Update on same-side tagging for B_s -mixing

A. Rakitin Lancaster University

October 26, 2006 *B*-Meeting

http://www-d0.fnal.gov/~rakitin/d0_private/tex/2006.Oct.26.Bmtg/tr.pdf

Outline:

• Use **new unbiased** MC sample:

- $B_s \rightarrow \mu D_s, D_s \rightarrow \phi \pi, (x_s = 25)$ (10K events so far)

- Look at tracks in cone $\cos \alpha > 0.8$ around $\vec{p}(B_s)$ (for consistency with OST)
- Use one of the following for same-side tagging:
 - Charge of one track selected with some kinematic algorithm
 - Average charge of all tracks around $\vec{p}(B)$, like "jet-charge"
- Choose best same-side taggers
- Apply chosen SSTs and "Comb. OST" to MC (old and new) and data

Unbiased MC sample

New unbiased MC sample means:

- We generate $B_s \rightarrow$ everything (no user.dec file, d0_mess eff. 3.4×10^{-4})
- \bullet We select μ
- We select D_s
- We require $D_s \to \phi \pi$
- We require $\phi \to K^+ K^-$

As opposed to old one:

- $B_s \to \mu Ds$
- Nothing about $\overline{B_s}$
- Parent of μ^+ must be B_s
- Parent of μ^- must be $\overline{B_s}$
- $D_s \to \phi \pi$
- $\phi \to K^+ K^-$

One-track taggers:

The following taggers are used:

- $p_t^{
 m rel}$ and $p_L^{
 m rel}$ are \perp and || components of SST candidate's momentum $ar{p}$ w.r.t $ec{p}(B_sK)$
- $\Delta R \equiv \sqrt{\Delta \phi^2 + \Delta \eta^2}$ and angle α are taken between $\vec{p}(B_s)$ and $\vec{p}(K)$
- θ^* decay angle of B_sK -system, *i.e.* angle between directions of $\vec{p}(B_sK)$ and $\vec{p}(B_s)$ in reference frame of B_sK system
- A. Rakitin, Lancaster University, B-Meeting, October 26, 2006

Many-track taggers:

Using weigted-average charge of all the tracks around $\vec{p}(B_s)$

Thirty-one tagger used:

$$Q_{jet}(p_t,\kappa) = \frac{\sum q \cdot p_t^{\kappa}}{\sum p_t^{\kappa}}$$

$$Q_{jet}(p_t^{rel},\kappa) = \frac{\sum q \cdot (p_t^{rel})^{\kappa}}{\sum (p_t^{rel})^{\kappa}}$$

$$Q_{jet}(p_L^{rel},\kappa) = \frac{\sum q \cdot (p_L^{rel})^{\kappa}}{\sum (p_L^{rel})^{\kappa}}$$

- $\kappa = 0.0, 0.1, 0.2, ... 1.0$ - p_t^{rel} and p_L^{rel} here are \perp and || components of SST candidate's momentum $\vec{p}(K)$ w.r.t $\vec{p}(B_s)$

Obtaining true dilution in MC

For each tagger we measure numbers of events in which:

- tag charge corresponds to true B_d -flavor at production ("Right Tag")
- tag charge is opposite to true B_d -flavor at production ("Wrong Tag")
- no tag was found ("No Tag")

Mistag rate $p = \frac{N_{WT}}{N_{RT} + N_{WT}}$

True dilution $D = 1 - 2p = \frac{N_{RT} - N_{WT}}{N_{RT} + N_{WT}}$

True dilutions in MC - one-track taggers

Tagger	RT	WT	NT	arepsilon,%	D,%	$\varepsilon D^{2}, \%$
Min. p_t^{rel}	4273 ± 65	3584 ± 60	3211 ± 57	71.0 ± 0.4	8.8 ± 1.1	0.546 ± 0.130
Max. p_L^{rel}	4168 ± 65	3689 ± 61	3211 ± 57	71.0 ± 0.4	6.1 ± 1.1	0.264 ± 0.093
Max. p_t	4155 \pm 64	3702 ± 61	3211 ± 57	71.0 ± 0.4	5.8 ± 1.1	0.236 ± 0.088
Min. ΔR	4298 ± 66	3559 ± 60	3211 ± 57	71.0 ± 0.4	9.4 ± 1.1	0.628 ± 0.139
Max. $\cos lpha$	4276 \pm 65	3581 ± 60	3211 ± 57	71.0 ± 0.4	8.8 ± 1.1	0.555 ± 0.131
Min. $ \Delta \vec{P} $	4197 \pm 65	3660 ± 60	3211 ± 57	71.0 ± 0.4	6.8 ± 1.1	0.332 ± 0.103
Min. $m(B_sK)$	4302 ± 66	3555 ± 60	3211 ± 57	71.0 ± 0.4	9.5 ± 1.1	0.642 ± 0.140
Min. $\cos \theta^*$	4220 ± 65	3637 ± 60	3211 ± 57	71.0 ± 0.4	7.4 ± 1.1	0.391 ± 0.111
Max. $\cos \theta^*$	4129 ± 64	3728 ± 61	3211 ± 57	71.0 ± 0.4	5.1 ± 1.1	0.185 ± 0.078
Random track	4129 ± 64	3728 ± 61	3211 ± 57	71.0 ± 0.4	5.1 ± 1.1	0.185 ± 0.078

True dilutions for many-track taggers

Weighted with p_t :

Horizontal line within errors

True dilutions for many-track taggers

Weighted with p_t^{rel} :

True dilutions for many-track taggers

Weighted with p_L^{rel} :

Horizontal line within errors

Best many-track tagger

- The best tagger is $Q_{jet}(p_t,\kappa=0.6)$ for consistency with OST
- We will use this tagger only, skipping the remaining 30

Measuring SST dilution in data:

- Divide sample of N events into five subsamples:
 - N_1 events tagged only by first tagger with *true* dilution D_1
 - N_2 events tagged only by second tagger with *true* dilution D_2
 - N_{12} events tagged by both taggers identically with *true* dilution $D_{12} = \frac{D_1 + D_2}{1 + D_1 D_2}$
 - \bar{N}_{12} events tagged by both taggers differently with *true* dilution $\bar{D}_{12} = \frac{|D_1 D_2|}{1 D_1 D_2}$
 - N_{NT} events not tagged by both taggers
- A simple formula holds: $D_1D_2 = \frac{N_{12} \bar{N}_{12}}{N_{12} + \bar{N}_{12}}$
- Use one (more trustworthy) *true* dilution from other sources and measure another (D0 Note 4991: $D_{OST} = 44.3 \pm 2.2$)
- Calculate $\epsilon D^2 = \frac{1}{N} (N_1 \mathsf{D}_1^2 + N_2 \mathsf{D}_2^2 + N_{12} \mathsf{D}_{12}^2 + \bar{N}_{12} \bar{\mathsf{D}}_{12}^2)$

But first let's demonstrate that this technique works in MC

"Min. ΔR " SST + Comb. OST

	SST-only	OST-only	SS	ST	SST + OST		
			with OST	w/o OST			
N_{RT}	4298±66	1733±42	918±30	3380±58	3380±58	554±24	
N_{WT}	$3559{\pm}60$	718 ± 27	782 ± 28	2777 ± 53	2777±53	$197{\pm}14$	
N_{NT}	3211 ± 57	8617 ± 93	751 ± 27	2460 ± 50	2460	D±50	
arepsilon,%	$71.0 {\pm} 0.4$	22.1 ± 0.4	69.4±0.9	$71.5 {\pm} 0.5$		_	
D,%	9.4±1.1	41.4 ±1.8	8.0±2.4	9.8±1.3	9.8±1.3	47.5±3.2	
N_{12}^{RT}	—	_	_	_	643	±25	
N_{12}^{WT}	-	-	-	-	246	± 16	
D_{12}^{meas}	-	-	–	-	44.7	±3.0	
D_{12}^{calc}	-	-	-	_	48.9	± 1.9	
\bar{N}_{12}^{RT}	-	_	-	-	536	±23	
$ar{N}_{12}^{WT}$	-	-	–	-	275	± 17	
$ar{D}_{12}^{meas}$	-	-	-	-	32.2	±3.3	
$ar{D}_{12}^{calc}$	-	-	-	-	33.3	±2.2	
$\varepsilon D^2(meas),\%$	$0.628 {\pm} 0.139$	3.798±0.279	$0.444 {\pm} 0.251$	$0.685 {\pm} 0.163$	3.253	±0.304	
$arepsilon D^2(calc),\%$	-	_	_	-	3.920	±0.500	
N_{12}	—	—	—	—	889	±30	
\bar{N}_{12}	-	—	-	-	811	±28	
$rac{N_{12} - ar{N}_{12}}{N_{12} + ar{N}_{12}}$	_	_	-	-	0.046	±0.024	
$D_{SST} \cdot D_{OST}$	-	_	–	-	0.039	±0.005	
Diff.	-	_	_	-	0.007 ± 0.0)25 (0.3 σ)	

A. Rakitin, Lancaster University, B-Meeting, October 26, 2006

" $Q_{jet}(p_t, \kappa = 0.6)$ " SST + Comb. OST

	SST-only	OST-only	SS	ST	SST -	+ OST
			with OST	w/o OST		
N_{RT}	$4754{\pm}69$	1733±42	1051 ± 32	3703±61	3703±61	359±19
N_{WT}	$4164 {\pm} 65$	718 ± 27	913±30	3251 ± 57	3251 ± 57	128 ± 11
N_{NT}	$2150{\pm}46$	8617 ± 93	487±22	$1663 {\pm} 41$	1663	3±41
arepsilon,%	80.6±0.4	22.1 ± 0.4	$80.1 {\pm} 0.8$	80.7±0.4		_
D,%	6.6±1.1	41.4 ±1.8	7.0±2.3	6.5±1.2	6.5±1.2	47.4±4.0
N_{12}^{RT}	_	_	_	_	740	±27
N_{12}^{WT}	_	-	-	-	279	± 17
D_{12}^{meas}	_	-	-	-	45.2	±2.8
D_{12}^{calc}	_	-	-	-	46.7	± 1.9
\bar{N}_{12}^{RT}	_	-	-	-	634	± 25
$ar{N}_{12}^{WT}$		-	-	-	311	± 18
$ar{D}_{12}^{meas}$	_	-	-	-	34.2	±3.1
$ar{D}_{12}^{calc}$	_	_	_	-	35.8	± 2.1
$\varepsilon D^2(meas),\%$	$0.353 {\pm} 0.106$	3.798±0.279	$0.396 {\pm} 0.238$	$0.341 {\pm} 0.118$	3.335	±0.311
$arepsilon D^2(calc),\%$	_	_	_	_	3.785	±0.564
N_{12}	—	-	-	-	1019	9±32
\bar{N}_{12}	_	-	-	-	945	±31
$\frac{N_{12} - \bar{N}_{12}}{N_{12} + \bar{N}_{12}}$	_	_	-	_	0.038	±0.023
$D_{SST} \cdot D_{OST}$		-	-	-	0.027	±0.005
Diff.	- iversity B-Meeting		_	_	$0.010 {\pm} 0.0$)23 (0.4 σ)

A. Rakitin, Lancaster University, D-Meeting, October 20, 2000

"Min $m(B_sK)$ " SST + Comb. OST

	SST-only	OST-only	SS	ST	SST + OST		
			with OST	w/o OST			
N_{RT}	4302±66	1733±42	923±30	$3379 {\pm} 58$	3379±58	554±24	
N_{WT}	$3555{\pm}60$	718 ± 27	777±28	2778 ± 53	2778 ± 53	$197{\pm}14$	
N_{NT}	3211 ± 57	8617 ± 93	751 ± 27	$2460 {\pm} 50$	2460)±50	
arepsilon,%	$71.0 {\pm} 0.4$	22.1±0.4	69.4±0.9	$71.5 {\pm} 0.5$		_	
D,%	9.5±1.1	41.4 ±1.8	8.6±2.4	9.8±1.3	9.8±1.3	47.5±3.2	
N_{12}^{RT}	-	-	-	-	642	± 25	
N_{12}^{WT}	-	-	-	-	240	± 15	
D_{12}^{meas}	-	-	-	-	45.6	±3.0	
D_{12}^{calc}	-	-	-	-	49.0	± 1.9	
$ar{N}_{12}^{RT}$	-	_	-	-	537	±23	
$ar{N}_{12}^{WT}$	-	-	-	-	281	± 17	
$ar{D}_{12}^{meas}$	-	-	-	-	31.3	±3.3	
$ar{D}_{12}^{calc}$	-	-	-	-	33.2	±2.2	
$\varepsilon D^2(meas),\%$	$0.642 {\pm} 0.140$	3.798±0.279	$0.512 {\pm} 0.268$	$0.681{\pm}0.163$	3.264	±0.304	
$arepsilon D^2(calc),\%$	_	_	_	_	3.912	±0.499	
N_{12}	—	—	—	—	882	±30	
\bar{N}_{12}	-	—	-	-	818	±29	
$rac{N_{12} - ar{N}_{12}}{N_{12} + ar{N}_{12}}$	_	_	-	-	0.038	±0.024	
$D_{SST} \cdot D_{OST}$	-	-	-	-	0.039	±0.005	
A. Rakitin, Lancaster Ur	iversity, <i>B</i> -Meeting,	October 2 <u>6</u> , 2006	_	_	-0.002 ± 0.0)25 (-0.1 σ) $_{14}$	

	N_1	N_2	N_{NT}	N_{12}	\bar{N}_{12}	$\frac{N_{12} - N_{12}}{N_{12} + \bar{N}_{12}}$	D_{OST}	D_{SST}^{meas}	D_{12}^{calc}	\bar{D}_{12}^{calc}	$\varepsilon D^2(calc), \%$
Min. p_t^{rel}	18498±186	577±27	4865±82	1050±42	987±41	$0.031 {\pm} 0.029$	44.3 ± 2.2	6.9±6.5	49.7±5.3	38.6±6.0	2.339±0.701
Max. p_L^{rel}	$18498 {\pm} 186$	577±27	4865±82	1076±42	954±40	$0.060 {\pm} 0.029$	44.3 ± 2.2	$13.6 {\pm} 6.5$	54.6±5.0	32.7±6.4	3.381±1.294
Max. p_t	$18498 {\pm} 186$	577±27	4865±82	1063±42	968±40	0.047±0.029	44.3 ± 2.2	$10.6 {\pm} 6.5$	52.4±5.2	35.4±6.2	2.823±1.018
Min. $ \Delta \vec{P} $	$18498 {\pm} 186$	577±27	4865±82	1076±42	954±40	$0.060 {\pm} 0.029$	44.3 ± 2.2	$13.5 {\pm} 6.5$	$54.5 {\pm} 5.0$	32.8±6.4	3.358±1.284
Min. ΔR	$19403 {\pm} 191$	618±28	5115 ± 85	1103±43	1018±41	0.040 ± 0.028	44.3 ± 2.2	9.1±6.4	51.3±5.2	36.7±6.1	2.599±0.871
Max. $\cos \alpha$	$18498 {\pm} 186$	577±27	4865±82	1064 ± 42	963±40	$0.050 {\pm} 0.029$	44.3 ± 2.2	11.3 ± 6.5	$52.9 {\pm} 5.1$	34.8±6.3	2.939±1.085
Min. $\cos \theta^*$	$18498 {\pm} 186$	577±27	4865±82	1097±42	934±40	$0.080 {\pm} 0.029$	44.3 ± 2.2	18.1 ± 6.5	57.8±4.9	28.5±6.7	4.480±1.714
Max. $\cos \theta^*$	$18498 {\pm} 186$	577±27	4865±82	1017±42	$1016{\pm}41$	0.001 ± 0.029	44.3 ± 2.2	0.1±6.5	44.4±5.7	44.2±5.7	$1.972 {\pm} 0.285$
Min. $m(B_sK)$	$18498 {\pm} 186$	577±27	4865±82	1060 ± 42	976±41	$0.041 {\pm} 0.029$	44.3 ± 2.2	9.3±6.5	51.4 ± 5.2	$36.5 {\pm} 6.1$	2.627±0.901
Random	18498±186	577±27	4865±82	1063±42	970±40	0.046 ± 0.029	44.3 ± 2.2	10.3±6.5	52.3±5.2	35.6±6.2	2.788±1.001

	N_1	N_2	N_{NT}	N ₁₂	\bar{N}_{12}	$\frac{N_{12} - N_{12}}{N_{12} + \bar{N}_{12}}$	D_{OST}	D_{SST}^{meas}	D_{12}^{calc}	\bar{D}_{12}^{calc}	$\varepsilon D^2(calc), \%$
Aver. Q	$13893 {\pm} 159$	1066 ± 41	9484±128	$815 {\pm} 36$	725±34	$0.058 {\pm} 0.032$	44.3 ± 2.2	13.2±7.3	54.3±5.6	33.0±7.1	2.966 ± 1.066
$Q_{jet}(p_t,\kappa=0.1)$	$13391 {\pm} 155$	1140±43	9987±133	773±35	696±33	$0.053 {\pm} 0.033$	44.3 ± 2.2	11.9±7.4	53.4±5.7	34.2±7.1	2.752±0.943
$Q_{jet}(p_t,\kappa=0.2)$	$13330 {\pm} 155$	1143±43	10048±133	766±35	700±33	$0.045 {\pm} 0.033$	44.3 ± 2.2	10.2±7.4	52.1±5.8	35.7±7.0	2.539±0.814
$Q_{jet}(p_t,\kappa=0.3)$	$13371 {\pm} 155$	1138±43	10007±133	776±36	696±33	$0.055 {\pm} 0.033$	44.3 ± 2.2	12.4±7.4	53.7±5.7	33.8±7.1	2.814±0.979
$Q_{jet}(p_t,\kappa=0.4)$	$13492 {\pm} 156$	1128±42	9889±132	788±36	689±33	$0.067 {\pm} 0.033$	44.3 ± 2.2	15.2 ± 7.5	55.8±5.6	31.2±7.3	3.255±1.203
$Q_{jet}(p_t,\kappa=0.5)$	$13649 {\pm} 157$	1094±42	9733±130	799±36	710±33	$0.059 {\pm} 0.032$	44.3 ± 2.2	13.3±7.4	54.4±5.6	33.0±7.1	2.956 ± 1.055
$Q_{jet}(p_t,\kappa=0.6)$	$13932 {\pm} 159$	1071±41	9448±128	810±36	719±34	$0.059 {\pm} 0.032$	44.3 ± 2.2	13.4±7.3	54.4±5.6	32.9±7.1	2.992±1.081
$Q_{jet}(p_t,\kappa=0.7)$	$14150{\pm}160$	1038±40	9230±127	829±37	734±35	$0.061 {\pm} 0.032$	44.3 ± 2.2	13.7±7.3	54.7±5.6	32.5±7.1	3.068±1.124
$Q_{jet}(p_t,\kappa=0.8)$	$14387 {\pm} 162$	997±39	8996±125	860±37	744±35	$0.073 {\pm} 0.032$	44.3 ± 2.2	16.4±7.2	56.6 ± 5.4	30.1±7.2	3.556±1.332
$Q_{jet}(p_t,\kappa=0.9)$	$14628 {\pm} 163$	983±39	8754±123	875±38	749±35	0.078±0.032	44.3 ± 2.2	17.6±7.2	57.4±5.3	28.9±7.2	3.845±1.449
$Q_{jet}(p_t,\kappa=1.0)$	14813±164	971±39	8568±121	884±38	755±35	0.079 ± 0.032	44.3 ± 2.2	17.7±7.2	57.5±5.3	28.8±7.2	3.892±1.471

	N_1	N_2	N_{NT}	N ₁₂	\bar{N}_{12}	$\frac{N_{12} - N_{12}}{N_{12} + \bar{N}_{12}}$	D_{OST}	D_{SST}^{meas}	D_{12}^{calc}	\bar{D}_{12}^{calc}	$\varepsilon D^2(calc), \%$
$Q_{jet}(p_t^{rel}, 0.1)$	13407±155	1134±43	9971±133	778±35	696±33	$0.056 {\pm} 0.033$	44.3 ± 2.2	12.6±7.4	53.9±5.7	33.5±7.1	$2.852 {\pm} 0.999$
$Q_{jet}(p_t^{rel}, 0.2)$	13471±156	1115±42	9908±132	784±36	705±33	$0.053 {\pm} 0.033$	44.3 ± 2.2	12.0±7.4	53.5±5.7	34.1±7.1	2.768±0.954
$Q_{jet}(p_t^{rel}, 0.3)$	13701 ± 157	1087±42	9680±130	810±36	707±33	$0.068 {\pm} 0.032$	44.3 ± 2.2	15.3±7.4	$55.8 {\pm} 5.5$	31.1±7.2	3.292±1.212
$Q_{jet}(p_t^{rel}, 0.4)$	$14030 {\pm} 159$	1047±41	9354±128	836±37	722±34	$0.073 {\pm} 0.032$	44.3 ± 2.2	16.5±7.3	56.7±5.4	29.9±7.3	3.552 ± 1.333
$Q_{jet}(p_t^{rel}, 0.5)$	$14282 {\pm} 161$	1002±40	9100±126	860±37	750±35	$0.068 {\pm} 0.032$	44.3 ± 2.2	15.3±7.2	55.8±5.4	31.1±7.1	3.357±1.237
$Q_{jet}(p_t^{rel}, 0.6)$	$14554{\pm}162$	1003±40	8828±124	864±37	742±35	$0.076 {\pm} 0.032$	44.3 ± 2.2	17.1±7.2	57.1±5.4	29.4±7.3	3.727±1.412
$Q_{jet}(p_t^{rel}, 0.7)$	$14781 {\pm} 164$	964±39	8602±122	881±38	762 ± 35	$0.073 {\pm} 0.031$	44.3 ± 2.2	16.4±7.1	56.6 ± 5.3	30.1±7.1	3.608±1.358
$Q_{jet}(p_t^{rel}, 0.8)$	$15016 {\pm} 165$	932±38	8366±120	900±38	773±36	$0.076 {\pm} 0.031$	44.3 ± 2.2	17.1±7.1	57.1±5.3	29.4±7.1	3.779±1.422
$Q_{jet}(p_t^{rel}, 0.9)$	$15275 {\pm} 167$	897±37	$8106 {\pm} 118$	915±38	794±36	$0.070 {\pm} 0.031$	44.3 ± 2.2	15.9±7.0	56.2±5.3	30.5±7.0	3.563±1.333
$Q_{jet}(p_t^{rel}, 1.0)$	15450 ± 168	869±36	7927±116	931±39	802±36	$0.074 {\pm} 0.031$	44.3 ± 2.2	16.8±7.0	56.9±5.2	29.7±7.0	3.765±1.416

κ

	N_1	N_2	N_{NT}	N ₁₂	\bar{N}_{12}	$\frac{N_{12} - N_{12}}{N_{12} + \bar{N}_{12}}$	D_{OST}	D_{SST}^{meas}	D_{12}^{calc}	\bar{D}_{12}^{calc}	$\varepsilon D^2(calc), \%$
$Q_{jet}(p_L^{rel}, 0.1)$	13391±155	1138±43	9987±133	776±35	697±33	$0.053 {\pm} 0.033$	44.3 ± 2.2	12.0±7.4	53.4±5.7	34.1±7.1	2.764±0.948
$Q_{jet}(p_L^{rel}, 0.2)$	13321±155	1141±43	10055±133	768±35	697±33	0.048±0.033	44.3 ± 2.2	10.8±7.4	52.6±5.8	35.1±7.0	2.615 ± 0.863
$Q_{jet}(p_L^{rel}, 0.3)$	$13376 {\pm} 155$	1130±43	10005±133	776±36	701±34	$0.051 {\pm} 0.033$	44.3 ± 2.2	11.5 ± 7.5	53.1±5.8	34.6±7.1	$2.696 {\pm} 0.919$
$Q_{jet}(p_L^{rel}, 0.4)$	13603±157	1106±42	9778±131	793±36	703±34	$0.060 {\pm} 0.033$	44.3 ± 2.2	13.5±7.5	54.6±5.7	32.7±7.2	2.991±1.087
$Q_{jet}(p_L^{rel}, 0.5)$	$13846 {\pm} 158$	1078±41	9533±129	804±36	713±34	$0.060 {\pm} 0.033$	44.3 ± 2.2	13.6±7.4	54.6±5.7	32.7±7.2	3.014±1.104
$Q_{jet}(p_L^{rel}, 0.6)$	$14069 {\pm} 160$	1051±41	9307±127	830±37	720±34	$0.071 {\pm} 0.032$	44.3 ± 2.2	16.0±7.3	56.3±5.5	30.5±7.3	3.450±1.298
$Q_{jet}(p_L^{rel}, 0.7)$	$14345 {\pm} 161$	1020±40	9032±125	847±37	734±35	$0.071 {\pm} 0.032$	44.3 ± 2.2	16.1±7.3	56.4±5.4	30.3±7.2	3.505±1.321
$Q_{jet}(p_L^{rel}, 0.8)$	$14595{\pm}163$	989±39	8780±123	861±37	749±35	$0.070 {\pm} 0.032$	44.3 ± 2.2	15.7±7.2	56.1±5.4	30.7±7.1	3.449±1.298
$Q_{jet}(p_L^{rel}, 0.9)$	$14838 {\pm} 164$	975±39	8535±121	872±38	753±35	$0.073 {\pm} 0.032$	44.3 ± 2.2	16.5±7.2	56.7±5.4	30.0±7.2	3.631±1.379
$Q_{jet}(p_L^{rel}, 1.0)$	15042±166	934±38	8331±120	893±38	775±36	0.071±0.031	44.3 ± 2.2	16.0±7.1	56.3±5.3	30.5±7.0	3.545±1.334

ĸ

Summary

- Investigated 44 different SST algorithms with new unbiased Monte Carlo samples
 - 10 one-track taggers
 - 3 two-track taggers
 - 31 many-track tagger
- Taggers in groups are correlated to each other
- Selected best taggers from each group:
 - "Min. ΔR "
 - " $Q_{jet}(p_t, \kappa = 0.6)$ "
- Used double-tagged events to measure SST dilution directly from data
 - Checked this technique on MC seems to be OK
 - Dilutions in new Monte Carlo are higher than in old one \Longrightarrow closer to the data