Micro-CHP Technologies for Distributed Generation in Canada

Presentation to Micro-CHP Technology Workshop June 11, 2003

Dr. E. Entchev et al. Advanced Combustion Technologies CANMET Energy Technology Centre

DG Energy Technologies

- Fuel cells
- Microturbines
- Stirling engines
- Diesel generators
- Renewables
- Others (TE, TPV, etc.)

tural Resources

Cenada

Micro- CHP Generation Issues

- Technology cost, reliability, availability, etc.
- Interconnect standards, regulations
- Integration with existing house's thermal systems
- Overall system optimization and control strategies

Fuel Cell (FC)

Cenada

PEM and SOFC for micro generation

ISSUES	PEMFC	SOFC	
Operating Temp.	80 – 100°C	650 – 1000°C	
Fuel Reforming	Complex multistage external reformer for all normal fuels	Single stage internal reformer for natural gas or propane	
Contaminants	Intolerant to CO Intolerant to sulphur	No CO sensitivity More tolerant of sulphur	
Water Management	Sensitive to dehydration. Water management required.	Intrinsic to process. No water management required.	
Cogeneration Capability	Low grade waste heat: 60 to 70°C	High quality waste heat: 200 to 600°C	
Overall Efficiency	Up to 70% (using H_2)	> 90% (using NG)	
Catalysts	Expensive noble metals: Platinum and palladium	Low cost nickel and perovskites	

Cenada

GTE Manufacturing Process

Screen Printing

50' Tape Caster

Source: GTE

Residential/Commercial Size SOFC

SOFC 110kW/250kW atmospheric type

SOFC 5kW residential

Resource

nada

SOFC Demonstration Project

- Cost \$14 million
- Participants SWPC, US DOE, Ontario Hydro, **NRCan**
- Site Kinectrics/OPG
- Stack 250kW, atmospheric pressure
- Demonstration- for 5,000 h

anada

STIRLING ENGINE

Cenada

Stirling Engine

The Stirling Engine (SE) operates on a closed thermodynamic Stirling cycle which repeatedly heats and cools a mass of nitrogen gas. The changing gas pressure causes the pistons to move up and down, and via a mechanical linkage rotate an alternator to produce electricity.

Stirling Engine

- 6 kW (~20,000 BTU/hour) heat generated
- 750W electrical generated; 575W useable on the grid
- 115kg
- 400mm x 550mm x 850mm (w x d x h)
- Startup time before core reaches 70°C ranges from 0 - 30 min, depending on setup. The shortest uses no cooling water until core is at 60°C
- Shutdown time is 20-35 mins. Shortest uses fresh cooling water and dumps the heated cooling water.
- Since startup and shutdown times are long, it is most efficient to run the engine continuously.

1. Combustion space. 2. Hot heat exchanger. 3. Cold heat exchanger. <u>4. Wobble yoke mechanism</u>. 5. Hermetically sealed alternator. 6. Microprocessor management system. 7. Control panel. 8. Fiberglass enclosure.

SE Performance Parameters

Start up – (10-30min) 30min*

- » 1min for the gas burner to light up
- » 6min for the SE to start
- » 32min for the core to reach 70C

Shut down – (30-65min) <u>44min*</u>

- » 7min for the gen to stop producing electric energy
- » 3min for motoring the SE
- 34min after the burner turns off to "Standby'

<u>Conclusion: SE should be operated as a base load with as few</u> <u>interruptions as possible</u>

Canadian Centre for Housing Technologies (CCHT)

- Located in Ottawa and operated by three agencies – NRC, CMHC and NRCan
- Consists of two identical research houses and info centre
- Houses Design Heat Loss > 40,000 BTU/hr
- Both houses are operated under Simulated Occupancy Protocol

Since the Stirling Engine only generates ~20,000 BTU/hour, it cannot provide enough heating by itself on the coldest days (design conditions) and an additional heat source is required.

cal Resources

Bulldings Group

CCHT Weekly Performance Comparisons

■Furnace ■HRV □Int.lights & plugs ■Stove ■Fridge ■Dish/r □Washer ■Dryer □Sim ulated People

.

-71

CCHT micro-CHP project

Objectives

- To demonstrate micro-CHP technology
- To convert the house to accept micro-CHP
- To assess the micro-CHP performance under SOC
- To gain knowledge re micro-CHP integration with house's energy systems

Questions

- How much energy and what percentage of the load does the CHP deliver?
- How much electricity from the grid is replaced by the CHP?
- What are the net cost savings?
- What are the GHG implications?

CCHT Electrical Wiring

Cenada

Existing House Wiring Diagram

Wiring Arrangement

Stand-alone Operation with CHP

Operation with Hydro and CHP

Summary of Modifications

- 1. Three additional Kilowatt-hour meters and an additional power quality meter were added.
- An external weatherproof, padlockable disconnect switch was installed to meet requirements of rule 84-028 of the Canadian Electrical Code.
- 3. A four-pole transfer switch was installed to allow various generator configurations without re-wiring.
- 4. A 100-amp disconnect / isolating switch with 20-amp fuses was installed to protect and isolate the Stirling Engine.
- 5. The wiring and equipment was inspected by Ontario's Electrical Safety Authority.

CHP Thermal Utilization Module

Cenada

WG Thermal Utilization Module (TUM)

- To provide enough heat sink for the generator normal/continuous operation
- To satisfy house's base energy needs (space heating, water heating, ventilation)
- To be generic
- To be simple

TU Module Control Strategy

- To provide optimal operational conditions for combined heat and power generation
- To be generic and simple*
- To minimize the SE interruptions
- To minimize water heater burner operation (cycling)

*For more advanced strategy see article "Residential Fuel Cell Energy Systems Performance Optimization Using "Soft Computing" Techniques" by E. Entchev, Journal of Power Sources, vol.118, pp212-217, 2003

Thermal Utilization Module

SE 24hr Run - Snapshot

SE Operation - Snapshot

Stirling Engine Efficiencies

		1
-17	HOLE IN	
3.15	SP.	Shall P
	C/A	NY I
		Ar
	Pel-	
R		122
		7 163
1		The West

Run	Setup	Heat	Electric	Total
1	1	80.5%	8.3%	88.7%
2	2	79.6%	8.0%	87.5%
3	2	75.0%	9.0%	83.9%
4	2	76.1%	6.7%	82.8%
7	2	74.7%	7.2%	81.8%
8	2	75.3%	7.0%	82.3%
9	2	75.2%	7.3%	82.5%
11	1	76.4%	7.5%	83.9%
13	1	77.1%	7.7%	84.9%
20	1	77.9%	6.4%	84.4%
21	1	74.2%	5.9%	80.1%
22	1	74.0%	5.8%	79.7%
Minimum		74.0%	5.8%	79.7%
Mean		76.3%	7.2%	83.5%
Maximum		80.5%	9.0%	88.7%
Mean, Setup 1:		76.7%	6.9%	83.6%
Mean, Setup 2:		76.0%	7.5%	83.5%

System Efficiency vs BOP

DG on the Grid

Wind

PV

Canada

MicroPower Connect

Objective:

Remove barriers to interconnection for small DGs by creating a synergy and developing a momentum in the industry

- Develop interconnection guidelines with respect to technical requirements on safety & power quality:
 - For inverter-based systems
 - > Up to 600V

Standards' Activities

>National:

>C22.2 No 107.1 General Use Power Supply (includes static inverters)

>International:

- >UL 1741 Static inverters and...
- >IEC TC82-62109 Static inverters...

>IEC TC82-62116 – Anti-Islanding Testing...

Opportunities for micro-CHP

- The preliminary results are very promising
- Special attention should be given to the thermal utilization module design
- The development of a thermal cooling will broader the applications
- An optimal control strategy based on Al technologies should be developed
- Micro-CHP technologies have potential for very low GHG emissions

- Virtual utilities
- Effective for peak shaving capabilities
- Potential for retrofit and combination with existing energy systems
- Incremental for high efficiency
- Combination with alternative generation systems

THANK YOU!

ANY QUESTIONS?

