

Systems and Technology Group

The Hexavalent Chromium Challenge

Sophia Lau, Ph.D. IBM Systems and Technology Group Materials and Process Engineering

10/6/2005

© 2003 IBM Corporation

Restricted Substance - Hexavalent Chromium

Common Oxidation States of Chromium (Cr)

- Cr(0): Chromium metal Not restricted
- Cr(III): Trivalent chromium Not restricted
- Cr(VI): Hexavalent chromium Restricted
 (Known Carcinogen, Mutagen, Respiratory and Skin Irritant)
- For Analytical Testing

2

- Total Cr or Presence of Cr relativity simple
- Cr(VI) in a mixed valence matrix more complex

Hexavalent Chromium in Electronic Products

- Sources of Cr(VI) in Electronic Products
 - Polymeric Matrix:

3

- Pigments in Plastics
- <u>Metallic Matrix</u>: (major source in electronic products)
 - Chromate Conversion Coatings on
 - Chassis (galvanized steel frames)
 - Fasteners (screws, nuts, bolts, etc.)
 - Metal Components (heatsinks)

Replacing Hex Chrome Coatings

Chromate Conversion Coatings (CCC)

- Cr(VI) converts to Cr(III) during the coating process
- Some Cr(VI) is incorporated into the coating

Properties

- Excellent corrosion resistance and "self-healing" ability
- Good conductivity/Electromagnetic Compatibility (EMC)
- Good paint adhesion
- Relatively low cost
- No direct substitute with equal benefits (may also require modification to mechanical design, EMC materials/gasketing designs to compensate)

Can We Switch Completely Away from Chromium?

- In some applications, trivalent chromate coating is the only alternative
- Sourcing Issues:

5

- North America and Europe lack a commercially viable supply of non-chromium based alternatives
- Accurate Cr(VI) Test Methods are needed to:
 - Distinguish trivalent chrome coating from hex chrome coating until the industry is fully switched over
 - Confirmation testing when switching to lower cost geography
 - Random teardown or validation testing

6

Current Challenges in Hexavalent Chromium Testing on Chromate Conversion Coating

Current Cr(VI) Testing Methodologies

ISO 3613 is the basis for many current methods

GMW 3034 (US auto); JIS 8625 (Japan); IEC CD ver. 2; ZVO-0102-QUA-02 and ZVO-0101-UV-05e (Germany)

- With various modifications to testing window and detection limits
- These methods are based on mass Cr(VI) per surface area (industry standard), not per coating weight – there are no easy ways to relate results back to the RoHS Pass/Fail limit of mass per coating weight
- Challenge #1: Measuring Coating Weight Accurately
 - Coating weight decrease with time due to dehydration
 - ISO 3892 result accuracy not certain, and also involves the use of sodium cyanide

Colored Chromate vs. Colorless Chromate

- Testing of Colored Chromate vs. Colorless Chromate
 - Testing <u>Colored Chromate</u> coating is usually not a problem enough Cr(VI) for boiling water extraction; but need to be careful with spot test since the color changes can be very subtle and misidentified as a negative test

 Testing for <u>Colorless Chromate</u> coating is a challenge! Sometimes, inconclusive results between methods are obtained

IEC Inter-laboratory Study

9

Sample	Spot Test	Water Extraction	XPS (% Cr(VI) /total Cr peak)	Total Cr by ICP ug/cm ²
HGS	+	+	25%	29.64
НАА	+	+	30%	17.88
LGS	-	-	20%	8.23
LAA	-	-	24%	1.58

HGS = yellow CCC on galvanized steel LGS = Clear CCC on galvanized steel HGS = yellow CCC on Al alloy LGS = Clear CCC on Al alloy

XPS data obtained from a study conducted by HP

- Spot Test and Water Extraction indicate no Cr(VI) for LGS and LAA
- XPS results indicate there is Cr(VI) in LGS and LAA, perhaps in excess of the RoHS limit
- Since there is no easy way to relate these results to the RoHS "per coating weight" – how would we know for sure if LGS and LAA is indeed RoHS compliant??

Challenges in Developing Test Method for Colorless CCC

- Challenge #2: Measuring Cr(VI) Accurately
 - Cr(VI) level changes with time and storage conditions
 - Cr(III)/Cr(VI) conversion no appropriate metallic matrix standards or reference materials to ensure the method itself did not induce conversion
 - Matrix interference
 - Economical

Challenges in Developing Test Method for Colorless CCC

Potential Metallic Matrix Reference Materials by X-ray Absorption Spectroscopy (XAS)

Lytle et al. Corros. Sci. 1995; 37:349

collaboration between Boeing and Stanford Synchrotron Radiation Lab

Sample	Time (min)	Salt spray	Hex Cr frac		Edge jump		Surface (N, R)			Total (N, R)				
			Surface	Total	Surface	Total	N ₄	$R_{4}(\text{\AA})$	N ₆	$R_{\delta}(\dot{A})$	N4	R_{4} (Å)	No	$R_6(\dot{A})$
7075#1	1	No	0.22	0.24	0.36	0.49			_	_	_			_
7075#11	1	No	0.22	0.21	0.21	0.50	0.80	1.69	4.75	2.02	1.38	1.70	3.94	1.99
7075#6	1	No	0.21	0.22	0.26	0.51	1.42	1.69	3.88	1.98	_	-		_
7075#6	1	Yes	0.07	0.07	0.22	0.44	0.77	1.78	4.85	2.00				
7075#15	1	Ys	0.14	0.14	0.22	0.32				_				
7075#8	3	No	0.25	0.26	0.25	0.90			-	-	-			
7075#13	3	No	0.24	0.24	1.33	0.83	1.20	1.70	4.20	2.01	1.27	1.70	4.10	2.02
7075#3	3	Yes	0.24	0.26	1.27	0.88	1.45	1.67	3.83	1.97	1.52	1.69	3.73	1.98
2024#49	L	Yss	0.15	0.16	0.22	0.29	0.92	1.67	4.62	1.97	1.55	1.66	3.69	1.94
2024#P1-1	1	Ys	0.07	0.08	1.28	0.34	0.80	1.79	4.81	1.99				
2024#FT1-1	L	Ys	0.24	0.27	0.29	0.54	-			-				
2024#PM-1	L	Yes	0.20	0.20	0.24	0.35	-		_	_				_
2024#F1-1	1	Ye	0.25	0.27	· 0.27	0.40			_					
2024#4	3	No	0.22	0.24	0.26	0.42	1.40	1.72	3.89	2.00	1.04	1.68	4.45	2.01
2024#7	3	No	0.21	0.22	0.26	0.40	1.33	1.74	4.01	2.01	1.43	1.70	3.86	1.99
2024#10	3	No	0.21	0.24	0.28	0.39	-		-	-				
2024#6	3	Yes	0.18	0.19	0.24	0.37	1.03	1.87	4.46	2.03	1.32	1.70	4.02	1.98
2024#P3-1	3	Yes	0.16	0.20	0.27	0.83								

Time-immersion time in Alodine 1230S bath

Salt spray-exposure to standard salt spray (ASTM B117-90) for 168 h.

Hex Cr frac.-fraction of hexavalent Cr (±10%) determined using XANES.

Edge jump-relative amount of Cr present (±5%) for a given mode (electron yield or fluorescence).

Surface-top -700-1200 Å sampled using electron yield mode.

Total-Surface layer plus underlying bulk region to ~24 µm sampled using fluorescent yield mode. Note that Cr was present only in the Alodine layer.

10/06/2005

 N_4 , R_4 —coordination number (±25%) and bond length (±0.03 Å) of Cr in four-fold site determined by EXAFS.

 N_6 , R_6 —coordination number (±25%) and bond length (±0.01 Å) of Cr in six-fold site determined by EXAFS.

ğ

muminum no

Potential Metallic Reference

- Once metallic matrix references are generated, they can be used to:
 - Evaluate methods and determine method detection limits
 - Spot Test and Water Extraction vs. XPS
 - Develop economical testing methods
 - Raman Spectroscopy Kikuchi *et al.* Analytical Sciences (Rapid Communications), March 2005, vol. 21

Conclusion

- There is a strong need in the US Electronic Industry to accurately and reliably determine RoHS compliancy in anti-corrosion protection coatings, from material qualification, random teardown test, to prevention of accidental "mix-ups"
- If EU can be persuaded to adopt the well established industry unit of "Cr(VI) mass per surface area" rather than per coating weight, it will eliminate the need to develop a new, accurate and environmental friendly method for coating weight determination. Eliminating the need for a coating weight test also means additional saving to the US industry!
- NIST and US Government support in developing a set of metallic matrix reference materials and validating existing methods are crucial to the US industry in terms of RoHS Hexavalent Chromium testing and compliancy
- X-ray Absorption Spectroscopy of various types of Chromate Conversion Coating may lead to a set of potential reference materials; thereby, enabling method evaluation and development of economical testing methods

IBM Team

Special Thanks to my colleagues

Tim Tofil Joe Kuczynski Dale Christensen