
Information Resource Engineering Inc.

1 of 1 Information Resource Engineering Inc.

CGX Cryptographic Module
Security Policy

version 1.24

last revision 24 March 2000

Information Resource Engineering, Inc.

This document may be reproduced only in its entirety, without revision.

Document Author: Jeremy Lapon

Information furnished in this document is preliminary. No responsibility is assumed by Information Resource Engineering for its use;

nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication
or otherwise under the patent rights of Information Resource Engineering, Inc

Information Resource Engineering Inc.

2 of 2 Information Resource Engineering Inc.

Table of Contents

A. Scope of Document ...3

APPLICATION LAYER ..3

CGX COMMAND INTERFACE LAYER ...3

CGX COMMAND PROCESSOR LAYER..4

CGX OVERLAY LAYER...4

CRYPTOLIB LAYER...5

B. Security Level..6

C. Roles and Services...7

Command Descriptions: ...9

D. Security Rules..13

E. Definition of Security Relevant Data Items...15

SYMMETRIC KEYS...15

G. Service to SRDI Access Operation ..16

H. List of Acronyms..17

Information Resource Engineering Inc.

3 of 3 Information Resource Engineering Inc.

A. Scope of Document
The IRE security software which is made available to applications running on a Windows 95, 98 or NT 4.0 platform, as
well as, the ADSP 2141 Safenet/DSP cryptographic processor, is designated the SafeNet CGX (CryptoGraphic
eXtensions) Kernel. (Running on the ADSP 2141 Safenet/DSP cryptographic processor is not included as part of this
FIPS 140-1 validation of the CGX software.) It is a suite of approximately 40 functions, which are available to
applications which require security services. To simplify application-level access to crypto functions an Application
Programming Interface (API) is provided to the CGX Kernel. The CGX Command Interface defines the boundaries
between the security functions (which the CGX Kernel implements) and the externally running applications. One of
the primary goals of the CGX software is to abstract the CGX Kernel from the application in a secure and efficient
manner. The CGX interface is designed so that it can be viewed as a Crypto Library with a C-structure like interface
with argument and pointer-passing. To make a CGX command call, a structure is populated with arguments and a call
is made to the CGX kernel, passing a pointer to the structure.

Figure 1 CGX Software Layers

The CGX software resides within the dashed line illustrated in Figure 1. The application uses the CGX Command
Interface as an API to access the CGX command set. To better understand the software architecture of the CGX
security software, a description of each layer is provided in the sub-sections below.

APPLICATION LAYER

The application layer is where the actual application program and data space resides. In order to access the
cryptographic services, the application must invoke the command interface and pass-in a command code and
arguments.
Residing, as part of the application layer are the macro functions, which IRE provides in its cgx.h file. These optional
macros assist the application in preparing the command messages prior to calling the CGX kernel.

CGX COMMAND INTERFACE LAYER

The CGX command interface layer is an Application Programming Interface (API) which defines the boundaries
between the application and the CGX Kernel. The CGX command interface provides the mechanism to enter and exit
the CGX Kernel to execute a specific cryptographic command.

Application Layer

CGX Command Interface (API)

CGX Command Processor

CGX Overlay

Crypto Library

‘Soft’ Crypto

CGX
Kernel

CGX Macros (cgx.h)

Cryptographic Boundary

Information Resource Engineering Inc.

4 of 4 Information Resource Engineering Inc.

The software interface to the CGX Kernel is via a pair of data structures called the kernel block and the command
block . The kernel block is a simple structure that specifies memory modes and provides a pointer to the command
block , allowing flexible placement in memory. It also contains a status element, which the application can read to
determine the result status of a requested cryptographic service. The command block is used to request a specific
cryptographic command and to provide a means to pass-in arguments.
Therefore, all communications between the application and CGX Kernel is via the command interface and a Kernel
block and command block .

CGX COMMAND PROCESSOR LAYER

The CGX Command Processor implements a secure Operating System responsible for processing application
requests for various cryptographic services. Once the CGX Kernel is active, it can process the requested
cryptographic function specified in the kernel block & command block defined as part of the CGX command
interface layer. The CGX Command Processor is responsible for maintaining the security of the internal cryptographic
software, key material, and associated security devices.

Like other operating systems, the CGX Command Processor is responsible for time-sharing the security resources. It
does this through preemption management and system integrity management.

Preemption Management: For certain CGX commands, the Command Processor can allow a new command to preempt
a running one. This feature is provided because it may be desirable to nest a 2nd CGX command on top of one already
running. However, if a preemptive request comes in and the CGX Kernel is not executing one of the preemptable
commands, the CGX Command Processor will return a CGX_BUSY_S status code and will not execute the command.

System Integrity Management: Lastly, the CGX Command Processor is responsible for monitoring the security
integrity of CGX. As part of initialization processing, the CGX Command Processor runs a suite of self-tests to verify
the health of the security components. The CGX Command Processor will not give control of the CGX Kernel to the
application until the self-test suite completes successfully. This level of control is only permitted for the CGX
Command Processor; thus preventing accidental or intentional access to areas of the security blocks not allowed.

CGX OVERLAY LAYER

The CGX overlay layer is provided as the interface into IRE’s CryptoLIB software. The CryptoLIB software is a
library that is designed for multiple platforms, ranging from the PC to embedded systems. The CGX overlay acts as
the ‘wrap code’ to enable the library to execute on any platform unmodified.

Figure 2 illustrates the data flow through the CGX overlay layer.

CGX Overlay

kernel
block

CGX
CryptoLIB
Operations

Information Resource Engineering Inc.

5 of 5 Information Resource Engineering Inc.

Figure 2

When a cryptographic request is received, the CGX Command Processor parses the kernel block to determine the
cryptographic command to execute. The CGX Command Processor executes a CGX overlay operation from a table,
based on the command value embedded in the command block portion of the kernel block . The CGX overlay
operation is responsible for extracting the arguments from the kernel block and invoking the proper CryptoLIB
operations. In some cases, the CGX overlay operation may invoke several CryptoLIB operations. In effect, this is an
object-oriented approach where the CGX overlay class is the parent class to the CryptoLIB classes.

CRYPTOLIB LAYER

The CryptoLIB layer contains IRE’s Crypto Library software as well as ‘soft’ versions of the hardware algorithms (the
soft versions are ifdef’ed out at compile time for the ADSP 2141 hardware cryptographic processor). The CryptoLIB
software is a library of many cryptographic classes implementing various cryptographic algorithms from symmetrical
encryption algorithms to one-way Hash functions, to public key operations.

The CryptoLIB API is transparent to whether it is running with hardware acceleration or utilizing the library’s
software crypto functions. This hides the implementation of the ADSP 2141 platform and allows full reuse of the
general CryptoLIB software. This provides several advantages including:

• The CryptoLIB software can be independently used in the PC environment

• The software only ‘C’ version of CryptoLIB can be used during development of products, which will use the
ADSP 2141. Enhancements and modifications to the CryptoLIB can be made and tested in the PC environment
before migrating them into the hardware of the ADSP 2141

Information Resource Engineering Inc.

6 of 6 Information Resource Engineering Inc.

B. Security Level
The cryptographic module meets the overall requirements applicable to Level 2 security of FIPS 140-1
when running on Windows NT 4.0. The module meets Level 1 when running on Windows 95/98 or
Windows NT configured for single user mode.

 Table 1. Module Security Level 2 Specification

 Security Requirements Section Level

Cryptographic Module 2

Module Interfaces 2

Roles and Services 2

Finite State Machine 2

Physical Security 2

Software Security 3

Operating System Security 2

Key Management 2

Cryptographic Algorithms 2

EMI/EMC 3

Self Test 4

 Table 2. Module Security Level1 Specification

 Security Requirements Section Level

Cryptographic Module 1

Module Interfaces 1

Roles and Services 1

Finite State Machine 1

Physical Security 1

Software Security 3

Operating System Security 1

Key Management 1

Cryptographic Algorithms 1

EMI/EMC 3

Self Test 4

Information Resource Engineering Inc.

7 of 7 Information Resource Engineering Inc.

C. Roles and Services
The CGX cryptographic module shall support two distinct operator roles. These operator roles are:

1. User Role
2. Cryptographic Officer Role

The CGX library running on Windows 95/98 does not incorporate either role-based authentication
or identity-based authentication. This is targeted for Level 1 security.

When running on Windows NT, the cryptographic module enforces role-based operator
authentication. Windows NT provides authenticated login, which it enforces on the operator.

Information Resource Engineering Inc.

8 of 8 Information Resource Engineering Inc.

The following table lists the CGX commands and their applicable roles.

CGX Command
Crypto Officer Role User Role

CGX_INIT X X
CGX_DEFAULT X X
CGX_RANDOM X X
CGX_GET_CHIPINFO X X
CGX_ZEROIZE_KEYS X X
CGX_SELF_TEST X X
 Symmetric Key Commands
CGX_UNCOVER_KEY X X
CGX_GEN_KEK X X
CGX_GEN_KEY X X
CGX_LOAD_KEY X X
CGX_DERIVE_KEY X X
CGX_TRANSFORM_KEY X X
CGX_EXPORT_KEY X X
CGX_IMPORT_KEY X X
CGX_DESTROY_KEY X X
CGX_LOAD_KG X X
CGX_ENCRYPT X X
CGX_DECRYPT X X
 Asymmetric Key Commands
CGX_GEN_PUBKEY X X
CGX_GEN_NEWPUBKEY X X
CGX_GEN_NEGKEY X X
CGX_PUBKEY_ENCRYPT X X
CGX_PUBKEY_DECRYPT X X
CGX_IMPORT_PUBKEY X X
CGX_EXPORT_PUBKEY X X
 Digital Signature Commands
CGX_SIGN X X
CGX_VERIFY X X
 Hash Commands
CGX_HASH_INIT X X
CGX_HASH_DATA X X
CGX_HASH_ENCRYPT X X
CGX_HASH_DECRYPT X X
 Prf Commands
CGX_PRF_DATA X X
CGX_PRF_KEY X X
CGX_MERGE_KEY X X
CGX_MERGE_LONG_KEY X X
CGX_LONG2BLACK X X
 Math Commands
CGX_MATH X X

Table 3

Information Resource Engineering Inc.

9 of 9 Information Resource Engineering Inc.

Command Descriptions:

CGX_INIT initializes the CGX Kernel and CryptIC hardware, runs a set of basic self-tests, and allows the caller to
configure two classes of configuration settings:

- Increase the default number of Key Cache Registers (from 15 up to 700)
- Specify various configuration parameters associated with the CGX Kernel (via the Kernel Configuration

String)

CGX_DEFAULT initializes the CGX Kernel and/or CryptIC hardware, and restores application-definable settings to
factory defaults. This command is typically used to reset any customized settings which may have previously been
selected using CGX_INIT.

CGX_RANDOM gets bytes of random data from the pseudo random number generator.

CGX_GET_CHIPINFO provides information about the secure kernel and the CryptIC, including the revision level of
the hardware and CGX firmware, the current settings of the Program Control Data Bits (PCDBs), and the chip’s serial
number.

CGX_ZEROIZE_KEYS is used to delete all of the KCRs including the LSV from KCR 0. Furthermore, it exits from the
CGX library .

CGX_SELF_TEST initializes and tests the CryptIC and the CGX kernel. The Self Test command restores the CGX
kernel to factory defaults upon completion. If the application has customized the CGX kernel using the KCS
CGX_INIT must be run again to restore application-definable settings.

CGX_GEN_KEK generates an internal key encryption key using the CGX’s pseudo random number generator and
places it into the specified Key Cache Register.

CGX_GEN_KEY generates a symmetrical key using the CGX’s pseudo random number generator and places it into
the specified Key Cache Register. Optionally, the newly generated key may be returned to the caller in a Black (DES
or TDES encrypted) form. The random key bits are transformed into the secret key form as directed by the type of
secret key specified in the argument interface.

CGX_DERIVE_KEY (non-FIPS compliant) allows a user secret key to be created from an application’s pass-phrase.
The secret key is derived by taking the one-way Hash of the application’s pass phrase and using the resulting
message digest as the secret key bits. The ‘raw’ message digest bits are transformed into the secret key form as
directed by the type of secret key specified (i.e. key_type) in the argument interface and placed into the specified Key
Cache Register.

CGX_TRANSFORM_KEY allows a user supplied black secret key into a hash digest to be used as a precompute in
the PRF functions or in an HMAC operation.

CGX_MERGE_KEY takes key material from two secret keys and combines the material to form a third secret key. The
key material in two input keys, key1 and key2, is combined in a caller-specified way. The possible combine
operations are concatenate, exclusive-or, and hash. The resulting material (or the leading bytes of the resulting
material, if the resulting material is more than needed to create the new key) becomes the key material for a new key.
Three or more input keys may be combined by merging the output of one merge_key operation with yet another input
key, and repeating this step as often as necessary.

CGX_UNCOVER_KEY decrypts the Black secretkey, bk, to a Red form and places it into the key cache register
(KCR) indicated by the input argument, destkey. A Black secret key is defined as a key stored in IRE internal format
(which has therefore been encrypted and authenticated with a keyed hash). This allows an application to securely
store Black secret keys outside of CGX for later use by the CGX kernel.

Information Resource Engineering Inc.

10 of 10 Information Resource Engineering Inc.

CGX_LOAD_KEY is used to load a plaintext user secret key into a specified Key Cache Register. The secret key to
be loaded is in the Red form. Depending on the value of the use argument, the key can be used as either a KEK or as
a DEK. This key is known as a user key to the CGX Kernel and can never be covered by the LSV (the CGX Kernel
does not allow it).

CGX_EXPORT_KEY allows the application to move an IRE internal secret key form into an External secret key form.
The External secret key form must be covered either with a secret key or public key, this is specified by the
application via the command arguments.

CGX_IMPORT_KEY allows the application to load and create an IRE internal secret key from an External secret key
form.

CGX_LOAD_KG is used to load a DES/Triple DES secret key into the hardware crypto-engine (i.e. KG or key
generator) or an RC5 key into the RC5 software key generator (supported in the software CGX kernel model only).
The typical use of this command is to fully optimize secret key traffic by pre-loading the traffic key in advance or for
loading a different DKEK into the DKEK register of the hardware crypto-engine. In FIPS mode, this service is not
valid for the software CGX module.

CGX_DESTROY_KEY command is used to remove a secret key from the specified key cache register.

CGX_ENCRYPT is used to perform the symmetrical encryption of plain-text data and return the cipher-text to the
application in the specified buffer.

CGX_DECRYPT is used to perform the symmetrical decryption of cipher-text data and returning the plain-text to the
application in the specified buffer.

CGX_HASH_INIT (Initialize Hash) is used to initialize a Hash context block (data structure type hash_cntxt.) The
command is used in preparation for a Hash function computation. After initialization, the Hash context block may
subsequently be used as a parameter to a sequence of one or more CGX operations, such as CGX_HASH_DATA,
which perform the Hash computation. At any given time, an application may have several separate independent hash
computations in various stages of completion. Each hash computation will have its own dedicated hash context; each
context contains the current state information of its corresponding Hash computation. The computation types
supported are SHA-1 and MD5 one way Hash algorithms. Both Hash algorithms have a limit of 264 – 1 bits
cumulative input data length. Upon completion of this operation, the hash context will contain a NULL value in the
digest member of the hash_cntxt object (since the hash isn’t ‘closed’). When the hash computation is completed and
the context is closed, the digest member will contain a valid hash digest: i.e., the result of the hash computation.

CGX_HASH_DATA (Hash Data) is used to calculate a Hash value over data supplied by the calling application. The
hash value is computed over a stream of data octets (8-bit data bytes) which optionally may begin with a key whose
octets are treated as data to be hashed (thus creating a ‘keyed hash’), then may include a virtually unlimited number
of non-key data octets and optionally concludes with a trailing key whose octets are also treated as data to be
hashed. If both leading and trailing data keys are included in the hashed data stream, they may be the same or
different. For security reasons, a key may not be inserted into the middle of the data being hashed.

CGX_HASH_ENCRYPT (Hash and Encrypt) is used to perform both a hash computation and a symmetrical
encryption of a data buffer. In a single call, the invoking application can encrypt a block of data and simultaneously
compute a hash function over the data block. The hash can be computed over the input data before encryption or
over the resulting data after encryption.

CGX_HASH_DECRYPT (Hash and Decrypt) operation is nearly identical to the CGX_HASH_ENCRYPT operation.
The essential difference is that this command uses the key referred to in the crypto context parameter to perform a
symmetric decryption, not an encryption. Typically, CGX_HASH_DECRYPT is used to decrypt a message and also
compute the message digest. This recovers the original plaintext and the message digest computed by a
CGX_HASH_ENCRYPT command. For this operation to be the logical inverse of a CGX_HASH_ENCRYPT
operation, all parameters to both operations should be logically equal, except the order parameter, which should be
reversed. (HASH-THEN-DECRYPT is the inverse of ENCRYPT-THEN-HASH.) Some variance is naturally permitted
within the term logically equal. For example, the keys must be equal, but can reside in different KCRs and the key

Information Resource Engineering Inc.

11 of 11 Information Resource Engineering Inc.

load options may, of course, vary. The message data input to HASH_DECRYPT must have been produced by
HASH_ENCRYPT, but the blocking into 64-bit–multiple segments may vary from that used in the encryption.

CGX_PRF_DATA hashes one, two or three data items, of different types, into the inner hash of an HMAC being
generated. The items (in the order they are processed) are:

- a secret key (specified by argument secretkey *bk)

- a g^xy DH shared key specified in argument publickey *gxypk
RED data (specified in argument (VPTR)*dptr of a specified number of bytes (bytecount.)

CGX_PRF_KEY can be used to complete the IPsec HMAC. Command arguments supply two open hash contexts
known as the inner hash context and the outer hash context, both of which are covered. (Additional arguments
supply the crypto contexts needed to uncover the hash contexts .) The command closes the inner hash context (its
internal copy of the inner hash context – the caller’s copy is not affected.) Then it hashes the digest of the inner
hash context into the outer hash context. Then it closes the outer hash context (its copy of the outer hash context)
and creates a secretkey of type specified by the caller from the outer hash digest and returns the key, covered, to the
caller. It also leaves the created key in a specified key cache register, ready to use for encryption.

CGX_MERGE_LONG_KEY is quite similar to the CGX_MERGE_KEY command. The essential difference is that the
output key created by CGX_MERGE_LONG_KEY is not a data encryption key; rather it is merely a long key that can
be used subsequently (for example by command CGX_EXTRACT_LONG) to create encryption keys. The output
data type of CGX_MERGE_LONG_KEY is a container, not a true key; it is perhaps misnamed as a longkey data type.
A variable of this type can hold up to 64 bytes of key information. Such a data type provides intermediate storage,
for example, for the 48 bytes resulting from concatenating two 24 byte keys, which then can be used (by
CGX_EXTRACT_LONG) to produce an encryption key from the middle 24 bytes of the concatenation. The
CGX_MERGE_LONG_KEY command takes key material from two keys and combines the material to form a new long
key. The first input key, key1, may be either an ordinary encryption key (type secretkey) or a longkey. The second
input key, key2, must be an ordinary encryption key. The key material in two input keys, key1 and key2, is combined
in a caller-specified way. The possible combine operations are concatenate, exclusive-or, or hash. The resulting
material becomes the key material for the new key. Three or more input keys may be combined by merging the output
of one merge_long_key operation with yet another input key. One caveat to be observed is that when the
concatenate operation is requested, the user must ensure that the sum of the two lengths of the input keys does not
exceed the 64-byte maximum length of a long key.

CGX_EXTRACT_LONG_KEY creates a secret key from key material supplied within a longkey.

CGX_GEN_PUBKEY will generate an entire public keyset comprised of the modulus, private, and public blocks.
This operation can create public keysets for several public key algorithms. This interface is over-loaded and
currently supports Diffie-Hellman, RSA, and DSA public keys. The returned keyset will consist of data stored in little
endian order.

CGX_GEN_NEWPUBKEY is used to generate new public and private blocks for a Diffie-Hellman or DSA public
keyset. This command is only valid for Diffie-Hellman or DSA public keysets. The command allows the flexibility to
import a public key block from the application and use it to generate the new private and public blocks. The
application has control over which parts to generate and return via the two control constants CGX_X_V (the private
part) and CGX_Y_V (the public part). Using combinations of these control masks allows the application with a
flexible key generation interface.

CGX_GEN_NEGKEY will complete the Diffie-Hellman exchange by deriving the shared key from the receiver’s public
key. CGX supports dynamically negotiated keys as specified in the X9.42 Standard. This command also supports
the generation of a g^xy key blob. The key blob can be used as a component to the creation of IPsec operations.
This command is only used for Diffie-Hellman public keysets.

Information Resource Engineering Inc.

12 of 12 Information Resource Engineering Inc.

CGX_EXPORT_PUBKEY allows the application to move an IRE public keyset form into an external public key form.
The external form must be covered with a KEK, this is specified by the application via the command arguments.

CGX_IMPORT_PUBKEY allows the application to move an external public key back into CGX in the IRE public
keyset form. The external form must be covered either with a secret key or public key, this is specified by the
application via the command arguments.

CGX_PUBKEY_ENCRYPT is used to encrypt the application’s data using the RSA encryption algorithms. This
operation also may be used to perform RSA signature verification using the public key component of a public keyset.

CGX_PUBKEY_DECRYPT is used to decrypt the application’s data using the RSA encryption algorithms. This
operation also may be used to perform RSA signing using the private key of a public keyset.

CGX_SIGN command is used to sign the application’s message or message digest using the DSA digital signature
algorithm.

CGX_VERIFY is used to verify the signature of the application’s message using the DSA public key algorithm.

CGX_MATH is a set of cgx commands that perform various mathematical functions.

Information Resource Engineering Inc.

13 of 13 Information Resource Engineering Inc.

D. Security Rules
 This section documents the security rules enforced by the cryptographic module to implement
the security requirements for both the FIPS 140-1 Level 1 and Level 2 module except as noted.

1. The cryptographic module shall provide two distinct operator roles. These are the User Role, and the
Cryptographic Officer Role.

2. (Level 1 only) When the cryptographic module is installed on Windows NT, the operating system shall be
configured for single user mode.

3. (Level 2 only) The cryptographic Module shall provide role-based authentication via the Windows NT
4.0 authenticated login process as tested on a Compaq Deskpro 6400. Windows NT 4.0 on a Compaq
Deskpro 6400 is C2 equivalent tested under ITSEC.

4. When the module has not been properly initialized, the operator shall not have access to any
cryptographic services and CGX will remain in the Not Loaded Sate.

5. Upon the application of power or when commanded by the operator, the cryptographic module shall
perform the following tests:

a) PRAM Test
b) Pseudo Random Number Generator Statistical Test
c) DES Encryption/Decryption Algorithm Known Answer Test
d) Public Key Encryption Algorithm Key Pair Test
e) SHA-1 Algorithm Known Answer Test
f) DSA Algorithm Known Answer Test
g) Diffe-Helman Known Answer Test
h) RSA Known Answer Test
i) Triple DES Encryption/Decryption Algorithm Known Answer Test

6. At any time the module is in an idle state, the operator shall be capable of commanding the module to
perform the power-up self test.

7. CGX utilizes the following cryptographic and hashing algorithms:

Symmetrical
DES FIPS 81 and FIPS 46-3

 Electronic Code Book (ECB)
Cipher Block Chaining (CBC)
64-bit Output Feedback (OFB)
64-bit Cipher Feedback (CFB)

 TDES FIPS 46-3
 Electronic Code Book (ECB)

Cipher Block Chaining (CBC)
64-bit Output Feedback (OFB)
64-bit Cipher Feedback (CFB)

 RC5

Asymmetrical
 DSA FIPS 186-1
 RSA
 encrypt/decrypt
 signatures

Information Resource Engineering Inc.

14 of 14 Information Resource Engineering Inc.

 Diffie-Hellman

Oneway HASH
 MD2
 MD5
 SHA-1 FIPS 180-1
 RIPEMD-128
 RIPEMD-160

8. Prior to each use, the internal Random Number Generator shall be tested using the Conditional test
specified in FIPS 140-1 §4.11.2 paragraph 5.

9. The CGX cryptographic module must always be properly initialized prior to it being used. If an operator
attempts to execute a CGX command without first executing the CGX_Init command, then CGX will
automatically execute CXG_INIT on its own prior to processing the requested command.

10. Unencrypted (Red) keys can never be returned by CGX. All keys passed back to the caller are always
encrypted under a higher level KEK

11. Applications utilizing the CGX cryptographic module must conform to the requirements in FIPS 140-1. It
is the responsibility of the application not of the CGX cryptographic module to handle red key entry.

12. The CGX cryptographic module was written in a high level language.

13. (Level 2 only) The module shall reside in an opaque enclosure and shall be protected by tamper evident
seals. The tamper evident seals will be applied to the case interfaces. These seals have integral press type
adhesive, which is immediately effective and fully cures in less than 2 hours. It is the operator’s
responsibility to apply the labels and to verify their integrity while in use. Application of the tamper
evidence labels shall be performed by removing the seals from the carrier and applying it on a clean, dry
surface area. It is recommended that both the seals and the surface area temperature be relatively warm
(i.e. room temperature) during application. Contact IRE for acquisition information concerning the
tamper evidence seals.

The diagram below identifies the appropriate placement of seals at case interface locations:

Information Resource Engineering Inc.

15 of 15 Information Resource Engineering Inc.

E. Definition of Security Relevant Data Items

SYMMETRIC KEYS

a) Data Encryption Key (DEK): This is a DES or Triple-DES key used to encrypt user traffic.

b) Key Encryption Key (KEK): This is a DES or Triple-DES key used only to encrypt other keys.

c) Generator Key Encryption Key (GKEK): This is a special Triple-DES key used only to encrypt other
keys, and is itself protected by the Local Storage Variable (LSV).

d) Local Storage Variable (LSV): This is a unique Triple-DES key used as the root key to recover other
keys after a power outage. The LSV is always loaded into Key Cache Register #0. It cannot be
exported from CGX. The LSV is stored encrypted within the Windows Registry.

ASYMMETRIC KEYS

a) Public Key: This is the public component of an RSA, DSA or Diffie-Hellman key pair.

b) Private Key: This is the private component of an RSA, DSA or Diffie-Hellman key pair.

OTHER OBJECTS

a) Initialization Vector (IV): This is a 64 bit random number used to initialize the DES encryption algorithm.
Each algorithm is initialized with a unique IV, supplied by the application or from the PRNG, for each
message encrypted.

b) Kernel Configuration String (KCS): This is a configuration string that sets-up certain features of the
CGX kernel during the Initialization process. Two of the relevant configuration options are:

• Enable FIPS 140-1 compliant RNG. This parameter turns on the ANSI X9.17 randomizer which is
applied to the random number entropy source, the X9.17 seed key only resides in RAM, presented
to CGX. This feature must be enabled for the FIPS 140-1 compliant version of CGX.

•

c) Key Attribute Bits: This is a bit-mapped field which is attached to any key and specifies its Type and
Use. The key type specifies whether the key is a DEK, KEK, etc..

d) Key Cache Register (KCR): This is a volatile key storage house for a fixed number of secret keys. The
volatile key area is also referred to as the actively working keys. All cryptographic commands operate
only on the active volatile working keys.

Information Resource Engineering Inc.

16 of 16 Information Resource Engineering Inc.

G. Service to SRDI Access Operation

 SRDI

User Service

D
E

K

K
E

K

G
K

E
K

LS
V

P
ub

lic
K

ey
 P

ub
lic

C

om
po

ne
nt

P
ub

lic
K

ey
P

ri
va

te

C
om

po
ne

nt

IV

K
C

S

K
ey

A
tt

ri
bu

te
 B

its

K
C

R

CGX_INIT R R W
CGX_DEFAULT R R W
CGX_RANDOM
CGX_GET_CHIPINFO
CGX_ZEROIZE_KEYS D
CGX_SELF_TEST RW RW RW
 Symmetric Key Commands
CGX_UNCOVER_KEY RW RW RW RW RW RW
CGX_GEN_KEK RW R RW RW RW
CGX_GEN_KEY RW RW R RW RW RW
CGX_LOAD_KEY RW RW R RW RW RW
CGX_DERIVE_KEY RW RW R RW RW RW
CGX_TRANSFORM_KEY RW RW RW RW R
CGX_EXPORT_KEY M M RW R R
CGX_IMPORT_KEY M M RW W R
CGX_DESTROY_KEY D
CGX_LOAD_KG R R
CGX_ENCRYPT R RW R R
CGX_DECRYPT R RW R R
 Asymmetric Key Commands
CGX_GEN_PUBKEY R R W RW R R R
CGX_GEN_NEWPUBKEY R R W RW R R R
CGX_GEN_NEGKEY RW RW R R R R R
CGX_PUBKEY_ENCRYPT R R R R R R
CGX_PUBKEY_DECRYPT R R R R R R
CGX_IMPORT_PUBKEY R M R R R
CGX_EXPORT_PUBKEY R M R R R
 Digital Signature Commands
CGX_SIGN R R R RW R R
CGX_VERIFY R R R R R
 Hash Commands
CGX_HASH_INIT
CGX_HASH_DATA
CGX_HASH_ENCRYPT R RW R
CGX_HASH_DECRYPT R RW R
 Prf Commands
CGX_PRF_DATA R R R R RW R R
CGX_PRF_KEY RW RW R R RW R R
CGX_MERGE_KEY RW R R R R
CGX_MERGE_LONG_KEY RW R R R R
CGX_LONG2BLACK RW RW R R R
 Math Commands
CGX_MATH

R = Read W = Write M = Modify D = Delete

Table 4

Information Resource Engineering Inc.

17 of 17 Information Resource Engineering Inc.

H. List of Acronyms
Acronym Description

API Application Programming Interface
CGX CryptoGraphic eXtensions
DEK Data Encryption Key
DES Data Encryption Standard
D-H Diffie-Helman
DSA Digital Signature Algorithm
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
FIPS Federal Information Processing Standard
GKEK Generator Key Encryption Key
HMAC Hash Message Authentication Code
IPsec Internet Protocol Security
IRE Information Resources Engineering, Inc.
ITSEC Information Technology Security Evaluation Criteria
IV Initialization Vector
KCR Key Cache Register
KCS Kernel Configuration String
KEK Key Encryption Key
KG Key Generator
LSV Local Storage Variable
MD5 Message Digest 5
OS Operating System
PC Personal Computer
PCDB Program Control Data Bit
PRAM Program Random Access Memory
PRF Pseudo Random Function
PRNG PseudoRandom Number Generator
RAM Random Access Memory
RNG Random Number Generator
RSA Rivest Shamir Adleman
SHA-1 Secure Hash Algorithm

