



## STS-104/7A FRR

EVA Project Office Johnson Space Center

Steve Broussard

June 28, 2001





- EVA Capability (STS-104/7A)
  - Three scheduled EVA's:
    - Consumables to support:
      - Two 10.2 psi scheduled EVA's from orbiter and one scheduled EVA from joint airlock or
      - Three 10.2 psi scheduled EVA's from orbiter
  - One unscheduled EVA: To achieve mission success or ISS contingencies
    - Can be performed from either airlock post EVA 2
  - Two contingency EVA's: For orbiter, RMS, and ODS contingencies

#### • EVA Capability (7A Stage)

- No planned U.S. EVA's (three EVA contingency capability)
- No planned Russian EVA's (two EVA contingency capability)

#### • EVA Training (STS-104/7A)

- EVA training ratio is 10:1
- All planned tasks can be accommodated within scheduled 6:30 timeline, less EVA 1 which is scheduled at 6:55





- EVA 1 (Flight Day 4) 6:55
  - 6:55 duration includes 3:25 Joint Airlock SSRMS/SVS and CBM dock operations
    - EV crew on Orbiter SCU's for 1:05 of 3:25 airlock installation time period
    - STS-104/7A JOP and EVA CCB have reviewed and approved EVA extension past 6:30
  - Tasks
    - Passive CBM Thermal Cover Remove
    - Installation of three High Pressure Gas Tank (HPGT) Towel Bars and one HPGT Guide Post
    - LTA Jumper Remove (four connectors)
    - PLB Cleanup
    - Inspect Node Stbd CBM for Early Comm FOD
    - Airlock to Node Jumper Mate (two connectors)
    - Setup APFR's for HPGT one worksite





- EVA 2 (Flight Day 7) 5:35
  - Tasks
    - Remove MLI from HPGT install locations (two) and install remaining HPGT Guide Posts (three)
    - Release tank from Spacelab pallet
    - Repeat tank release, install, and checkout for second tank
    - Install Airlock trunnion thermal covers (four) and Airlock Flight Releasable Grapple Fixture (FRGF) thermal cover (one)
- Completion of EVA 2 allows STS-104/7A to meet minimum mission success criteria.
- ISS provided with capability to support EVA out of the joint airlock





- EVA 3 (Flight Day 9) 5:35
  - EVA 3 conducted out of joint airlock
    - First planned use of Exercise Prebreathe Protocol
    - First planned use of METOX in EMU during EVA
    - Flight prepared to perform EVA from orbiter if required
  - Tasks
    - Orlan comm cable install (one connector)
    - Remove MLI and install third and fourth HPGT's repeating previous method
    - Install handrails (five)
    - Install HPGT FRGF thermal covers (four)
    - Stow Lab LTA cable disconnected in EVA 1
    - Open Node nadir CBM cover flap

#### • EVA Get Ahead Tasks

- BMRRM inspection with WVS
- PMA 3 Connector (P601) Mate (task left over from 5A.1)
- SSRMS MLI closeout (task left over from 6A)





#### • Three EMU's Manifested/Two EMU's On-orbit

- Two Large Orbital Replacement Unit (ORU) EMUs, and one medium ORU EMU launched on STS-104/7A
  - STS-104/7A to return from ISS with two large ORU EMUs from STS-98/5A and STS-100/6A.

#### • Two SAFER's Left On-orbit by STS-100/6A

- STS-104/7A will use two ISS SAFER's for all EVA's.
  - Planned SAFER transfer to orbiter to accommodate EVA 1 and EVA 2
  - Both SAFER's to remain on ISS post STS-104/7A





#### • EMU and SAFER First Flight Hardware

- EMU
  - Adjustable Waist Brief Assembly
  - ISS EMU Servicing Kit
  - EMU ORU Tools
  - Metox Regenerator
  - First use of EMU hardware delivered to ISS via STS-100/6A
    - Metox Canisters
    - ISS EMU Umbilical
- SAFER
  - No new equipment





#### • EVA Tools and Crew Aids First Flight Items

- HPGT Quick Disconnect Tool
- EVA Tool Stowage Assembly (ETSD tool boxes)
  - 25 contingency tools stowed in ETSD
- SAFER Stowage Bags
- Non-GFE EVA Hardware First Flight Items
  - None
- Standard Contingency Tools in Port TSA
- Starboard (Lightweight) TSA

#### <u>Launch</u>

- 4 A/L Trunnion thermal covers\*
- 1 A/L FRGF thermal cover\*
- 1 Ret. Equipment Tether
- 1 80" Adjustable Equipment Tether

#### <u>Return</u>

- 1 A/L CBM thermal cover\*
- 1 STS to A/L LTA cable\*
- 2 EVA fuse tethers
- 8 A/L PCBM contam. covers\*
- 2 Ret. Equipment Tethers
- 2 Adj. Equipment Tethers
- 1 EVA Wire Tie
- \* Airlock element provided equipment





- Sill-Mounted PFR Configuration
  - Three full stacks (Bay 2 Port Location, Bay 13 Port and Bay 13 Starboard)
- Standard complement of slidewires, safety tethers, crew hook locks, and winches in PLB





#### • EVA Tools and Crew Aids Left On-orbit

- 25 Tools launched in ETSD's to remain on ISS
- 142 Tools launched in STS middeck and joint airlock to remain on ISS
- Upon completion of STS-104/7A the basic complement of ISS EVA tools will reside on orbit
- EVA Tools and Crew Aids Swapped On-orbit
  - None Currently planned
- EVA Tools and Crew Aids Returned
  - None currently planned





#### • Tool-to-tool Fit Checks (578 total tasks)

- 90 percent Total Complete (523 of 578)
  - 107/107 airlock ETSD = 100 percent
  - 80/128 payload bay and TSA = 63 percent
    - 8 open fit checks in PLB (PFR stacks that have not been cross fit checked)
      - > RISK-LOW. Planned use of PFR stacks is as assembled for launch.
    - 40 open fit checks in TSA. Open are bayonet fitting fit checks to Modular Mini
      Work Station (MMWS) due to unavailability of hardware from previous flights
      - RISK- LOW. All items are contingency equipment and have alternate method of transport to work station
  - 336/343 Middeck = 98 percent
    - 7 open fit checks in middeck. EVA trash bags and ratchet wrench not fit checked with MMWS sub assemblies
      - RISK- LOW. All items have an alternate method of transport to work station
- All incomplete fit checks have been dispositioned as acceptable through the EVA CoFR Process





- Tool-to-Interface and Interface-to-Interface Fit Checks (254 total tasks)
  - 253/254 complete = 99 percent
    - Fit check of MPEV in Equipment Lock PPRV location (IVA on orbit swap)
  - All incomplete fit checks have been dispositioned by the ISSP
- Sharp Edge Inspections
  - 100 percent complete on airlock, Spacelab pallet, HPGT's
    - PLB will be completed by pad walk down on June 28, 2001





- EVA Crewmember Eye Irritation
  - Background
    - During STS-100 a crewmember had a burning sensation in both eyes during EVA
    - Previous eye irritation scenarios had occurred during the repress phase of EVA, and were attributed to exposure of eyes to Anti-fog solution (soap)
  - Investigation Status and Rationale for Flight
    - Most likely cause determined to be irritant (most likely Anti-fog solution) being transported into crewmembers eyes by leaking Disposable In-suit Drink Bag (DIDB)
    - For STS-104/7A, DIDB is being replaced with a previous configuration In-suit Drink Bag (IDB) to eliminate potential leaking Bite Valve and thus control one known transport mechanism. IDB valve is much less susceptible to leakage
    - For ISS-2/Stage 7A, the risk of DIDB leakage as a transport has been accepted for any contingency EVA's which may occur during the 1 month Stage 7A.

#### Transport Mechanism is Controlled and Crew is Properly Trained





#### • EMU Boot Pressure Point

- Background
  - Crewmembers have experienced pressure point on feet
  - Foot discomfort has potential to be mission impact
- Investigation Status
  - Root cause is foot contact with a pressure bladder seam on the top side of the boot
  - Depending on foot size, the boot design and foot wear (multiple sock options, boot sizing insert, thermal slippers, toe caps) selected, a stack up combination can occur to provide the potential for boot fit concerns that might not be readily screened for on the ground
  - To accommodate potential physiological changes on-orbit, options to increase foot easement have been provisioned (boot sizing inserts, thermal slippers, thinner socks, smooth bladder wrinkles and leg length resizing)
- Rationale for Flight
  - Modified the boot fit check process to more effectively simulate 0-g effects
  - 7A crewmen have been successfully fit checked (i.e., foot easement within boot dimensions)
  - Additional crew sizing options are manifested if required for on-orbit modifications

#### Fit Checks and On-orbit Options Ensure Proper Fit





- Special Topics
  - Exercise Prebreathe Protocol
  - Bends Treatment Adapter
  - SSRMS Workarounds
  - ISS Airlock UIA to EMU 0<sub>2</sub> Temperature





#### • Exercise Prebreathe Protocol

- Overview
  - Exercise Prebreathe protocol is a new method for more efficient denitrogenization of EV crew prior to EVA from ISS
  - Protocol is planned as prime for ISS crews beginning with ISS-3 and prime for STS crews using the joint airlock beginning with STS-104/7A EVA 3
  - Protocol eliminates need for 12-hour crew isolation (campout) or 4-hour in-suit prebreathe (14.7 psi)
  - Total Protocol duration is 2:20
    - 80-minute total mask prebreathe time using dedicated hose and mask system from airlock (140 ft. hose)
      - > 10 minute exercise on mask while on CEVIS using exercise tubing for upper body exercise
      - Depress airlock to 10.2 psi for suit donning
      - Repress airlock to 14.7 psi following suit donning
    - 60-minute in-suit prebreathe immediately prior to depress to vacuum

#### Exercise Prebreathe Protocol

- Status
  - All necessary equipment currently on ISS or on STS-104/7A manifest
  - Protocol will be dry run on flight day six and flight day eight
  - Ability to switch to alternate protocol (Campout or Shuttle 10.2 psi) as late as flight day eight for EVA 3 without impact to mission objectives





#### • Revised Bends Treatment Procedure

- NASA Medical has implemented a revised on orbit Decompression Sickness (DCS) treatment procedure utilizing the existing Bends Treatment Adapter (BTA) 8.45 psid relief valve
  - DCS treatment is significantly improved over the current procedure by not initially depressurizing the suit and installing the BTA with the suit pressurized
- Revised procedure installs BTA in series with the EMU in-suit relief valve and requires IV crew action to prevent suit over pressurization in the unlikely event of EMU regulator failure
- After BTA installation, IV Crewmember will be prepared to perform the following
  - IV crew performs 8 "pump-up" cycles on the EMU primary O<sub>2</sub> system to raise suit pressure from ~4.3 to 8.0 psid to accomplish DCS treatment
  - IV crew monitors suit pressure during each 15 second "pump-up" cycle to ensure indications of EMU Primary Oxygen Regulator failure are not present
  - IV crew reacts and shuts off oxygen flow in less than a 5 second operation if failure indications are present. Time to reach maximum design pressure is 12 seconds.





## **BTA Installation Location on EMU**







#### • SSRMS Failure EVA Workarounds

- STS-104/7A EVA crew prepared for SSRMS failures via EVA actions
  - Manual drive of SSRMS to occur via EVA crew use of Pistol Grip Tool (PGT)
  - SSRMS trajectory revised to allow access to joints by EVA crew using Shuttle RMS
- EVA 1 failure overcome by manually positioning Airlock approximately 3 feet from ISS Node Starboard CBM and attaching jumper cables as in the baseline plan
  - Preserves potential Airlock installation on 7A via contingency EVA
- EVA 2 or 3 failure overcome by EV crew manually driving SSRMS and releasing tank to EV crew at revised handoff positions
- HPGT 2 and HPGT 3 can be installed using the Shuttle RMS if required
- EV crew has received training and has conducted NBL evaluations for the above contingencies





- Potential for Airlock to EMU ICD Violation for O<sub>2</sub> temperature
  - Initial analysis showed that EMU could receive O<sub>2</sub> below the current ICD limit of 40 degrees F from the Airlock O<sub>2</sub> system
  - Recent analysis shows good margin to maintain EMU interface temperatures for nominal cases, final analysis in work for off nominal cases
  - EVA Project considers issue to be no constraint to STS-104/7A and is working with ISS Vehicle office on final issue closure



## STS-104/7A FRR Planned Forward Work



| <u>Title</u>                                             | Plan to Close               | <u>Responsible</u><br>Organization | <u>ECD</u> | <u>Risk</u> |
|----------------------------------------------------------|-----------------------------|------------------------------------|------------|-------------|
| V1103.02                                                 | V1103.02                    | EC/MOD                             | 7/2/01     | Low         |
| Sharp Edge Inspection                                    | Final Pad Walk Down         | VITT                               | 6/28/01    | Low         |
| EMU Middeck Batt Charger ISS<br>Cert for Contingency Use | SMART panel ISS<br>approval | USA                                | 6/29/01    | Low         |





- There are no EVA exceptions for STS-104/7A FRR
- The EVA Project Office is ready to proceed with STS-104/7A launch operations pending completion of the planned forward work
- All open work will be closed or dispositioned by L-2

Original signed by:

G. Allen Flynt Acting Manager, EVA Project Office





# STS-104/7A FRR

## **Backup Charts**



### STS-104/7A EVA FRR Backup Charts Eye Irritant







### STS-104/7A EVA FRR Backup Charts Boot Configuration









#### • Background

- During SOP S/N 1015 Acceptance Testing at HSWL a test rig high pressure O<sub>2</sub> regulator developed a leak
- Disassembly showed ignition internal to the Test Rig Regulator Vent Port

#### • Rationale for Flight

- Root cause is a damaged regulator o-ring ignited by flow friction
- O-ring damage due to dimensional outage on the Test Rig Regulator housing
- Combustion occurred within two operating cycles of the regulator
- SOP S/N 1015 cleanliness is under evaluation, unit is at HSWL
- Flight SOPs were processed with a Test Rig Regulator that had been in service for over 2 years, disassembly of the regulator showed only normal wear

#### Incident Isolated To Unique Outages In Test Rig Regulator