Homogeneous Charge Compression Ignition (HCCI) R&D

Salvador Aceves, Daniel Flowers, Joel Martinez, Francisco Espinosa Lawrence Livermore National Laboratory and

Robert Dibble

University of California, Berkeley

2003 DEER Meeting San Diego, CA August 28, 2002

Homogeneous Charge Compression Ignition (HCCI) R&D

LLNL HCCI combustion simulation results for thermal autoignition of the fuel during compression. Scientific American, June 2001

Objectives:

Develop a new combustion system that can provide the high efficiency and durability of diesel engines with very low NOx and particulate matter emissions.

Plans:

Find inexpensive, practical solutions for the problems of HCCI engines:

- control
- multi-cylinder balancing
- high HC and CO emissions
- low power output
- startability

Control:

Detailed analysis of possible control strategies Experimental testing Additives

Multi-cylinder balancing:

Achieved balanced combustion in VW TDI engine

High HC and CO emissions:

Detailed analysis for optimized engine geometry

Low power output:

Optimization of engine performance map Transition to SI/CI combustion

Startability:

Analysis of transition between SI/CI and HCCI combustion

We have analyzed potential methodologies for control of HCCI combustion (SAE 2000-01-2869)

Example of thermal control system

We have successfully operated the TDI engine with an EGR-equivalence ratio control with no intake heating

We are looking at the use of additives for control of HCCI engines

We are exploring many means of cylinder-bycylinder timing control

Control systems are being implemented for two generic, low cost control options:

Trim heaters using less than 1% of mechanical energy output can effectively balance the cylinders in steady operation

We have successfully demonstrated two possible means of individual cylinder combustion timing control

Our multi-zone methodology can successfully predict geometry effects on HC and CO emissions

Location of isothermal zones in cylinder (SAE 2000-01-0327)

Temperature history of 10 zones during compression stroke

Our multi-zone model generates accurate predictions for HCCI combustion

We have applied the multi-zone methodology to four engine designs to evaluate their effect on emissions

We have analyzed three engine geometries experimentally tested at the Lund University

Crevice width w=0.26 mm, 1.6 mm and 2.1 mm Constant compression ratio 17:1

Our analysis can explain the non-monotonic behavior in HC emissions as a function of equivalence ratio

Engine with narrow crevice 0.26 mm

Our analysis can explain the non-monotonic behavior in HC emissions as a function of equivalence ratio

Engine with wide crevice

We have applied the system simulation and optimization tool to evaluate transition between HCCI and SI ignition

We are collaborating with multiple industrial and academic partners

- Cummins
 - 2-year long CRADA, 2 joint papers
 - working on establishing a new CRADA
- Caterpillar
 - donated experimental engine 3401
- Sandia National Laboratories
 - detailed analysis of experimental data
- Lund Institute of Technology
 - 2 joint papers, collaboration on analysis
- University of Wisconsin
 - joint work on KIVA analysis
 - 3 joint papers
- UC Berkeley
 - joint experimental and numerical work, 18 joint papers
 - four graduate students obtaining degrees on HCCI

HCCI roadmap

