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Ideal magnetohydrodynamics stability spectrum with a resistive wall

S.P. Smith* and S.C. Jardin
Princeton University Plasma Physics Laboratory
(Dated: May 14, 2008)

We show that the eigenvalue equations describing a cylindrical ideal magnetohydrodynamics
(MHD) plasma interacting with a thin resistive wall can be put into the standard mathematical
form: A-x = AB-x. This is accomplished by using a finite element basis for the plasma, and by
adding an extra degree of freedom corresponding to the electrical current in the thin wall. The
standard form allows the use of linear eigenvalue solvers, without additional iterations, to compute
the complete spectrum of plasma modes in the presence of a surrounding resistive wall at arbitrary
separation. We show that our method recovers standard results in the limits of (1) an infinitely
resistive wall (no wall), and (2) a zero resistance wall (ideal wall).

I. INTRODUCTION

A common model used to investigate plasma stabil-
ity is that of an ideal magnetohydrodynamics (MHD)
plasma configuration surrounded by a nearby conduct-
ing wall. It is well known that the location and electrical
conductivity of the wall can have a profound effect upon
the eigenmodes and eigenvalues of the system. While
the complete mode spectrum of a configuration having
no wall or a perfectly conducting wall has been obtained
in previous numerical studies', the calculation of the
complete mode spectrum has not been extended to the
case where the surrounding wall has non-zero but finite
conductivity (a resistive wall).

Several approaches have been presented to calculate
the most unstable eigenmode in the presence of a resis-
tive wall using a formulation where the eigenvalue ap-
pears nonlinearly and the most unstable mode is found
by iteration.*® While this is a valid technique, it is in-
herently not as efficient as a linear eigenvalue problem
and is not a practical approach for finding the complete
spectrum of modes.

In the present paper, we show how the Galerkin
method can be used to convert the stability problem of
an ideal MHD plasma surrounded by a thin resistive wall
into a linear eigenvalue problem of the standard mathe-
matical form. This is achieved by adding an additional
degree-of-freedom (DOF) to the finite-element expansion
of the plasma. This additional DOF corresponds to the
perturbed current in the thin resistive wall, and the as-
sociated new row in the eigenvalue matrix equation is
used to enforce the jump condition across the resistive
wall of the perturbed magnetic field. The present paper
deals only with a cylindrical plasma configuration, but
the approach could readily be extended to non-circular
and toroidal geometry.

In Section IT we review the finite element Galerkin ap-
proach for transforming the ideal MHD stability problem
into a matrix eigenvalue problem. In Section III, we show
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how the induction equation for a thin resistive wall adds
a single DOF and the jump condition adds a row to this
matrix eigenvalue equation, which remains in standard
form. In Section IV we apply this technique to calculate
the mode spectrum of a plasma surrounded by a resistive
wall. We summarize our results in Section V.

II. PLASMA MHD STABILITY

The MHD equilibrium equation for a circular cylindri-
cal, (r,0,z), plasma is

p + (B%) /24 BZ/r=0, (1)

where {}' = - {} and all equilibrium quantities are only
a function of 7. The linearized stability equations can be
expressed as

pu = wpk, (2a)
wpu=—-J x B—J x B + Vp. (2b)

Here B :Vx(ng),j =VxB,p=-¢£ Vp-—
pV - €, € is the usual Lagrangian displacement, u has
been introduced so that the eigenvalue, w, only appears
linearly and the components of €& and u are allowed to
vary as el(m0+kz—wt) The dependence on w is such that
a mode with Im(w) > 0 is an instability.

An appropriate set of projections must be chosen to ob-
tain accurate numerical results. The formulation here fol-
lows from using the set of projections that Appert et al.”
introduced, namely

§1 = §T’ 62 = (67‘ + im{o)/r,

with a similar set of projections for u.
Each of the unknown eigenfunctions, & (r) ... us(r), is
expanded as a sum of N expansion functions,

&i(r) =2 &joi(r), &(r) = &;x;(r), )
&(r) = &six;(r), ete.

Using these expansions, the set of projections in Eq. (3)
has the property that

V- £ = Elj‘;zs; +£2ij + £3ija (5)
Vou=uy;¢) + uz;x; + usjx;

§3 = Zkfz 9 (3)



which suggests that, in order for the compression to be
arbitrarily small over a given grid interval, ¢;(r) should
be a polynomial of one order higher than x;(r). One
choice is to use a linear (tent) element for ¢;(r) and a
constant (hat) element for x;(r).” However, we have used
a cubic B-spline for ¢;(r) and the derivative of a cubic
B-spline for x;(r).

Making the substitutions of Egs. (3) and (4) into Eq.
(2) then taking the projections

foa dr r¢;(r) <r - —0)

: L ©
Jo dr rxi(r) (EH) , fo dr rxi(r) 2,
yields a system of equations of the form
wA-x=8B-x. (7

The matrices A and B are made up of N x N submatrices
of size 6 x 6 such that the 4, j*" submatrix involves the in-
ner product of the i*" test function and the j*" expansion
function, and x is the vector of 6N unknown coefficients

X = [5115621553151‘115”217“315512 .. '5u3N:|'

IIT1. THIN RESISTIVE WALL

The key to coupling the plasma displacement to the
vacuum comes through the ¥ projection of Eq. (2b). One
term that comes from applying the first projection of Eq.
(6) to Eq. (2b) is

IRGF

which is integrated by parts to yield

p+B B) ]d 8)

. ~ s - d
[((p+B-B)ra] _ - [ (5+B-B)rLowar
(9)
The part at r = a can be replaced by the vacuum field
using the jump condition

[+B-B =[B-B] . (10)

plasma vac

where the vacuum side is calculated next.

Let a thin resistive wall be placed at » = b where b > a.
Assume there is a vacuum in the regions a < r < b, which
will be the inner region, and r > b, which will be the outer
region. The perturbed magnetic field, B = V@, in these
two regions will satisfy V- B = V2® = 0. The general
solutions in the two regions are

(I)in = [Cle(k’f‘) +C2Im

By = [C3Km(kr)]ei(m0+kz—wt),

(k,r)]ei(ma—i-kz—wt) (1 la)
(11b)

where C1, Cy, C3 are constants, and K, and I,;, are mod-
ified Bessel functions. Note that the resistive wall is of

conductivity, o, and thickness, d, with d/b < 1, such
that 7, = obd is the resistive wall diffusion time.

The boundary conditions at the plasma surface and
resistive wall, to lowest order in d/b, are®

n-Bi, = n-Vx(¢xB)|,_, (12a)
n-B;, = n-Bou (12b)
r=b r=
IWTyb ~
q)out (T) - an(r)l —_p — _711111 - Bz (12(})
r=b m2 ¥ k22 n s

After substituting Equations (11) into these boundary
conditions we have a system of 3 equations that could be
solved for the three unknown coefficients, C;, in terms
of the boundary displacement & (a). However, solving
for all three has the consequence that w ends up in the
denominator of [B . B] so that the standard form, Eq.
(7), cannot be obtained.

Instead of solving for all of the unknown C’s, let
us only use Equations (12a) and (12b) to solve for C;
and C3 in terms of Cy and & (a). Cy can then be ex-
pressed in terms of the perturbed current in the wall,
Jrw = V(jselmothz—wt)) 5 & through the relation

js = Cy (fbe - Ibe) /Ky, (13)

If there is no perturbed current in the wall, then Cy = 0,
which is correct for having no wall. Using the C; in terms
of js and & (a) yields

wwaKb .. jaKb - ija .
——— & (a)a — jibk———| = —Js
(m2 + k2b2)Ka Ibe bl Ibe

(14)
for the jump condition of the perturbed magnetic field
across the wall, Eq. (12c), and

I,,K,,

- LK, K , K,
= —&i(a)e® == (15)
I, Ky K, kK,

for the vacuum perturbed pressure. The notation used
is « = mBy(a)/a + kB,(a), K, = Kp(ka), K, =

[d(,‘ir) (kr)] s ete.

To include the interaction of the plasma with the re-
sistive wall, the following modifications to Eq. (7) are
made. js is an additional unknown in the DOF vector,
x, which adds a single column to A and B. The addi-
tional equation (row) for these matrices is given by Eq.
(14). (The rank of the matrices is only changed from
6N to 6N + 1.) Finally, the vacuum perturbed pressure
given by Eq. (15), which includes js, is substituted into
Eq. (9) using Eq. (10).

To recover the jump condition for an ideal wall [no
wall], solve Eq. (14) explicitly for j, in the limit 7, = oo
[Tw = 0] then substitute this j, into Eq. (15) which goes
into Eq. (9).
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FIG. 1: The growth rate of the unstable free boundary kink
mode depends on the location and time constant of the re-
sistive wall. The plasma has a constant axial current density
witha =1, B;(a) =15, Bg(a) =1, p=1, m=2, k= —0.1.

By including the resistive wall boundary condition as
an additional equation, the eigensystem takes the stan-
dard form of a generalized eigenvalue equation which can
be solved with any standard matrix eigensolver (we have
used the LAPACK routine ZGGEV).

IV. RESULTS

One profile of interest for examining the effects of
wall resistivity is a constant current density, pressureless
plasma. Let us choose a = 1, B,(a) = 15, By(a) = 1,
p=1m =2, k = —0.1. This configuration has one
unstable eigenvalue corresponding to the free boundary
kink mode. The instability growth rate, I'[= Im(w)], as a
function of wall location (b/a) and time constant (7,) is
shown in Fig. 1. As predicted previously,? the ideal wall
stabilizes the kink mode for a region of locations, b < b,,
where b, &~ 1.19 for this case. Note that for b < b, a
resistive wall reduces I' but never completely stabilizes
the kink mode, and thus the kink is called a resistive
wall mode (RWM). The relationship between the RWM
growth rate and 7, is best seen in Fig. 2, which shows
that for large enough values of 7,,, the growth rate varies
inversely with the wall time, I’ o< 1/7,,.

Because the resistive wall makes the problem non-self-
adjoint, it is interesting to look at the spectrum of w in
the complex plane as shown in Fig. 3. The wall location
is b = 1.01, which is within the range that the ideal wall
stabilizes the kink mode. Thus as the wall time, 7, is
varied from oo (ideal wall) to 0 (no wall), the spectrum
varies from having a stabilized kink mode (label 1) to
having an unstable and damped (4 and 7) no wall mode
(NWM). In between oo and 0, the damped resistive wall
mode (ARWM) shows up as the damped kink mode® (1 to
2) as long as 7, 2 'y, where Ty, is the NWM growth
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FIG. 2: The product of the wall time and the growth rate of
the RWM (i.e. I'ty,) as a function of 7, showing that T" o< 7, *
for large enough wall times. The plasma parameters are the
same as those of Fig. 1. The number labels indicate the wall
location (b/a) for that curve.

rate. For 7, < I'py the dRWMs collapse onto the ANWM
(2 to 3 to 4), and a super damped mode appears (2 to 3
to 5) which arises because of the extra degree of freedom
introduced by including j, as an additional unknown with
Eq. (14) as an additional equation. At the same time
that the damped modes are transitioning from the ideal
wall regime to the no wall regime (1 to 3) the resistive
wall mode growth rate increases (from 6 to 7) until it
plateaus at I',,,,. The modes at 8, while unexpected, are
only damped for intermediate values of 7, such that the
correct results are approached for 7, — 0o, 7, = 0. Note
that as the ideal wall is moved farther from the plasma
(not shown explicitly), the stabilized kink modes decrease
in magnitude along the real axis until they destabilize and
move along the I" axis toward the NWMs (1 to 6 to 4,7).

V. CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to obtain a matrix
eigenvalue equation in standard form to solve for the en-
tire spectrum of an ideal MHD plasma, including the in-
teraction with a resistive wall. Adding the resistive wall
only increases the rank of the matrices in Eq. (7) from
6N to 6N + 1. The extra DOF is the current in the wall,
Js, and the extra equation is the wall jump condition, Eq.
(14). As 7, — 0 we recover the results of having no wall,
and as 7, & oo we recover the results of having an ideal
wall. The method of including the jump condition at the
resistive wall as an additional equation can be generalized
to a non-circular, non-cylindrical geometry by having an
additional equation for each poloidal harmonic, m, the
details of which will be shown at a later time. An equi-
librium flow to stabilize the RWM? can be added to
Eq. (2) very simply'!, and this stabilization will also be
shown later.
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FIG. 3: Ideal MHD spectrum in the complex plane for various values of 7, with the plasma parameters of Fig. 1 and b/a = 1.01.

The letter-labelled modes are: F) Fast; A) Alfvén; S) Sound.
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