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Abstract 
We propose  an  algorithm for  texture  segmentation 

based on a divide-and-conquer  strategy of statistical 
modeling.  Selected  sets of Gaussian  clusters,  esti- 
mated via Expectation  Maximization on the  texture 
features, are  grouped together to   form composite  tex- 
ture  classes.  Our  cluster  grouping  technique  exploits 
the  inherent local  spatial  correlation  among  posterior 
distributions of clusters belonging to the  same  texture 
class.  Despite  its  simplicity,  this  algorithm can  model 
even  very  complex  distributions,  typical of natural  out- 
door  images. 

1 Introduction 
This  paper  proposes  a  simple  statistical  parametric 

technique for texture  segmentation.  The  statistical 
description of textures  has received  much attention in 
recent  years. Texture  features .(x) are  typically ex- 
tracted  from  the  output of a  set of scaled/oriented 
filters, which are  supposed to  capture  the local salient 
information in the  neighborhood of each image  point. 
Parametric  mixture  models  are  the  framework of 
choice for segmentation.  These  models  assume  that  a 
feature c is generated by one of N possible  processes 
( “components”).  The  probability  density  function of 
feature c can  thus  be expressed by a mixture  distribu- 
tion 

N 

j=1 

where p(c1j) is the  conditional likelihood of the  feature 
c generated by the  component j and P ( j )  is the  prior 
probability of the  component j (called mixing  param- 
eter). The posterior  probabilities P ( j l c ( x ) )  are  de- 
rived straightforwardly  from  the  mixture  model using 
Bayes’ rule,  and  are used for the final segmentation. 
Note that each component of the  model  corresponds 
to exactly one  image  segment. 

Mixture  models owe their  popularity in part  to  the 
existence of an efficient technique  (the  Expectation- 

Maximization  algorithm) for the  maximum likelihood 
parameters  estimation [4]. In  its  simplest  formulation, 
the EM algorithm relies on two  hypotheses: 1) a  suit- 
able  model for the  conditional  likelihoods is known, 
and 2) the observed samples  are  statistically  indepen- 
dent.  Neither of these  hypotheses  are verified in typi- 
cal  textures.  In  this  paper we tackle  the first problem, 
the  determination of a  statistical  model for feature 
generation  within  each  texture  class,  originating  our 
argument  from  the  observation  that  simple  Gaussian 
models  are  inadequate to describe  “multimodal”  tex- 
tures, such as can be  often  encountered in practice. 

Mixture of Gaussians  are  the  most  common in- 
stance of mixture  models,  one of the  reasons  being  that 
Gaussian  conditional  likelihoods allow for the E- and 
M- steps of the EM algorithm to be solved in closed 
form [4]. Each Gaussian  cluster  represents  a  “mode” 
of the  mixture  distribution. Malik et al. [a]  call the 
cluster  centers  “textons”  and  use  them for compact 
texture  representation  (via vector quantization).  Our 
main  point  here is that  it is often  necessary to use 
more than one  Gaussian  cluster  to  represent  an ho- 
mogeneous texture  feature  distribution.  To  deal  with 
multimodal  textures we propose  a  divide-and-conquer 
strategy.  First,  extract  a  suitable  number of mixture 
components using the EM algorithm;  then,  group to- 
gether  those  clusters  which  are likely to belong to  the 
same  texture. 

How can we estimate  the  correct  assignments 
cluster-texture?  Our  algorithm  determines  a cost 
function of the  cluster  grouping  that  takes spatial co- 
herence into  account. A simple,  non-iterative tech- 
nique  allows us to  determine  the  cluster  groupings 
that minimize  such  a  function,  and  the  final  Bayesian 
assignment is performed  based  on  the new combined 
posterior  distribution.  Results  on  natural  textured 
scene  show the effectiveness of the  proposed  method. 
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2 Multimodal texture segmentation 
2.1 Problem  statement 

Our strategy for segmenting  multimodal  textures is 
based  on  “grouping together”  some of the  components 
of a  given mixture  model. More precisely, we rewrite 
(1) as 

k = l  i = l  

Note that (2) represents  a  purely  formal  operation; 
the  conditional  likelihoods  that  appear in ( 1 )  and (2) 
are  the  same  (albeit  with different indices) and  the 
density p ( c )  remains  unchanged. The index k in (2) 
labels  the different texture in the scene; the  index i 
enumerates  the  clusters  within each texture  class. A 
feature c is assigned to  the  texture k that maximizes 

As anticipated in the  Introduction, we will deter- 
mine  the  groupings in (2) by exploiting  the  spatial 
coherence of the  class  assignment  function.  More 
precisely, we observe that  the posterior  probabilities 
Pk(i lIc(2))  and Pk(i21c(2)) for two  clusters i l  and i2 
belonging to  the  same  texture k are  typically spatially 
correlated. They  can  assume high  values (5  1) only 
in image  areas  corresponding to  the  same  texture; for 
homogeneous  textures,  it is reasonable to assume that,  
within  a window of observability of suitable  scale, we 
will always find pixels belonging to cluster il and pix- 
els belonging to cluster i2. This  notion is exploited in 
the  context of the maximum  descriptiveness principle 
for grouping  “redundant”  clusters in a  mixture  model. 
We first  discuss the  maximum  descriptiveness princi- 
ple,  and  then  show  its  application in the  context of 
this  work. 
2.2 Model  descriptiveness 

Consider  a  mixture  model  with  density p ( c )  ex- 
pressed by ( I ) ,  The descriptiveness of the  model [3] 
is defined by 

C y )  Pk(i)pk(Cli). 

N -  

j = 1  

where the  posterior  probabilities P ( j l c )  are derived 
from (1) using  Bayes’  rule.  Let  us examine each term 
of the  sum in ( 3 ) .  The  j-th cluster  “describes”  each 
feature c by means of the  conditional likelihood p(c1j).  
The posterior  probability P ( j l c )  specifies in a “soft” 
fashion which features  are  actually assigned by the 

model to  the  j-th  cluster.  Thus,  the  integrals in the 
sum determine how  well each  cluster  describes  the fea- 
tures  that  are assigned to  it .   It is easily seen that 
models  with  “hard”  assignment  rules  have  the  high- 
est  descriptiveness  (which  can  only  be less than or 
equal to N ) .  “Redundant”  models  with highly over- 
lapping  densities p(c l j )  have smaller  descriptiveness 
for the  same  number of classes. The lowest value of 
the  descriptiveness (D=l )  is achieved  when  all of the 
conditional  likelihoods  are  identical. 

A very useful property of the  descriptiveness is that 
it can  be easily estimated:  a  simple  application of 
Bayes’  rule  proves the following identity: 

where E[ . ]  is the  expectation  computed  with  respect 
to  the  density p ( c ) .  The  numerator of each term  in  (4) 
can  thus be estimated by simply  averaging P ( j l c ( ~ ) ) ~  
over the  image. 

For our purposes,  the  descriptiveness of a  model is 
not used by itself; it is its variation when  two or more 
clusters  are  grouped  together  which is of interest to us. 
Suppose that a new model is generated by grouping 
two  clusters  (say,  clusters i and j )  into a new cluster 
i U j according to  the following  rules: 

Note that  the  conditional likelihood  defined in the  last 
row of (5) is such that  the density p ( c )  defined by the 
model  does  not  change: our grouping  operation (which 
is equivalent to (2)) is purely  formal  and  should  not 
affect the  unconditional likelihood p ( c ) .  However, the 
model  descriptiveness D will change  (in  general)  as 
an effect  of cluster  grouping.  Indeed, it can  be  shown 
that  the model  descriptiveness D may only  decrease 
or remain  unchanged  when  two or more  clusters  are 
grouped  together.  The  descriptiveness  decreases  the 
most  when the  grouping involves clusters  with well- 
separated  conditional  distributions, while  highly over- 
lapping  distributions  can  be  grouped  with  little de- 
scriptiveness loss. Thus, by studying  the values as- 
sumed by the  descriptiveness  decrement A D ,  we can 
decide  which sets of clusters  are  “redundant”  and  can 
be  grouped  together in order to reduce the  number of 
clusters of the  model.  In  other  words, we will group 
together  clusters by ensuring  that  the final model  has 
the  highest  descriptiveness,  i.e., by minimizing A D .  



We will call  this  strategy  the maximum  descriptive- 
ness  principle. A fast  sub-optimal  technique for min- 
imizing A D  works by greedy  merging  two  clusters at 
a  time [3]. 

There is an  interesting  interpretation of the  descrip 
tiveness which will be useful in  our work.  Suppose we 
are  grouping  two  clusters of indices i and j. Then, 
from (4) and (5) we have that 

of suitable scale u,  normalized to  unit  area. Let 
P( j l x )  = J P ( j l c ( t ) ) g ( x  - t )  dt be  the filtered version 
of the  posterior  distribution P ( j l c ( x ) )  (we dropped 
the  dependency on c because now P ( j l x )  is a  function 
of a  whole  ensemble of features in a neighborhood of 
x ) .  Since g ( x )  has  unit  area,  it is easily proved that 
P ( j l x )  for 1 5 j 5 N is still  a  mass  distribution for 
each x .  Furthermore, P ( j )  = E [ p ( j l x ) ]  = P ( j ) .  

(6) 
The  last  term  in  this  sum is the  cross-correlation be- 
tween the  two  distributions,  normalized  with respect 
to  the average of the  corresponding  priors.  Thus, for 
given  cluster  descriptiveness Di , Dj and  prior  probabil- 
ities P ( i ) , P ( j ) ,  the  two  clusters will determine  a  large 
descriptiveness  decrement  when  grouped  together if 
the  two  corresponding  distribution  are  uncorrelated. 
Since  these distributions  are  actually  a  function of the 
spatial  position x of the  features c(z),  we may use 
the  signal processing  definition of cross-correlation  as 
a  function of the  displacement X :  

C i j ( X )  = E [P(ilc(z))P(jlc(a: + X ) ) ]  (7)  

and  rewrite  the  last  term of (6) as - p ( i ) + p ( j ) .  

2.3 Cluster-texture assignment 
Our goal is to find a  criterion  that  tells us when 

two  clusters  belong to  the  same  texture, so that we can 
group  them  together as in ( 2 ) .  The  maximum descrip- 
tiveness criterion  described in the previous  section is 
not  helpful if applied  directly  on  the  posterior  prob- 
abilities P(j1c): two  clusters  belonging to  the  same 
texture  may be well separated in feature  space.  In- 
stead, we propose to  apply  the  same  criterion  to  the 
spatially  filtered version of the  posterior  probabilities. 
The  intuition  behind  this  strategy is the following. As 
observed earlier, we expect that  the posterior  distri- 
butions for different clusters  belonging to  the  same 
texture  should be spatially  correlated. By spatially 
smoothing  these  distributions, we expect that a  point 
that was assigned  with  high probability to  just one 
cluster will  now be  softly  assigned to a  number of clus- 
ters  belonging to  the  same  texture.  Cluster  grouping 
is then  determined by applying  the  maximum descrip- 
tiveness algorithm to  the  smoothed  posterior  distribu- 
tions.  Note  that  this  procedure is used  only to find 
the  correspondence  cluster-texture:  the final segmen- 
tation is operated using the  model ( 2 ) ,  i.e.,  based on 
non-filtered distributions. 

We  now give  a more  thorough  justification of our 
method. Let g ( x )  be an  isotropic  Gaussian  kernel 

2C,j(O) 

It is easy to prove that 

C i j ( X )  = C i j ( x ) g ( x  - z ) d x  s 
where Cij (x )  is defined in (7) and g(z) = J g ( t ) g ( t  - 
z ) d x  (note  that g ( x )  is a  unit-area  Gaussian kernel 
with  standard  deviation 0 = ./a). Therefore C i j ( 0 )  
is a  weighted  average of the cross-correlation  between 
the  i-th  and  the j- th posterior  distributions  within  a 
neighborhood of radius  proportional to u/2 (which we 
will call the observation window). 

Now consider the  decrement of descriptiveness A D  
consequent to grouping  two  clusters i and j after  spa- 
tial  smoothing: 

From (10) we maintain  that, for given P ( i l c ( z ) ) ,  
P ( j l c ( x ) )  and  priors P ( i ) ,  P ( j ) ,  the value A D  de- 
pends  on  the degree of local spatial  correlation be- 
tween the two  posterior  distributions.  Thus,  the 
maximum  descriptiveness  algorithm  applied  on  the 
smoothed  distributions will correctly  determine  which 
cluster  posterior  distributions  best  correlate,  and will 
group  them  together  into  texture classes. 
2.4 Experiments 

We present  here  the  segmentation  results  using  our 
method  with  the real-world  ‘Zebras” image  (Figure 

The vectors  formed by the  magnitude of the  out- 
put of complex  Gabor  filters at  three scales and  four 
orientations have  been  used as  texture  features.  The 
images were 134 x 222 pixels in size; the  Gaussian filter 
used to  smooth  the  posterior  distributions for cluster- 
texture  assignment  had  standard  deviation u = 20. 
In  both cases, we started  with  a  mixture  model  com- 
posed of eight  Gaussian  clusters.  The EM algorithm 
was bootstraped by choosing initial  parameter val- 
ues with  K-means  clustering,  and  was  stopped  after 

l (a ) ) .  



Figure 1: (a): "Zebras" image. (b):  Segmentation 
with  eight  clusters. (c) Segmentation  into  two  texture 
classes by cluster  grouping.  (d): Model  descriptive- 
ness decrement  as  a  function of the  number of texture 
classes. (e),(f): Segmentation  into  three  and  four tex- 
ture classes by cluster  grouping. 

. ,  

twenty iterations.  In  passing, we noticed that increas- 
ing  the  number of clusters  reduces  the risk of missing 
global  minima in the EM iterations. A simple  post- 
processing  technique [5] was  used to enforce spatial 
coherence on  the  resulting  multimodal  posterior dis- 
tribution.  This  algorithm is in essence  a "soft" version 
of Besag's Iterated  Conditional Modes [l]; its relation 
to  the  mean field theory is discussed in [6]. 

Note that  the whole set of striped  shapes  (six clus- 
ters)  has been  grouped  into  one  segment.  That  the fi- 
nal  segments are not the  union of segments  found  with 
the  8-clusters  segmentation: in other  words,  cluster 
grouping  determines new Bayesian assignments  that 
are  not  trivially derived from  the  original ones. using 
the greedy strategy of [3]. 

3 Conclusions 
We presented  a  divide-and-conquer  strategy for tex- 

ture  segmentation.  The  behavior of the  texture fea- 
tures in the scene is first modeled by a  number of 
Gaussian  clusters,  estimated  via  Expectation Maxi- 
mization.  Then, selected cluster  sets  are  grouped  to- 
gether to form  texture classes. Spatial  correlation of 
the  posterior  cluster  distributions is at  the basis of the 
cluster  grouping  criterion. 

Despite  its  simplicity,  this  algorithm  can  model 
even very  complex  and  multimodal  distributions,  such 
as  typically  appear in natural  outdoor  images.  Future 
work will be  devoted to incorporating  other  visual  fea- 
tures  within  the  same  modeling  framework. 
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