Beyond PVM 3.4: What We’ve Learned,
What’s Next, and Why

G.A. Geist, J.A. Kohl, P.M. Papadopoulos, and S.L. Scott

Oak Ridge National Laboratory
Computer Science and Mathematics Division
Oak Ridge, TN, 37831-6367, USA

Abstract. This paper explores the foundations and philosophy that
have made PVM both effective and widespread: a simple system abstrac-
tion and API, transparent heterogeneity, and dynamic system configura-
tion. From a high-performance programming point of view, we examine
the features that make PVM useful and those that make hardware-level
performance difficult to achieve. The key conclusion from this analy-
sis is that PVM, MPI, and similar paradigms suffer from a monolithic
approach to the distributed computing problem. The approaches sim-
ply cannot meet the large range of service requirements for advanced
distributed computing environments. The notion of a Generalized Plug-
In Machine (GPM) is introduced that allows programs to exert better
control over their operating environment. This environment has the po-
tential to provide mechanisms for better performance, richer system dy-
namics, and fault-tolerance. Pluggable components, such as messaging
substrates, dynamically-attached debugging agents, or complete virtual
machines that can be joined together, form an operating environment
that can be customized on-the-fly. Generalizations of current PVM plug-
ins (resource managers, hosters, taskers) that lead to this next-generation
environment are discussed, and inherent challenges, such as eliminating
the master PVM daemon and providing the pluggable substrate, are ex-
amined.

1 Introduction

PVM is a successful research project that started with a simple idea: using
commodity networks, workstations can be managed together and programmed
as a single virtual resource. The basic PVM system has gone through three
major revisions, with each new release using fundamentally different internal
designs. There are indeed three key principles that have guided the design and
implementation: a simple API, transparent heterogeneity, and dynamic system
configuration. The simple API allows messaging, virtual machine control, task
control, event notification, event handlers, and a message mailbox all to be ac-
cessed and controlled using only about 60 user-level library routines. Transparent
heterogeneity makes it easy to construct programs that interoperate across dif-
ferent machine architectures, networks, programming languages, and operating
systems. Dynamics allow the virtual machine configuration to change and the

number of tasks that make up a parallel/distributed computation to grow and
shrink under program control. Proponents of PVM have exploited these features
and learned to live within the boundaries that the system provides. However,
these boundaries have often translated to limited messaging semantics and diffi-
culties in achieving peak performance on high-bandwidth networks. This paper
lays the groundwork for where we believe distributed computing should lead in
the long term: a dynamically configurable system that allows programs to define
their performance/feature tradeoffs to optimize and customize the environment.

We see a common theme in all popular distributed computing paradigms
including PVM: each mandates a particular programming style and builds a
monolithic operating environment into which user programs must “fit. 7 MPI-1,
for example, mandates an SPMD-style static process model with no job control.
This maximizes performance by minimizing dynamics and works very well in
static environments. Programs that fit into the MPI system are well served by
its speed and rich messaging semantics. PVM, on the other hand, allows pro-
grams to dynamically change the number of tasks and add or subtract resources.
However, programs in general pay a performance penalty for this flexibility. Even
though MPI and PVM provide very useful environments, some programs simply
are not able to find the right mix of tools or are paying for unwanted function-
ality. Here, the monolithic approach breaks down and a more flexible pluggable
substrate is needed. This idea is certainly not a unique and has been successfully
applied in other areas — the Mach operating system is built on the microkernel
approach, Linux has pluggable modules to extend functionality, and Horus uses
a “Lego Block” analogy to build custom network protocols. By extending and
generalizing these ideas to parallel /distributed computing, programs will be able
to customize their operating environment to achieve their own custom perfor-
mance/functionality tradeoffs.

PVM and MPI both exhibit desirable features and APIs that should and
will transfer to the next generation. Our next generation environment will focus
on distributed resources and methods to bring better control and performance
to programs, rather than attempting to rewrite messaging semantics. However,
a significant new class of applications will be enabled if the runtime system is
logically decoupled from the semantics of the user interface and new dynamic in-
teractions are defined. The challenge is to implement a pluggable substrate that
is simultaneously efficient, dynamic, and robust. The next generation environ-
ment will support virtual machines that can roam across networks to attach and
detach resources as program requirements change. We see this as a fundamental
enabling technology for completely new classes of applications. PVM already
defines three plug-in interfaces that enable tasks to modify default policies and
mechanisms: starting hosts, starting tasks, or managing resources. However, if
the programmer wants to change the underlying message substrate, needs mes-
sage encryption, or requires different event notification properties, a truly Her-
culean effort is required to modify the PVM runtime system. In addition, if two
virtual machines are separately instantiated, they can never be merged together
(or a single machine split into two). This paper explores the concept of plug-

gability at three layers — low level messaging, mid-level resource and analysis
tools, and high-level control of the virtual machine that encompasses merging,
splitting, and migration.

This paper will reflect upon the properties of PVM 3.4 in relation to these
three levels, how these have influenced the internal design design of PVM, and
how they provide a stepping stone to a more dynamic, pluggable environment.

2 The Basic PVM Design Assumptions

PVM was designed for heterogeneous interoperation across TCP/IP networks.
One should refer to [1] for complete details of the protocols and inner workings
of PVM 3.x. The API has three classes of functions: messaging, task control,
and machine control.

2.1 Messaging Assumptions and their Relation to Internal Design

The fundamental messaging unit internal to PVM is a message fragment, with
a user-level message being made up of one or more fragments. Fragments are
usually compatible with the TCP/UDP limits set at run time, but may take
on any length. The default operational mode (which guarantees interoperabil-
ity across machines) requires a task first to completely fragment the message
using pvm_pack before sending the message to its destination. This serialization
(fragmentation of an entire message followed by a send) introduces a message
copy, increases latency, and decreases bandwidth. Different message semantics,
like those found in MPI, allow the underlying system to pipeline the pack and
send operations so that long messages may overlap the sending of one fragment
with the packing of a subsequent one. Packing does allow translation of the data
to its XDR format, a costly but often necessary step. It also provides a means to
conglomerate many smaller data chunks into a single buffer for network transfer
(which greatly improves efficiency on traditional networks). The internal design
of PVM reflects these pack/send semantics and makes it quite challenging to
retrofit the code to use pipelining and other performance improvements. PVM
messaging also assumes synchronous messaging — a data buffer can be re-used
as soon as pvm send returns. Similar to packing, the internal implementation
makes asynchronous messages (or post/test-for-completion operations) difficult
to include. The current PVM API has influenced the internal design to the point
where it is difficult to map other semantics efficiently on top of the existing sys-
tem. The lesson learned here is that the semantics of a particular messaging style
(ala’> PVM or MPI) must be decoupled from the low-level infrastructure. This
does not imply that the PVM (or MPI) interface should be thrown away, but
rather the internal implementation needs to be more flexible to handle a wide va-
riety communication semantics like: one-sided operations (puts and gets), asyn-
chronous messaging, encryption (per message or per link), streams (for video
and audio), quality of service links, and linked streams.

2.2 Plug in Communication Modules

As distributed computing has developed, it has become clear that no one mono-
lithic system can handle efficiently all the desired communication styles. Exten-
sibility of a core system is essential to achieve critical performance and gives
a practical method to manage multiple communication styles. Because messag-
ing is extremely important to system performance and evaluation, the lowest
layers must be able to be swapped out for different scenarios. For example,
send/receive message passing is quite different from one-sided communication
semantics. Low-level performance can be significantly affected if support for
both is automatically installed when not needed by an application. The ineffi-
ciency comes from the fact that incoming messages need to be checked among
different communication methods to determine the correct handling sequence. If
a particular message style (e.g. a put) is never used, then a reduction in overhead
can be made by eliminating this as a checked-for style. On MPPs, for example,
is it unnecessary to fragment messages or provide reliable transmission because
it is usually guaranteed by the message system. On the other hand, commu-
nicating over a WAN requires fragmentation, timeouts/retries, and connection
failure monitoring. A user should be able to write a distributed application and
have the runtime system select which method(s) are needed for the particular
run. The key to success will be to design plug-in communication stacks (similar
to those found in Horus [10]) that can be traversed quickly and efficiently. To
get optimum performance, it may require the user to use strongly-typed messag-
ing like MPI. However, runtime pluggability can still give significant advantages
without requiring users to dramatically change code. For example, one may de-
sire to encrypt certain communication links only if the virtual machine spans
several domains. Runtime pluggability would allow an encrypted link to be in-
stalled without user code modification. The next generation pluggable machine
will have to strike a better balance among performance (or the ability to op-
timize performance), flexibility, and interoperability. Due to the large body of
research on communication methods, this lowest level of pluggability is probably
the most straightforward goal to achieve.

3 Middle-Level Tools: Current Design, Features, Needs

The next-generation pluggable computing environment will provide a fertile plat-
form for a variety of “middle-level” tools that manipulate and administer system
resources. Fundamentally different from traditional virtual systems, each user ap-
plication will customize its own computing environment interactively, to bring
the desired computational and communication resources together as needed over
the course of its execution. Existing systems have already taken some steps to-
ward this level of flexibility, but there are many issues yet to be resolved before
a truly pluggable system can be achieved. This section overviews the current
pluggable computing tools and their features, and explores future needs along
with the accompanying obstacles.

The concept of “pluggable” interfaces is not a new one, but rather stems
from the fundamental software engineering principles of modularity and encap-
sulation of function. If a system is designed carefully by separating concerns
and generalizing the handling of similar operations, then it is straightforward
to “swap out” one implementation detail for another. Much of object-oriented
methodology is built on this premise. If an “object” has a well-defined interface
and encapsulates its internal state and operations, then a new object, with a
compatible interface but different internal implementation, can be inserted in
place of the first object without disturbing the overall functioning of the system.

PVM has supported this type of modularity since PVM 3.3, with the ex-
istence of “hoster,” “tasker,” and “resource manager (RM)” tools that can be
instantiated to take over handling of certain system functions. A hoster program
can be started to customize the procedure for adding new hosts to the virtual
machine. Hence, it currently is possible, but not simple for a user to provide cus-
tomized authenticated startup of remote PVM daemons (PVMDs). A tasker can
be started on each host of the virtual machine to handle the spawning of tasks
there, e.g. to allow debuggers to intervene in a task’s execution. Installing an RM
in the virtual machine is equivalent to a complete “take-over” of all scheduling
policies, including host adding and deleting, various event notifications, and task
information and spawning placement. PVM 3.4 also introduces the concept of a
“tracer” for automatically collecting trace event messages from internal library
instrumentation, to alleviate the need for a full tracing tool such as XPVM [4, 5]
when collecting traces off line.

In all of the above cases, the tool “plugs itself in” by registering with a
PVMD to handle certain classes of requests. Subsequently, when one of the
desired requests arrives from a user application, the PVMD passes control to the
registered tool to handle that request. In this sense, certain aspects of the PVM
system resources and scheduling can be customized on-the-fly by “plugging in”
user replacements for the default handlers. Unfortunately, like most traditional
computing environments, PVM did not originally support this type of interactive
customization by design, and had to be specifically re-coded to allow alternate
external handling of the desired operations.

Netscape’s Navigator web browser, version 3.0 [9], supports a similar type of
pluggable interface. While the browser is running, a “plug-in” can be registered
to handle certain types of web page contents. When one of these content types
occurs, the browser automatically forwards the data to a plug-in task or thread
which then processes the data and either displays the results or returns to the
browser for inline display. Using the explicit Mime typing information carried
by all web pages, data of any type can be handled in a customized manner.

With both PVM and the Netscape Navigator, the pluggability is of a static
nature in that, even though the plug-in tools can be added at run time, there is a
fixed and limited protocol within which the plug-ins must operate. The plug-ins
cannot transcend their predefined range of functionality. Therefore, for the next-
generation pluggable system to be fully general, the pluggable architecture must
also encompass the very protocols used by the plug-in elements to interact with

the system. The system must be built with very little inherent functionality,
primarily just a simple interpreter for “self-defining” protocols that allows all
other aspects of the system to be generically connected as needed. Even the
default system handlers will use the same protocol interface to attach to the
“micro-kernel,” which essentially serves only as a point of contact.

An important issue surrounding this flexibility is the potential trade-off for
performance. Because the plug-in protocols are generalized and require interpre-
tation, the computation required to process them is increased and the overall
performance of the system is degraded. While this may be acceptable for certain
types of plug-in tools, such as debuggers, it could be disastrous for tools which
require greater bandwidth, such as tracing or multimedia tools. One solution
is to optimize the use of self-defining protocols. PVM 3.4 already applies an
optimization to its generalized tracing protocol by only sending trace event de-
scriptors with the first occurrence of each trace event, thereby reducing needed
bandwidth and tracing overhead [5]. Alternatively, a better solution may be to
provide a few static “high-performance” protocols for certain well-defined inter-
actions. These special-purpose protocols, along with the generalized protocols,
would result in a more balanced pluggable system, with both ample flexibility
and respectable performance !.

When the pluggable approach is applied to a concurrent application with
many tasks executing in parallel, several other issues arise. Suppose that the user
wishes to interactively attach a tool to a set of running application tasks, as is
done with the CUMULVS system for interactive visualization and computational
steering [2]. Currently, for CUMULVS to be able to connect to an application the
user must instrument the application so that each task periodically passes control
to a CUMULVS library routine. Within this routine the CUMULVS protocols
are processed to construct connections with CUMULVS viewer programs and to
exchange information and control directives. Because the user application tasks
may not be tightly synchronized, race conditions exist wherein the application
could incorrectly receive messages that are part of the CUMULVS protocols.
To prevent this from happening the user must set aside a small portion of the
message “tag space” to prevent interception of CUMULVS-tagged messages by
the application, and vice versa.

Progress has already been made regarding these issues in the latest release
of PVM 3.4 [3]. The introduction of “message handlers” now allows protocols,
like that required for CUMULVS, to be handled transparently. Instead of pass-
ing control to some explicit protocol interpreter, message handlers can be de-
fined to intercept any incoming protocol messages automatically, and process the
protocol interactions to update the necessary state information. Because these
message handlers are invoked internally without any user intervention, it is es-
pecially critical to guarantee that message tag spaces do not overlap. To simplify
this problem PVM 3.4 uses the concept of “context” to encapsulate the different
realms of communication within distinct tag spaces. Aside from a message tag,
each message is identified with a system-generated context. A task can only send

! This is, in fact, the philosophy under which the PVM system was developed.

and receive messages within its currently selected context, and likewise message
handlers are defined to process messages within a given context. This alleviates
any user specification of tag spaces for avoiding incorrect message delivery.

Though the above strides have been made toward more flexible pluggable
tool architectures, more fundamental changes are necessary to fully realize the
potential of such systems. The integration of generalized or self-defining protocols
is required. However, performance is important and cannot be overlooked entirely
in favor of flexibility.

4 Virtual Machine Control: Splitting, Merging, Migration

4.1 The Role of the Master PVM Daemon

A user’s virtual machine is made up of a user-defined set of communicating dae-
mon processes called PVMDs. To expand the virtual machine, a new daemon
is started on the new host and configuration parameters are exchanged to re-
flect the new configuration. The PVM design revolves around a master daemon
that keeps and distributes the current configuration. Furthermore, new hosts are
added to the current virtual machine by a protocol that must go through the
master. If the master fails, then all non-master daemons shut themselves down
and the entire virtual machine collapses. Because only a single master keeps and
modifies the critical configuration information (the host table), several race con-
ditions are automatically eliminated. This leads to a more stable and predictable
system for most users. There are, however, three significant consequences of this
implementation: virtual machines started independently of one another may not
join into a single virtual machine; a single virtual machine may not split to
form multiple virtual machines; and virtual machines cannot “move” and may
only grow and shrink while rooted at a single master. One could elect multiple
masters to eliminate the single point of failure, but this requires that the pool
of masters closely coordinate the addition and deletion of hosts. New daemons
could be promoted to this master pool if an old master fails. However, to achieve
coherency of configuration changes, the addition, deletion and election protocols
must themselves be fault-tolerant. While not unsolvable, this represents a signif-
icant increase in complexity in handling the configuration of the current virtual
machine. It is indeed a challenging problem and will require considerable effort
to examine the tradeoffs of different solution scenarios.

4.2 Naming and Migrating Tasks

PVM task ids (or tids) are named relative to a host which in turn is named
relative to the master PVMD. Therefore, encoded in the tid, which is a 32 bit
integer, is the physical host of a particular process. If one desires a PVM task
to migrate, then a new tid must be assigned. Re-assigning the tid so that it is
consistently reflected across all tasks in the virtual machine becomes very com-
plicated due to the large number of race conditions that must be solved. Systems

like Condor [7] have wrestled with the task naming problem as they move tasks
around. One logical solution is to virtualize task ids so that a virtual-to-real-
space mapping is made at every call. This can be implemented efficiently in a
similar manner to virtual memory. However, the updating of virtual-to-real-tid
maps across an entire virtual machine may be problematic because of host fail-
ures during the update process. Migration of tasks also presents a problem when
tasks have open files. The file may be unavailable on the new system, or in the
case of Unix operating systems, the file may itself be an abstraction of some other
physical entity (e.g. a communication socket). It is clear that migrating tasks
and migrating or merging virtual machines present very challenging problems
with complex solutions. A large part of where PVM is going next will revolve
around these two important issues.

4.3 New Capabilities of Dynamic Machines

The capability of dynamically merging and splitting virtual machines has the ad-
vantage of allowing users to generate roaming applications. While the pluggabil-
ity of low-level communication protocols and middle-level tools provide practical
engineering benefit, roaming opens up whole new applications classes. For exam-
ple, roaming applications may discover better resources and migrate their virtual
machine (and associated tasks) to a more desirable configuration. While PVM
provides some capability to migrate application components or even complete
applications, it is not easy or straightforward. By making migration a pluggable
part of the base functionality (included only when wanted by the program),
better resource utilization can be achieved. Furthermore, multiphase programs
can more easily be created where the environment adjusts to changing resource
needs.

A further benefit of dynamic merging and splitting is that portions of ap-
plications can create their own virtual machine to resolve specific sub-problem
components and then briefly join with other virtual machines to continue pro-
cessing on the larger problem. Modeling of complex real-world problems could
greatly benefit from this capability. A simple example is to use separate applica-
tion suites to model the various individual airframe components for an aircraft,
with brief application joins to introduce the various interacting boundary condi-
tions. Finally, fault tolerance of an application can be easily achieved more easily
when running in an environment where the masterless virtual machine supports
migration.

5 PVM 3.4 A first step towards GPM

The new features included in PVM 3.4 provide a stepping stone to the next
generation distributed computing environment. As such, PVM 3.4 will allow
users to develop much more flexible, dynamic, and fault tolerant applications.
In addition, feedback from users of PVM 3.4 will help guide the development of
the environment.

While the actual number of new functions in PVM 3.4 is small, these func-
tions provide the biggest leap in PVM capabilities since PVM 3.0 came out in
1993. The functions provide communication context, message handlers, and a
tuple space called message box.

The ability to send messages in different communication contexts is a funda-
mental requirement for parallel tools and applications that must interact with
each other. It is also a requirement for the development of safe parallel libraries.
Context, which PVM defines as a unique system-created tag, s sent with each
message. The matching receive function must match the context, destination,
and message tag fields for the message to be received. (wild cards are allowed for
destination and message tag but not for context). In the past, PVM applications
had to divide up the message tag space to mimic context capabilities. With PVM
3.4 there are built in functions to create, set, and free context values.

By defining the context to be system-wide unique, PVM continues to allow
the dynamic generation and destruction of tasks. And by defining that all PVM
tasks have a base context by default, all existing PVM applications continue to
work unchanged. The combination of these features allows parallel tools devel-
opers to create visualization and monitoring packages that can attach to existing
PVM applications, extract information, and detach without concern about in-
terfering with the application.

GPM’s ability to dynamically plug-in middle-layer tools and applications is
predicated on the existence of a similar if not identical communication context
paradigm to PVM 3.4.

PVM has always had message handlers internally, which were used for con-
trolling the virtual machine. In PVM 3.4 the ability to define and delete message
handlers has been raised up to the user level. To add a message handler, an ap-
plication task calls

handler_id = pvm_addmhf(src, tag, context, function);

Thereafter, whenever a message arrives at this task with the specified source,
message tag, and communication context, the specified function is executed. The
function is passed the an ID so that it may unpack the message if required. PVM
3.4 places no restrictions on the complexity of the function. It is free to make
system calls or other PVM calls.

With the functionality provided by pvm_addmhf() it is possible to build
one-sided communication, active messages, applications that trigger other ap-
plications on certain events, fault recovery tools and schedulers, and so on. For
example, instead of an error inside an application printing an error message,
the event could be made to invoke a parallel debugger focused on the area of
the problem. Another example would be a distributed data mining application
that finds an interesting correlation and triggers a response in all the associated
searching tasks. The existence of pvm_addmhf() allows tasks within an applica-
tion to dynamically adapt and take on new functionality whenever a message
handler is invoked.

In GPM this ability to dynamically add new functionality will have to be
extended to include the underlying system as well as the user tasks. One could

envision a message handler defined inside the virtual machine daemons that
when triggered by the application would spawn off intelligent agents to seek out
the requested software module from Web repositories. These trusted “children”
agents could retrieve the module and use another message handler to cause the
daemon to load the module, incorporating its new features.

In a typical message passing system, messages are transitive and the focus
is often on making their existence as short as possible, i.e. decrease latency and
increase bandwidth. There are many situations in distributed applications seen
today in which programming would be much easier if there was a way to have
persistent messages. This is the purpose of the new Message Box feature in
PVM 3.4. The Message Box is an internal tuple space in the virtual machine.
Tasks can use regular PVM pack routines to create an arbitrary message and
then use pvm_putinfo() to place this message into the message box with an
associated name. Copies of this message can be retrieved by any PVM task that
knows the name. And if the name is unknown or changing dynamically, then
pvm_getmbozinfo() can be used to find the list of names active in the Message
Box.

The four functions that make up the Message Box in PVM 3.4 are:

index = pvm_putinfo(name, msgbuf, flag)
pvm_recvinfo(name, index, flag)
pvm_delinfo(name, index, flag)
pvm_getmboxinfo(pattern, names[], struct info[])

The flag defines the properties of the stored message, such as, who is allowed to
delete this message, does this name allow multiple instances of messages, does
a put overwrite the message? The flag argument also allows extension of this
interface as PVM 3.4 users give us feedback on how they use the features of
message boxes.

While the tuple space could be used as a distributed shared memory, similar
to the Linda [6] system, the granularity of the PVM 3.4 implementation is better
suited to large grained data storage.

Here are just a few of the many potential Message Box uses. A visualization
tool spontaneously comes to life and finds out where and how to connect to a
large distributed simulation. A scheduling tool retrieves information left by a
resource monitor. A new team member learns how to connect to an ongoing col-
laboration. A debugging tool retrieves a message left by a performance monitor
that indicates which of the thousands of tasks is most likely a bottleneck. Many
of these capabilities are directly applicable to the GPM environment, and some
method to have persistent messages will be a part of the GPM design.

The addition of communication contexts, message handlers, and message
boxes to the parallel virtual machine environment allows developers to take
a big leap forward in the capabilities of their distributed applications. PVM
3.4 is a useful tool for the development of much more dynamic, fault tolerant
distributed applications, but as illustrated above, it is also a testbed for software
and features that will make up the next generation heterogeneous distributed
computing environment.

6 Conclusions

This paper has presented the basic concepts for a pluggable virtual machine.
The pluggability was described at three levels: low level communication, middle-
level tools, and virtual machine merging, splitting, and migration. The design
and philosophy of what is next were motivated by lessons learned over the past
few years with the PVM environment. The latest release of PVM version 3.4
and its new features like context, message handlers and message boxes are seen
as the first key steps to building the generalized pluggable machine. Clearly,
the highest technical hurdle to jump is to enable efficient migration of tasks
and virtual machines by handling task renaming and being able to consistently
represent the configuration of the virtual machine. Pluggability is being explored
to improve performance, provide greater flexibility, and open up new classes of
roaming applications.

References

1. A. Beguelin, J. Dongarra, G. A. Geist, W. Jiang, R. Manchek, V. Sunderam, PVM:
Parallel Virtual Machine, A User’s Guide and Tutorial for Networked Parallel Com-
puting, MIT Press, Cambridge, MA, 1994.

2. G. A. Geist, J. A. Kohl, P. M. Papadopoulos, “CUMULVS: Providing Fault-
Tolerance, Visualization and Steering of Parallel Applications,” STAM, August 1996.

3. G. A. Geist II, J. A. Kohl, R. Manchek, P. M. Papadopoulos, “New Features of
PVM 3.4,” 1995 EuroPVM User’s Group Meeting, Lyon, France, September 1995.

4. J. A. Kohl, G. A. Geist, “XPVM 1.0 User’s Guide,” Technical Report ORNL/TM-
12981, Oak Ridge National Laboratory, Oak Ridge, TN, April, 1995.

5. J. A. Kohl, G. A. Geist, “The PVM 3.4 Tracing Facility and XPVM 1.1,” Pro-
ceedings of the 29th Hawaii International Conference on System Sciences (HICSS-
29), Heterogeneous Processing Minitrack in the Software Technology Track, Maui,
Hawaii, January 3-6, 1996.

6. N. Carriero and D. Gelernter. “Linda and Message Passing: What Have We
Learned?” Technical Report 984, Yale University Department of Computer Science,
Sept. 1993.

7. J. Pruyne and M. Livny, “Interfacing Condor and PVM to Harness the Cycles of
Workstation Clusters”, Journal on Future Generations of Computer Systems, Vol.
12, 1996

8. Message Passing Interface Forum. MPI: A message-passing interface standard. ”In-
ternational Journal of Supercomputer Applications and High Performance Comput-
ing”, International Journal of Supercomputer Applications and High Performance
Computing, Volume 8, Number 3/4, 1994.

9. Netscape Navigator 3.0, Netscape Communications Corporation.

10. R. Van Renesse, K. P. Birman, S. Maffeis, “Horus, a Flexible Group Communica-
tion System”, Comm. ACM, April, 1996.

This article was processed using the IXTEX macro package with LLNCS style

