-State eternal inflation


#### Let's try anyway!

Strategy: make state *approached* by semi-eternal inflation *exact*:

- **Flat spatial sections.**
- <sup>★</sup> Consider bubbles formed between  $t_0$  and t. Send  $t_0 \rightarrow -\infty$ .
- Inflation endures; bubbles & inflating region make cosmological fractal (see Vilenkin 1992).

Inflating background is eternal. Each bubble is an open FRW cosmology; one could be ours. Bubble distribution is a "steady-state" with no preferred or initial time. So what about the singularity theorems?






### Analysis of "singularity"

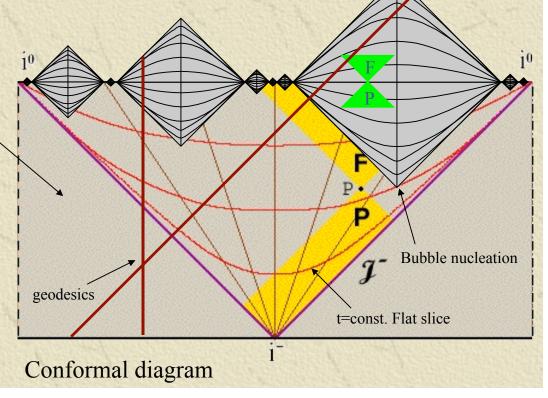
For  $-\infty < t < \infty$  the flat spatial sections we have used in defining the background comprise only 1/2 of de Sitter space.

All null and "most" timelike geodesics have only finite proper time within this region: the region is geodesically incomplete.



#### Analysis of "singularity"

For  $-\infty < t < \infty$  the flat spatial sections we have used in defining the background comprise only 1/2 of de Sitter space.


All null and "most" timelike geodesics have only finite proper time within this region: the region is geodesically incomplete.

## What is in the uncharted region?

Consider:

As  $t_0 \rightarrow -\infty$ , all geodesics enter false vacuum.

Continuity of fields then  $\Rightarrow$  **J**<sup>-</sup> = pure false vacuum.



#### Boundary conditions for eternal inflation

Π

J<sup>-</sup> is a boundary value surface for fields in both region one and two (it fills the light cone of any point).

(semi)classically,  $J^{-}$  is pure de Sitter space (no bubbles pass through it)

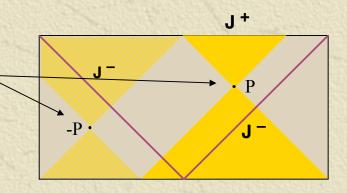
 $\Rightarrow$  Classically, region II is just de Sitter.

⇒ Semi-classically, bubbles must form in region II; but they must point "down".

**Region II is a copy of region I!** In short:

We specify that all fields are homogeneous and in (false or true) vacuum states on an infinite null surface in dS.

We get eternal inflation. What could be simpler?


### The antipodal identification

Are the two "duplicate" regions really distinct? Old idea (Schrodinger 1957): identify antipodal points in de Sitter space.

Then region I = region II,  $J^-$  maps onto itself. Features of antipodally identified de Sitter:

≻No horizons.

No closed time-like curves.
(but non-time-orientable.)
Only one spacelike infinity (interesting for dS/CFT conjecture).
With it, eternal inflation is more "economical", and J<sup>-</sup> is just a "surface" of infinite past time.



# Inflation Without a Beginning

For some details see: astro-ph/0111191. A follow-up work will appear soon.