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1. INTRODUCTION

The capabilitics of using remote sensing data, and in particular multifrequen cy/multipolariza tion SAR data, like
AlI<SAR, for the retrieval of surface paramcters, depend considerably cm the specificity of each application. The
potentials, and limitations, of SAR data in ecological investigations arc well known. Because the chemistry is a
major component in such studies and because of the alinost lacking chemical information at the wavelengths of SAR
data, the capabilities of using SAR-derived information in such studics are considerably limited, However, in the
case of surface energy/watcx balance studies, the deterinination of the amount of water content, both in the soil and
in tbe plants, isamajor component in all modeling approaches.  As the information about water content is present in
the SAR signal, then the role of SAR data in studies where water content is to be determined becomes clearly
predominant.

Another situation where the role of SAR data becomes dominant over other remote sensing systems, is the case
of dense canopies. Because of thc penetration capabilities of miicrowave data, which is especially superior as
compared to optical data, information about the canopy as a whole and even the underlying soil is contained in the
SAR data, while only the top-canopy provides the information content in the case of optical data. in the case of
relatively densc canopics, ashas been demonstrated in this study, such different penetration capabilities provide very
different results in terms of the derived total canopy water content, for instance.

However, dthough ail such capabilities arc well known, unfortunately there arc also well known limitations.
Apart from calibration-relatcci aspects (that we will not consider in this study), anti spar-[ from other intrinsic
problems (like iiage noise, topographic corniections, etc. ) which also significantly affect thc derived results, we will
concentrate on the problem of extracting information from the data. Fven at this level, methods arc still not folly
well established, especially over vegetation-covered aress.

In this paper, an algorithm _is described which alows derivation of three fundamental parameters from SAR
«data: soil moisture, soil roughness and canopy water content, accounting for the effects of vegetation cover by using
optical (1 .andsat)data as auxiliary. Capabilities and limitations oOf the data and algorithms arc discussed, as well as
possibilities to use these data in erlergy/water balance modeling studies.

All the data used in this study were acquired as part of the Intensive Observation Period in June-July 1991
(Yuropean Multisensor Aircraft Campaign-91), as part of the Buropean Field Experiment in a Desertification-
threatened Area (EFHDA), aBuropean contribution to the gioba-change. research sponsored by the 1IGB P program
(Bolle ct al., 1993).

2, PARAMETERS WHICH ARE REQUIRED IN
SURFACKE ENERGY/WATER BALANCE STUDIES

Although the actual parameters which arc required insurtace energy/wziter balance studics depend very much
on the kind of modeling approach adopted in cach case, itisageneralagreement that accounting, for the amountot
waltctavailable, and changes in water content, bothi in thesotl and in the plants is aways a major component, nof
oniy for water balance but alsoforthe partitioning of available energy into latent and scnsible heat flux components.
However, the way in which each parameter enters into the model anti the ussuruptions made by each modelare
always conditioning the SO called 'sensitivity ' t0 such model paramicters.  For thisreason, accuracy requiremnents on
the retrievals of each parameter can nothe easily stated.

The model used in previous studics (Moreno et al., 1994), which was actually a derivation {from the Biosphere-
Atmosphere Transfer Scheme ([itVi'S (Dickinsonet a., 1993) with significant modifications anti additions, uscd a
total of about 70 parametcrs (many of them fixed to default values), from which about 15 are potentially derivable
from remote sensing data, anti about half of them directly from SAR data or by combination of SAR data with
optical data. Such parameters are: (top-)soil moisture, soii roughness, canopy watt'r content,l.eaf Area ludex,
vegetation height (displacement height), Stem Area Index-C anopy ‘roughness’ (or canopy geometry parameters), soil




albedo as a function of soil moisture (see Fig. 4), aswell as other parameters indirectly derived from image-
classification results. Other parameters (like surface temperature, cloudiness, etc.), are also used, but will notbe
discussed here.

Because of the complexity of intervening effects, no definite limits can be put a priori for the. accuracy
requirements over each parameter, and then no fixed limits are PUt over the capability to provide soil moisture or
other parameters from remote sensing data, partly because the use of this kind of data (spatial data) would also
require re-parameterization in the models (tile problem of handling spatially distributed data is another reason for the
difficulties in deriving clear conclusions from 1D-model sensitivity studies). As the fina desired goals (errors of
about 10 Wm'2 for the derived fluxes) arc still far from the actual capabilities (including gl’ ounci-based
metcorological networks), all we can do isto try to achieve tile maximum accuracy possible. Also, the present
situation is that the models (i0¢lyding 31> models) use very poor surface Parameterizati on pecause of the lack of any
additional data, so that any information which crrn be provided from remote sensing systems (with ail the involved
limitations) would dill be in any case very welcome.

3. CAPABILITIES OF SAR DATA TO PROVIDE THE REQUIRED PARAMETERS

The capabilities of SAR datato provide at least some of the parameters required by surface energy/water
balance models, espccially those related to water content, atc well known, and actual use of these data has heen
made in previous ficld experi ments (FIFE, EFEDA, HAPEX). The way in which this has been done is mainly
through model-inversion techniques. However, the kind of modelused (anti we actually do not have an appropriate
model for the behaviour of natural surfaces at the frequencies at which SAR data arc acquire(i), and the kind of
inversion technique used, become critical when retrieved numerical values arc to be compared to ground
measurements. As the SAR signal sensitivity to water content in the canopy, anti also in the soil, has been in any
casedemonstrated (1ingman, 1991), itis expected that this information will come outin the retrievals derived from
SAR data, at least in terms of relative values.

The use of full-polarimetry information for tile retrieval of soil/vegetation parameters has been demonstrated to
be an essential aspect as compared to the capabilities of single cilaJncl/single polarization systemns (like ERS-1/2).
Because of the ability of polarimetricinformation to separate different contributions, roughness/gecometry effects
anti water content information can be decoupled, and then [he corresponding values retrieved from the measured
data.

Apatt from the classical parameters derived from polatimetric information, information about canopy ro ughness
(mainly related to canopy height) can be aso derived from interferometric inforiation. However, because the
physical meaning of canopy roughness (which is aiso a recurrent function of wind speed) cannot be easily related to
such interferometric in formation, work in this field is still in its beginning. Phase information in standard
polarimetric data can also be related to canopy geometry, but the link between such estimates and the required
parameters (canopy height and displacementheight, canopy 'roughness’) is still at tbc level of empirical
relationships. The penctration capabilities of SAR data become here a difficulty, because it is the canopy height
which is expected to be given as input to the models. Howe ver, the actual canopy roughness is not simply related to
vegetation height, anti most probably the roughness 1 formation derived from the scatter-ing[ micchanism in SAR data
is more relevant for modeling purposes than the use of a fraction of the total canopy height as a roughness estimator,
asis currently being done in the models.

It is truc that ATRSAR data alone dill have limitations in this type of study because of the ambiguity in
scattering mechanisms in (dry) bare soil surfaces and in surfaces with small vegetation amount. The combination of
information derived from optical data (where the separability between soil anti vegetation behaviouyismore strict,
sce Fig. 3), with AIRSAR data, significantly improves the capabilities ol’the. retrievals of the required information.

Two main aspectsare inany case to be taken carefully into account. data nreprocessing aspects (becoming
critical for any posterior analysis of the data), and the kind of infotmation-extracti op technique used [0 derive the
required paramcters from the data. Both will he discussed inthe following sections.

4. DATA PRE-PROCESSING

In any study in which theoretical physically-based scaticiing models are to be inverted against measured data,
the calibration of such measured data br.collies critical. The reason is that the models are based on physical
coclficients which are supposed to be of universalapplicability. The way in which such parameters cote into the
model (usually through highly non-linear relationship) makes iinpossible the introduction of some kind of (lincar)
compensation for calibration deviations, so thatirremncdiabiy any calibration erior(including deviations in antenna
gain pattern correction for varying altitude/topography and any other related radiometric correction) produces
absolute crrors in the retricvals by using the theoretical model. For the data used in this study, calibration was done




according to standard techniques at JPI.. A total of four corner reflectors were deployed in the study arca during the
AIRSAR overflight, and their response was used to check calibrationin the data and to perform the proper
tori-cctions when needed.

The synthesized images were geometrically rectified to ground-range projection by using available ephemeris
data for the DC-8 aircraft navigation, while at the same time a~inlutb/range pixel sizes were compensated for to
make sguare the resulting pixels through cubic convolution. Iinally, the images were resampled by using about 50
ground control points in the common 10 m UTM grid, covering the 10x10 kin? area, to which all remote sensing
datawe.rcco-registered into the image database to make possible the use of multisensor/t nultitemporal studies. As
in the resulting geometrically corrected image, pixel numbering loses the information of the incidence angle, a new
image with the corresponding incidence angle for each new UTM pixel was also produced to facilitate. additional
processing. Although accurate Digital Elevation Models are available for the area, specially developed as part of the
EFEDA experiment, because the study arca considered here is completely flat (maximum height differences of less
than 20 m and almost constant slope over the full area), no topographic corrections have been applied,

5. MODEL INVERSION TECHNIQUES APPLIED TO MULTI-PARAMETER
’ RETRIEVAL FROM SAR DATA

The first approach that wc consider-cd in the derivation of surface parameters from SAR data was mere ly
empirical, based on correlation approaches between some “indices’ (hand and/or polarization combinations) and
measured surface parameters (1 .Al, biomass, canopy water content, etc). Different band ratios (mainly | ./C and P/1.)
and polarization ratios (H/VV,HH/HYV, VV/ETV) have been considered. Although not intended to be used for the
actual retrieval of surface parameters from the data, the establishment of empirical relationships alows apreliminary
estimation of the capabilities of the data to account for the observed variability (and (he determination of error
bounds which can bc expected anti used in the fitting of the 'merit function’ in the numerical inversion procedure) as
well as the derivation of simple relationships to be used in the initialization of the mnodel parameters in the iterative
inversion procedure used later for paramecters’ retrieval. Although the advantages of empirical relationships are well
known in terms of speed in calculations anti avoidance of convergence and other numerical problems, the use of
empirical relationships is absolutely limited by how well one can extrapolate from the results and the gencratity of
the algorithms. g'hen, evenif the usc ot empirical relationships could provide an optimumfit in our case where wc
have ground measurements Of all SLIT face parameters, the use Of such empirical methods has beenavoided and they
have been restricted to be auxiliary elements in the numerical model-inversion procedure.

‘I’he central par-t of this study is the development Of a model-inversion technique to extract the required
information from SARdata. The details of the method arc given elsewi~cre (Saatchiet a., 1993; Morenoet d.,
1 994; Moreno, 1995; Moreno and Saatchi, 1 996), anti oniy the main aspects will be described here.

For the contribution of bare soil, several modecls have been considered in this study. A model developed by
Dubois et al. (1994) was initially used (Saatchiet al., 1993). Another semi-empiiical model developed by Oh et ai.
(1 992) has hcen aiso used, The present implementation isanupdated version of the Ohetal.algorithm after more
recent improvements introduced by the same authors.  The results obtainad for’ bare soil moisture arc indeed in
agreement with the results obtained by other authors (Ocvelenct a., 1995) by using the Integral Eiquation Model
over the same dataset. AS amajor effort is put on the derivation of canopy parameters, because the modelis
intended to be used over agricultural aicas with significant Vegetation Cover for some fields, the parameterizatior of
the soil has 10 be kept to a minimum in order to make the imodelactually invertible.

For the derivation of canopy parameters, tile model has been implemented with @ layer of randomly distributed
scattering elenients over the underlying bare soil. Such alayer represents the vegetation contribution. Three types
of scatter ing mechanism arc then considered: volume scattering, surface-volume scattering anti soii sui face
scattering, 1he dircct scattering fromthe soil is also atten uated (twice) because of the presence of the canopy, and
such attenuation must be also included in the model. ‘["he surface-voiunJc scattering terins musr beintroduced
because of the type Of vegetation to he considered in this case, giving signiticant contributions only for the co-
polarized terms.  The backscattering coctficients fot the canopy are obtained by using the distorted Born
approximation (1 .ang and Sidhu, { 983). Finally, the model nceds to account for the amount of effects which arc duc
to the soil and those which are due lo vegetation inthe case where no dense vegetation is considered hut sparse
vegetation IS {anti is still assumed randomly distributed at the scale of apixel in order to avoid problems in the
modeling of very clumpy structures).

An 1mportant aspect (o be pointed out IS the necessity of working with the original channels separately in order
to minimize the problemis origin ated by the presence 0Of noise and in order to take full information from the data,
without reductions in the dimensions of the original in formation.  Mog[ of the empirical approaches work with
channel ratios. These channel ratios are supposed to somehow compensate for (deviations in calibration] and




secondary effects in the signg], but this is not absolutely true, and also these channel ratios actually enhance the
noise as compared to the noise present in each channel separately. The potential advantages of using channel ratios
do not compensate for the problems that the use of channel ratios introduces in the inversion procedure.

The method used for numerical inversion of the scatiering model is the downhill simplex method, with two
limiting conditions: maximum crror and maximumnumber Of iterations allowed Althoughless robust (and
especially more time consuming) than other techniques, this method has proven to be more resistant to noises and
inadequacies in the model to fit the data, providing aways a set of solution parameters for each pixelafter avoidance
of divergences.

6. RESULTS

Although the data used in this study correspond to only onc specific situation (which prevents us from deriving
general conclusions), and also the data is old as compared to thenew capabilitics added to the AIRSAR system in
the last few years (especidly in terms of data calibration), the conclusions derived from (his study are similar to
thosc previously derived in other {ield experiments: techniques are promising but stillnot fully ready for’ operational
application, at least for the purpose of encrgy/water balance monitoring.

In the case of soil moisture, because of the very high sensitivity of encr8y/water balance modelstothe
initialization of the soil moisture profile prior to temporal evolution calculations, the values retricved from SAR data
are not very useful for this purpose. However, those values arc in good agreement with gro und observations. This is
especially significant over the study area used in this case, because itisavery dry arca(especially insutnmer, when
the experiment was carried out) and it gtill seems that the SAR signal is sensitive enough to the top-soil moisture
content, provided that the effects of surface roughness variations are properly accounted for.

In the retrieval methods based on single channel-multiple polarization techniques wc have observed that in
many cases tile retrieved values of soii moisture at C bandare considerably higher that those at 1.band, anti thisis
independent of the kind of model inversion used. Because this is in contradiction with the expected behaviour
(taking also into account the measured profiles given in Table 1), we have developed a double-channel multiple-
polarization inversion technique (which is also actually necessary in order to account for vegetatione ffects in tile
retrievals). In the multiple-channel approach, the results are more consistent Also, the resulting surface roughness
terms arc more consistent when duai channcl methods arc applicd, especialy for the correlationlength. However,
the use of dual-channel approaches req uires that the maodel be applicable to both frequencices, anti this is not truc for
some roughness conditions. In any case, the uncertainty in the retrievals of soil moisture (at least over oLrr study
area) isabout 20-50% for the top-soil moisture content.

As part of the data collection for the field experiment, the soil group generated adetailed soii map of each pilot
area, including soil type, soil texture, soil depth and other information. Soil density anti hydrological propertics
were measured both in the field and in laboratory conditions, and specia experiments were carried out to test the
importance of spatial variability in such soii properties, even atdifferent spatial scales, fromthefieldlevel Lrp to a
network of 10x10km?(Bolle et a., 1993; Droogers etal.,1993; Ogink-Hendriks et al., 1995). However, if all this
information is used to calculate the dielectric constant of the soil for comparison with the retrievals derived by
model inversion from SAR data, we arc facing the problem of empirical relationships between soil moisture anti
diclectric constant (Hallikainen et al.,1985). Because of the large uncertainty in such relationships over varying
natural conditions in the ficld (also coupledto high variability in surface roughness as modcied by statistical
estimators based on rms heights and correlation lengths), absolute values of soil moisture must be regarded with
some high probability of 'systematic’ errors. However, relative values arc in any case comparable, out for that
purpose an independent account for variability in intrinsic Soii porperties (texture, density, efC. ) is needed, and thisis
something which is rarely available. Even when such information is available for pilotarcas (as in the case of the
EFFEDA experiment), the way in which such information can be used in conjunction with SAR data rernains unclear
because of the problems of spatialscaling and scale compatibility.

In the case of canopy water content (see tig. 2), the results arc very sensitive to the geometric characterization
of the canopy and [he soil, The retricved values (see for instance Fig. 2) are quite reasonable, especially taking into
acco unt that no ground data arc used for training the model but only theorelti cal scattering considerations. However,
the model was developed forthe case of corn canopies irr particular, anti, in the present version of the. algorithins,
extrapolation to a full image req uires some pre-classification of the scene in order to account for scattering
mechanisms in a different way over different vegetation types. Work in progress is trying to eliminate this
dependence by introducing additional parameters accounting for canopy geometry effects, but it scems that such
geometrical effects can only be accounted for by means of multiple data taken with di fferent incidence angl es.
Otherwise, separation 0f ‘geometric effects from actual canopy water content will never be possible for absolute-
value retrievals.




The modeling of soil roughness underlying the canopy has been demonstrated in this study to have also a major
importance. An underestimation of soil roughness results in an overestimation of canopy water content.

The first trials to get information from SAR data alone resulted in difficulties in the interpretation of the
retricved values in the case of partialy covered pixels. Because the soil/vegetation algorithms used in combination
worked only over bare soil areas or over dense (homogeneous) vegetated areas, the cases where separation between
both extremc cases was not quite obvious give wrong contributions for soil moisture and/or canopy water content.
The introduction of 1.andsat ‘I'M data (sec Fig. 1 ) as auxiliary information, and the use of just the fractional
vegetation cover from optical data (instead of other parameters which could be aso derived from | .andsat data) give
asaTtSylt asignificant increase in the capabilities of the application of the agorithm (in terms of reduction of the
number of iterations needed and avoidance of cases with no convergence as always forcing a linear solution).
However, because of the difficulties in modelling partially vegetation-covered soils, the results are still questionable
insuch cases.

7. CONCLUSIONS

A key point in the results is the necessity of some spatial homogenization of the original data prior to any
information-extraction technique peing applied, especially in the cases where niocici-inversion techniques are used.
Multilooking techniques (spatial average) have been demonstrated to be not enough for the purpose of deriving
consistent moisture ficlds from the data. It is necessary to reduce the spatial resolution to about 100 m to get
consistent fields over homogeneous areas, but, as the spatial resolution decreases, more difficulties are added in the
inversion technique to get convergence over heterogencous areas. Actually, as spatid resolution is decreased, the
noise level is reduced, but some information is lost. However, tile main impact of reducing spatialresolution is
increasing the within-pixel heterogencity and decreasing betwee y_pixel variance. The result is that over
heterogencous pixels the model cannot be inverted because no convergence is possible or because the retrieved
values are out of range for many of the resulting heterogenco us mixtures (lack of physical meaning (or the model).

Inorder to get reliable results it is necessary to work with the highcst possible spatial resolution but allow atwo-
way accounting for inter-pixel variability which 18 just due to noise: spatialfiltering anti multiresolution inversion
techniques. The combination 4f potly techniques i (he only realistic way 10 handle the problem ¢ spatial variability,
especially when one of the objectives is just to analyze the problem of spatial variability intte derived surface
values.

The capabilities to derive Soil moisture values which can be realistically used in surface energy/water- balance
studics seem tobc very limited, especially over dry areas, where no sensitivity to decp moisture content js present in
the SAR signa butwhere vegetation can take water from very deeplevels and stitiproduce a considerable,
contribution of latent heat flux in surface energy partitioning. According to ourresults (see Tables 2 and 3), an
uncertainty in soil moisture values between 20-50% is all we can get in the case of relatively dry areas. Note
however that in situ measurements in controlled conditions also give uncertaintics hetween  16%ar~ci40%(” 1'able 1),

in the same range as the variability in the different valucs derived from SAR data. Even when top-soil moisture can
be detected by SAR data, the use’of these data in energy/water balance monitoring is gj]] very limited i vegetated
areas, because of the predominant role of root-zone moisture, as well as in the case of bare soil, where other
mcchanism s are determining more srongly the dynamics of water in the soil. Whatever these limitations, the SAR-
derived top-soil moisture field canstillbe very useful to properly account for the variability of soil a bedo as a
function of soii moisture. In the case of soils with low aibedo, variations in soil albedo due to changes in soil
moisture can be upw 50% (Fig. 4). As the soil albedo has a major cffect on energy balance (actually controlling the
ammount of energy which is available at the surface), any improvementin surface albedo r¢ uicvals (inclu ding
temporal variability clue to soil moisture changes) would have a dramaticimpact in energy balance monitoring
through modehing techniq yes, provided that an observation gygtem, stable €1OUEH, could Provide routine updates of
systematic top-soil moisture changes.

Concerning canopy water-contcn[, the res ults obtained from ATRSAR data seem to overestimate the measured
valucs of the ground according to tile model used in this case. Although there are several uncertaintics in the model
that could explain such differences (especialy those related to canopy geometry factors), it seems that the critical
aspect in the model isthe way in which soilscattering istreater.i. The overestimationin canopy waier content is then
mainly due. to an underestimation of the reughness of underlying soil. 1t is interesting, on the other hand, 1o compare
the results obtained from ATR SAR dala 10 those obtained from optical data (Landsat TM) (se¢ Fig. 2). Inthe case of
Landsat TM | afullmodel inversion technigue is also used. The model takes the reflectance values measured in the
siX (thermal channel 6 is excluded) I andsat channels (after radiometric calibration and atmospheric correction Of the
data). Then, an inversion technique IS applicd to fit the 6 measurements t0 give 6 surface parameters. One 0f the
surface paramcters used, and then retricved by the algorithm, is the canopy water content. The values of canopy
water content retrieved from Iandsat data represent @ strong underestimation Of the val ues measured on the ground.




The reason for that is the sensitivity of optical data only to thetop of the canopy (top leaves), so that a high
underestimation is always expected from such optical data, However, fractional vegetation cover values derived
from optical data are essential to guarantee proper iterpretat ion of SAR data over partially covered arcas or where
confusion between soil and vegetated areas can be presentin SAR data, as has been demonstrated in this study.
‘1'hen, optical-microwave synergy scems to be the only way to overcome the limitations of both optical and
microwave data in energy/water balance studies.
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‘I’able 1. Measurements of soil moisture over a reference bare soil field used for multiscnsor calibrations/intercomparisons
(located just at the center in Fig. 1 ¢), during the two AIRSAR overflights over [he study area Numbers correspond, respectively,

to the mean (of the N values available), standard deviation and relative error (%).
grid over thefield,

The N measurements coriespond to a spatial

Date Soil moisture Soil roughness
TDR (N= 29) Volumetric: G (cm) A (cm) —

19 June 91 () crust : 2,9 31.2 (40%)

" 5cm 3.540.8 (2.4%) o-5cm: 4.92. 0.9 (19%) 141 4.00

" 10cm 7.241.2 (17%) 5-1ocmn 10.9 4 1,8(16%)

" 30 cm 16.0 +3.5 (22%)

Gravimetric: (N= 24)

14July 91 (b) | O-5cm: 4.0+ 0.7 (17%)

(@) Droogersetal.,

1993; (b) Saatchiet al., 1993

‘1'able 2.Derived soil moisture values and roughness paramecters from AIRSAR data for the same reference bare soil where
simultaneous ground measurements are shown in ‘I'able 1.
Date Soil noi sture Soil roughness
1. band o (cm) A (cm) -~
19 June 91 3.9 0.19 3.6
14 July 91 71 0.27 3.1

Table 3. Comparisons of retrieval of soil moisture by using the samie AIRSAR data but applying three ditferent models for the
sawe reference bare soil area where simultaneous ground measurements arc shown in ‘1'able 1. Data shown correspond to model
inversion for 1. band (HH-VV and HH-VV-HV depending on the model used in each case).

Soil moisture
Ohetal, 1992 Fung et al., 1992 Duboisetal.,
11.2 5.6 6.8

Date

1994
19 June 91
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Fig. 1 Multiternporal AIRSAR data: (8) 19 June 1991(1 .-Hi), (b) 14 July 1991 ([,-11] 1), anti (c) !.andsat ‘I'M data
(derived vegetation fractional cover) for 14 July 1991, afler geometric registration of the iull dataset. The area
cor(L.spends to the Barrax test site, onc Of the pilot areas of the EEFEDA cxperiment in Spain.




BARRAX-BM1 field/ 14 July 1991
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iig. 2 Comparison of the retrievals of canopy water content from almost simultancous microwave (Al RSAR)and
optical (l.andsat “I’M) data. SAR data dlightly overestimate the total canopy water content in this case, but 1.andsat
data give a very low value as compared to ground measurements.
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Fig. 3 Backscattering coefficients (C-11V) as measured by AIRSAR plotted against NDVI values derived from
simultancous L.andsat TM data, for al the pilot fields used in the EFEDA™ 1 experiment (MAC-Europe campaign).
Optical dataallows a better separation of bare soil arrd vegetated surfaces for interpretation of SAR data.
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Surfacemoisture

Fig. 4 Bare soil albedo (spectral and angular integration) asafunction of top-soil moisture, according to the
parameterization used in the Biosphere- Atmosphere Transfer Scheme (IIA1'S) surface energy/water balance model
(numbers on labels indicate (he soil albedo corresponding to saturated conditions for each curv ¢).




