A MIMD Implementation of a Parallel Euler
Solver for Unstructured Grids

V. Venkatakrishnan®, Horst D. Simon®,
and Timothy J. Barth?

Abstract

A mesh-vertex finite volume scheme for solving the Euler equations on triangular unstruc-
tured meshes is implemented on an MIMD (multiple instruction multiple data stream) parallel
computer. Various partitioning strategies for distributing the work load on to the processors
are discussed. Issues pertaining to the communication costs are also addressed. Finally, the
performance of this unstructured computation on the Intel iPSC/860 is compared with that of a
one processor of a Cray Y-MP, and with an earlier implementation on the Connection Machine.

1 Introduction

There has been a surge of activity in the area of parallel computing in the last few years. Parallel
computers are becoming more accessible and many significant application programs have been
successfully implemented. Many of the applications to date, however, have dealt with structured
meshes which have a good deal of regularity in accessing data. This also facilitates the partitioning
of the data and of the computation.

Triangular meshes have become quite popular in computational fluid dynamics. They are
ideally suited for handling complex geometries and for adapting to flow features, such as shocks
and boundary layers. Considerable attention has been focussed on improving the spatial operator,
which has evolved to a very high degree of sophistication for the Euler and Navier-Stokes equations.
Parallel computers seem to offer an avenue for doing large problems very fast due to their scalability.
Before this goal can be realized, however, many fundamental issues need to be addressed. In the
case of unstructured mesh computations, some of the issues that arise are the partitioning of the
data and the computation among processors, communication at the inter-partition boundaries and
dealing with global data addresses. Massively parallel computers have evolved to a degree that we
feel it is the appropriate time to compare the best performances that one can obtain with these
machines against conventional supercomputers.

Williams[1] has addressed the problem of doing unstructured mesh computations on an MIMD
parallel computer. Here the solution is computed first on one node using a coarse grid which is
then adaptively refined while distributing the load and the data to multiple processors as and when
necessary. In practice, however, one has to compute the solution on a given grid and furthermore, it
may not be feasible to generate a coarse grid for complex configurations in three dimensions which
will fit on one processor. We address here the problem of computing on a given grid which does not
fit in one processor. In the implementation discussed here, no hierarchy of processors is assumed.
Each processor receives about the same amount of data and performs nearly the same amount of
computation. The amount of communication that a processor performs is only a function of the
data partitioning strategy for a given numerical scheme.

! Applied Research Branch, Mail Stop T045-1, Numerical Aerodynamic Simulation (NAS) Systems Division, NASA
Ames Research Center, Moffett Field, CA 94035. The author is an employee of Computer Sciences Corporation. This
work was funded under contract NAS 2-12961.

2Computational Fluid Dynamics Branch, Mail Stop 202A, NASA Ames Research Center, Moffett Field, CA 94035.

In this paper, we discuss an explicit upwind finite-volume flow solver for the Euler equations
in two dimensions that is well suited for massively parallel implementation. We identify aspects of
the problem which need to be examined in detail in order to obtain good performance. We discuss
various ways of partitioning the grid and assess their impact on performance. We also derive efficient
data structures and schedules of messages. We present detailed performance comparisons of this
code on the Intel iPSC/860 against other implementations. This solver has been implemented on
the Cray Y-MP by Barth and Jespersen [2] and on the CM-2 by Hammond and Barth [3].

2 Governing Equations and Discretization

The Euler equations in integral form for a control volume Q with boundary 09 read
d
—/udv—l— F(u,n) dS = 0. (1)
dt Jo 29

Here w is the solution vector (the conserved variables density, the two components of momentum
and total energy). The vector F(u,n) represents the inviscid flux vector for a surface with normal
vector . Eqn. (1) states that the time rate of change of the variables inside the control volume is
the negative of the net efflux of the variables through the boundaries of the control volume. This
net efflux through the control volume boundary is termed the residual. In the present scheme the
variables are stored at the vertices of a triangular mesh. The control volumes are non-overlapping
polygons which surround the vertices of the mesh. They form the “dual” of the mesh, which is
composed of segments of medians. Associated with each edge of the original mesh is a (segmented)
dual edge. The contour integrals in Eqn. (1) are replaced by discrete path integrals over the edges
of the control volume. Fig. 1 illustrates a sample triangulation. The shaded region is the control
volume associated vertex P. A piecewise linear variation is assumed within each control volume. In
order to compute this variation, the values as well as the gradients of the variables at the vertices are
required. The gradients are also computed as discrete path integrals over the edges of the control
volume by making use of Green’s theorem. The formation of the residual at a vertex then involves
information consisting of values and gradients from its distance 1 neighbors, and the gradients in
turn utilize values from distance 1 neighbors. Thus, a vertex is influenced by its distance 1 and
distance 2 neighbors. A distance 1 (or immediate) neighbor of a vertex is defined as a vertex which
is connected to the chosen vertex by an edge of the triangular mesh. Vertices ¢ and j are distance 2
neighbors if the shortest path between them is 2. Fig. 1 also illustrates the stencil associated with
a vertex which consists of both distance 1 and distance 2 neighbors.

A four stage Runge-Kutta scheme is used to advance the solution in time. The path integrals
are evaluated by looping over the edges of the original mesh. For the parallel implementation we
assume that the triangulation of the computational domain and the mesh connectivity information
are provided.

3 MIMD Implementation

In this section we examine in detail a number of issues that are crucial to obtaining good perfor-
mance with the unstructured grid solver. The main steps involved are:

e partitioning of the grid

e generating local data structures

Figure 1. Control volume and stencil for vertex P.

3

e embedding onto the hypercube
e generating a communication schedule

The static partitioning and the transformation of the global data set into local data sets are currently
done as pre-processing steps on a workstation.

3.1 Partitioning of the grid

In this subsection we address the problem of partitioning unstructured triangular meshes. When
using piecewise linear reconstruction, the calculation of the residual at a vertex vertex depends
on information not only from its distance 1 neighbors, but also its distance 2 neighbors (Fig.
1). Thus, at first glance, it would appear that we need an overlap between the sub-domains.
Recalling the discussion in the previous section, a vertex receives information from its distance 1
neighbors in two stages: calculation of the gradients and evaluation of the path integrals in forming
the residual. Therefore, abutting sub-domains (with no overlap) will suffice. We also choose to
partition the triangles (as opposed to vertices), so that the inter-partition boundaries consist of
edges of the original triangular mesh. The reason for this choice is discussed later in the text. In
Fig. 1, an inter-partition boundary is shown by a thick line. The interior boundary edges and the
corresponding interior boundary vertices (IBVs) are thus duplicated. Two communication phases
are then required at each stage of the four stage Runge-Kutta time integration, one during the
computation of the gradients and the other, during the formation of the residuals.

Since we are interested in partitioning triangular grids, we consider the centroidal dual mesh as
the undirected graph for the partitioning problem, which is composed of lines joining the centroids
of the triangles. Each vertex in Fig. 2b corresponds to a triangle in Fig. 2a. Following Kernighan
and Lin [4], the graph partitioning problem is defined as follows. Let 7" = (V, E) be a graph
of n nodes, with sizes (weights) w; > 0,7 = 1,...,n. Let C' = (¢;;),%4,5 = 1,...,n be a weighted
connectivity matrix describing the edges of T. Let k be a positive integer. A k-way partition of T
is a set of vy,, v of nonempty, pairwise disjoint subsets of T, such that (J; v; = T. The cost
of a partition is the summation of ¢;; over all ¢ and j such that ¢ and j are in different subsets. In
the present application, all the weights are chosen to be unity.

Partitioning is done recursively starting with the problem of dividing one domain into two
almost equal sub-domains. The number of triangles in the two sub-domains differ at most by one.
The amount of computation in a partition is only a function of the total number of edges and
vertices, which are related to the number of triangles and number of boundary vertices by Fuler’s
formula for planar graphs [5]. Therefore, computational load balance is assured by this strategy if
the perimeters of the interior boundaries are uniform across all partitions. The various partitioning
strategies only differ in the way one domain is divided into two sub-domains. Below we present
the key features of three partitioning algorithms that have been employed. Further details may be
found in Simon [7].

The first of the three techniques, termed coordinate bisection, makes use of the coordinate in-
formation associated with each vertex in the dual shown in Fig. 2b. The coordinates of the vertex
(centroid of the triangle) in Fig. 2b are obtained by averaging the coordinates of the vertices of a
triangle. The coordinates are then sorted in the longer of the two coordinate directions; one half of
the ordered vertices define the first partition and the remaining vertices define the second partition.
This technique is identical to the orthogonal bisection of Williams [1]. The second technique derives
the partitions from the Reverse Cuthill-McKee (RCM) algorithm, which is a popular reordering
technique in the direct solution of sparse matrices. This algorithm has a wavefront property and
defines level sets, which represent the neighbor lists starting with a root, neighbors of the root,

Figure 2(a). Triangulation.
5

Figure 2(b). Dual grid.
6

Figure 2(c). True communication graph.

7

neighbors of neighbors of the root etc. The two partitions are defined when one half of the domain
has been traversed. The third technique is based on the spectral partitioning algorithm of Pothen
et al.[6] . Their algorithm induces the partitions from the eigenvector corresponding to the second
smallest eigenvalue of the Laplacian matrix associated with the graph. They have shown that the
separators produced by this algorithm are shorter than those produced by RCM and nested dissec-
tion. A separator is a set of nodes which subdivides the original connected graph into two disjoint
subgraphs. Separators control the fill-in that occurs during the factorization of sparse matrices,
but in the present context, separators are of interest since the interior boundaries are comprised of
them. Simon [7] has applied these three partitioning algorithms to a variety of two-dimensional and
three-dimensional problems, arising from finite elements and has shown that the spectral technique
yields better partitions in that it produces subdomains with shorter boundaries. He has observed
that the coordinate bisection technique leads to disconnected partitions, thereby greatly increasing
the lengths of the boundary segments. Disconnected partitions also have the undesirable effect of
increasing the number of adjacent partitions and each adjacent partition requires a message to be
generated. Therefore, disconnected partitions imply higher start-up and transmission costs. The
RCM technique produces partitions with long boundaries since it uses a breadth-first search to
define the level sets. The spectral technique produces uniform, mostly connected subdomains with
short boundaries. Theoretical results by Fielder (cf. [6]) show that one of the two subdomains
formed by the spectral partitioning is always connected. Spectral partitioning results in fewer
shorter messages and reduced communication cost.

In Fig. 3a we show an eight-way partition obtained with the coordinate bisection technique for
a mesh. Fig. 3b and Fig. 3¢ show the decompositions obtained using the RCM and the spectral
partitioning strategies, respectively. The inter-partition boundaries are shown by the thick lines.
We observe from Fig. 3a, that even with only eight partitions, there are instances where the strips
degenerate to zero thickness. This is a direct consequence of the variable density of the grid within
a rectangular coordinate strip and leads to disconnected domains for larger number of partitions. In
Fig. 3b, we see that the partitions produced by RCM have long boundaries and are connected, but
as the number of partitions increases, we have observed that the partitions become disconnected.
In Fig. 3c, we notice that the partitions produced by the spectral technique are compact and this
property seems to hold even as the number of partitions is increased. In the Results section, the
partitionings produced by the three techniques are characterized and compared.

Finally, we notice from Fig. 1 that the communication occurs across the duplicated vertices
and not edges. Therefore, the true communication graph, which describes the message pattern
more accurately, is not the dual shown in Fig. 2b, but that shown in Fig. 2c, which consists of
cliques corresponding to the degree of each vertex. We can again employ the RCM and the spectral
partitioning strategies discussed above to this graph. This graph, being more dense, makes the
partitioning schemes more computationally intensive. Note that the coordinate bisection only
makes use of the physical coordinates and hence is not affected by the choice of the dual graph.

We have two variants of the partitioning strategies based on each of the three techniques outlined
above. These are most easily explained by referring to the coordinate bisection strategy. The first
variant corresponds to switching the directions in which the sorting of coordinates is performed to be
the longer of the coordinate directions. The second variant corresponds to fixing the directions to be
the longer of the two coordinate directions right at the outset. The first variant produces partitions
which have more neighboring sub-domains and shorter boundaries and the second produces thin,
long partitions which have fewer neighboring sub-domains but longer boundaries. The two variants
are referred to as domainwise and stripwise decompositions. In the parallel implementation, the
two variants have the obvious effects of requiring more short messages and fewer long messages,
respectively. In the case of the RCM, strips are formed by just partitioning the level sets for the

Figure 3(a). Domainwise decomposition using coordinate bisection.

9

Figure 3(b). Domainwise decomposition using RCM.
10

Figure 3(c). Domainwise decomposition using spectral technique.
11

initial graph i.e. the RCM is not carried out recursively. Similarly, for the spectral partitioning the
strips are formed by sorting the entries of the eigenvector corresponding to the initial graph and
inducing the required number of partitions. Figures 4a, 4b and 4c show respectively, the stripwise
decompositions achieved using the coordinate bisection, RCM and the spectral techniques. The
stripwise decompositions are also characterized and assessed in the Results section.

The execution times for the coordinate bisection, RCM and spectral techniques for a mesh with
15606 vertices on a Silicon graphics workstation are 4 seconds, 3 seconds and 1750 seconds. The
spectral technique is thus quite expensive. However, on a vector computer such as the Cray Y-MP,
the performance of the spectral technique improves considerably because matrix vector products
can be vectorized. Carrying out a number of flow simulations on the same grid also amortizes the
preprocessing cost, since the partitioning needs to be done just once.

We conclude this subsection by observing that the optimal partitioning of the triangular mesh
which reduces the communication time is a difficult problem. The communication time for sending
a message is a function of the start-up cost and the message length. Therefore, the total communi-
cation time is governed by the start-up costs (equal to the number of adjacent partitions) and the
transmission costs (proportional to the number of IBVs). The domainwise partitioning strategies
attempt to reduce the transmission costs and the stripwise partitioning strategies attempt to reduce
the start-up costs. To achieve truly optimal partitions, the timing model (given later) has to be
included in the partitioning procedure. It is beyond the scope of this paper to address this problem.

3.2 Data structures

The information required for communication at the inter-partition boundaries is precomputed using
sparse matrix data structures. Neighboring subgrids communicate to each other only through their
IBVs (defined earlier) which are shared by the processors containing the neighboring subgrids.
In the serial version of the scheme, field quantities (mass, momentum and energy) are initialized
and updated at each vertex of the triangular grid by computing the residuals. In the parallel
implementation, each processor performs the same calculations on a subgrid as it would do on
the whole grid in the case of a serial computation. The difference is that now each subgrid may
contain both physical boundary edges and interior boundary edges, which have resulted from grid
partitioning. The only communication at the inter-partition boundaries consists of summing the
local contributions to integrals such as volumes, fluxes, gradients etc. The data structures that we
use facilitate communication across the inter-partition boundaries in a general manner. The data
structures for each processor consist of:

nadjproc - no. of adjacent processors
iadjproc - list of adjacent processor - length nadjproc

ibv - pointers to the cumulative number of IBVs in common with the adjacent processors - length
nadjproc+1

nbv - number of boundary vertices in common with processor iadjproc(i). This can be derived
from ibv and is not stored. nbv(j) = ibv(j+1) - ibv(j)

nintbv(.,1) - Local indices on current processor - length ibv(nadjproc+1)-1

nintbv(.,2) - Local indices on adjacent processor - length ibv(nadjproc+1)-1

12

Figure 4(a). Stripwise decomposition using coordinate bisection.
13

Figure 4(b). Stripwise decomposition using RCM.
14

Figure 4(c). Stripwise decomposition using the spectral technique.
15

We illustrate these data structures by referring to Fig. 5 which shows an eight-way partition of a
domain. Only the IBVs and the shared edges are shown for the sake of clarity. They comprise the
inter-partition boundaries. Each processor contains only the data that it needs for communication.
The arrays take on the following values for processor 0:

nadjproc - 7

iadjproc - 1,6,7,2,4,3,5
ibv - 1,7, 12, 13, 14, 15, 21, 25
nbv - 6,5, 1,1, 1, 6, 4

Note that subdomains are adjacent even if they share only one vertex and no edges e.g. subdomains
0 and 4.

After the application of the partitioning algorithms, the whole finite volume grid made up of
triangular cells is partitioned into a number of subgrids equal to the number of processors. Each
subgrid contains an almost equal number of triangular cells which may or may not form a single
connected region. After partitioning, global values of the data structures required to define the
unstructured grid are given local values within each partition. We thus dispense with any references
to global indices. Additionally, each local data set contains the information a partition requires for
communication at its inter-partition boundaries. Each subgrid is assigned to one processor. Below,
we argue that the assignment of partitions to processors is not a crucial issue in the case of the

Intel iPSC/860.

3.3 Embedding onto the iPSC/860

An embedding of a graph G onto the hypercube graph H is a one-one assignment of a vertex in G
to a vertex in H. We have utilized two embedding schemes, one of which is a random embedding
and the other is a naive embedding wherein partition 0 is assigned to processor 0, partition 1 is
assigned to processor 1 and so on. There is little observable difference in performance between
the two assignments. We define a partition communication graph as an undirected graph, where
every edge represents the communication link between two neighboring partitions. Fig. 6 shows
the partition communication graph corresponding to the decomposition shown in Fig. 5.

A near-optimal assignment of partitions to processors is an embedding of this graph G onto
the hypercube graph H that minimizes the dilation cost: the maximum distance in H between
the images of vertices that are adjacent in G [10]. Since the degree of a vertex in the partition
communication graph is arbitrary and could be greater than the degree of a node in the hypercube,
a near-optimal embedding (using heuristics) entails a dilation cost of at least 2 whereas a random
assignment leads to an average value of 3 when using 64 processors.

The time (in u secs.) to communicate a message of length m bytes over a distance d hops on

the iPSC/860 is given by (cf. [8])

t = 954+ 10.3d+ 0.394m FORCED messages
t = 954+ 10.3d+ 0.394m UNFORCED messages for 0 < m < 100 (2)
t = 1644+ 29.9d+ 0.398m UNFORCED messages for m > 100

In the present two-dimensional code, if we have n vertices and P processors, the average length
of an inter-partition boundary varies roughly between \/n/P and n/P. These bounds are derived
by considering a logically square computational domain with square and linear processor layouts,

16

Figure 5. Decomposition into eight partitions.
17

Figure 6. A Partition Communication Graph.
18

respectively. In the present implementation, the gradient calculation for instance, requires 72 bytes
of data per IBV, so that m assumes at least a value of 72/n/P. In our large problem, n = 15606
and P = 64 and m is at least 1124 bytes. It is easy to verify that even for this problem on 64
processors, a near-optimal embedding, with a dilation cost of 2, yields only an improvement in
communication time of 2% over the random embedding using FORCED message type. Since the
communication time is 33% of the whole computation for this problem (see the section on results),
the overall improvement is less than 1%. Thus, for even relatively short messages, a near-optimal
embedding only yields a small improvement over a random assignment of partitions to processors.
Therefore, we have not utilized other embedding strategies, such as Gray coding after coordinate
bisection etc. since we expect the performance gain to be minimal.

3.4 Communication

We now address the issue of efficient communication. We derive a scheduling algorithm so that
the messages which need to be sent are scheduled with minimum conflict. The schedule we derive
is most easily explained by referring to Fig. 6. The scheduling algorithm consists of coloring the
edges of the partition communication graph. This algorithm permutes the adjacency sub-domain
indices (iadjproc) associated with each processor to produce “pairwise exchanges”. The coloring
of the edges has the property that the number of colors is equal to the maximum degree of a
vertex (+1). Therefore, the number of “stages” taken for the entire communication is equal to
the number of messages (+1) required by the processor that has to communicate the most. A
“stage” here is defined as the step in the communication when processor pairs can communicate
without interference. We show in Table 1 the original adjacency processor list and in Table 2 the
schedule for partition communication graph of Fig. 6. A stage is a column in Table 2 and in
each column the processors occur in pairs. We do not enforce explicit synchronizations at the end
of every stage, so that the stages shown in Table 2 are for the purpose of clarity only. We can
omit the schedule completely and post asynchronous receives (IRECV) for all the messages that a
processor expects to receive and provide buffers for each of these messages. However, this approach
leads to a considerable waste of memory, does not utilize the concurrent communication facility
of iPSC/860 and thus limits performance. Organizing the messages into pairs also enables us to
utilize the concurrent bidirectional communication on the Intel iPSC/860. Following Seidel et al.
[9], this is done by the synchronization of a pair of processors which is accomplished by exchanging
zero byte messages.

Two qualifications need to be made regarding the optimality of the schedule described above.
First, the schedule does not guarantee the absence of wire contentions at any stage of the com-
munication in Table 2. Wire contentions inhibit the concurrency of the scheduled messages and
lead to sub-optimal communication times. The Intel iPSC/860 uses the the e-cube routing algo-
rithm for communication between two processors ([8]), so that the path between two processors
is deterministic. Schedules have been derived for simpler communication patterns, such as a com-
plete exchange, which avoid link contentions (see [8] and [9]), but are quite difficult to derive for
general graphs. Second, the schedule is optimal only under the assumption that the start-up cost
dominates the transmission cost. The scheduling algorithm described above only guarantees that
the number of stages required for completing the communication is no greater than the maximum
over all processors of the number of adjacent processors (41). It does not ensure that the effective
length of the communication is minimized over all possible schedules. Referring to the timing model
Eqn. (2), for the schedule to be truly optimal, both these properties have to be satisfied. This is
a difficult problem and we do not pursue it further. Furthermore, this is not really an issue unless
the message lengths are disparate.

19

We now discuss the reason for partitioning triangles and not vertices. We show that there is
a duality between the two choices and partitioning triangles is a better choice for the iPSC/860.
The following discussion pertains to the communication required for the formation of the residual.
When partitioning triangles, the inter-partition boundary consists of the edges of the triangular
mesh as shown in Fig. 1 for a sample triangulation. One two-way message is required for every
shared vertex in order to compute the contribution to a path integral and the total message length
is directly proportional to the number of shared vertices. When partitioning vertices, the inter-
partition boundary consists of the edges of the dual mesh It is shown in Fig. 7 as a thick line
for the same triangulation. Communication is required at the time of computation of the fluxes.
The formation of the residual (the discrete path integral) itself requires no communication. It was
argued by Hammond and Barth [3] that a vertex partitioning strategy saves 50% in communication.
This is not true when we consider a medium grained parallel computer such as the iPSC/860 which
is capable of bidirectional communication. In their strategy, the flux computation at the inter-
processor boundary is performed by one of the processors. This processor sends one message
to receive the data from the neighbor, computes the flux and sends back the flux information.
It thus requires two one way messages. If we duplicate the flux calculation at the boundary
(which is not a severe penalty on a medium grained computer), the communication consists of one
two-way message which can make use of the bidirectional communication on the Intel iPSC/860.
However, the total message length is proportional to the number of cut edges i.e. edges with one
vertex in each processor. The number of cut edges is always greater than the number of shared
vertices for triangular meshes (typically twice). Therefore, partitioning triangles is better than
partitioning vertices, since it entails shorter messages. In three dimensions, the number of cut
edges for tetrahedral meshes is even greater (typically three times the number of shared vertices)
and we expect partitioning tetrahedra to be superior to partitioning vertices.

4 Performance on the Intel iPSC/860

We consider a subcritical flow past a four element airfoil in landing configuration with a freestream
Mach number M., = 0.1, and angle of attack of 5°. Performance results are presented for two
problem sizes that are representative for two-dimensional inviscid flows. The coarse mesh has
6019 vertices, 17473 edges, 11451 triangles, 4 bodies and 593 boundary edges. The fine mesh
has 15606 vertices, 45878 edges, 30269 triangles, 4 bodies and 949 boundary edges. In the Cray
implementation, vectorization is achieved by coloring the edges of the mesh. More details may be
found in [2]. The fully vectorized code for this test case runs at 150 Mflops on the NAS Cray Y-MP
at NASA Ames, and requires 0.15 seconds per time step for the smaller grid and 0.39 seconds
per time step for the larger grid. The performance of the code on the Intel iPSC/860 is given
in Table 3. Table 3 represents the performance results from the best of our efforts for the two
problem sizes. These results are from using the domainwise spectral partitioning based on the
centroidal dual, the schedule, the bidirectional communication capabilities of the iPSC/860 and
Fortran compiler optimizations. The effects of the various optimizations outlined in the previous
sections are examined in detail in the following. The Mflops numbers in this section are based on
operation counts using the Cray hardware performance monitor, i.e. are based on the operation
count for a serial implementation. Since the larger problem does not fit in one processor of the
iPSC/860, the efficiency is computed based on the formula:

Efficiency(%) = (Mflops with N procs) / [N * (Mflops with 1 proc)]*100 .

The numbers in Table 3 show that with 128 processors on the iPSC/860 using 64-bit arithmetic,
we are able to obtain slightly more than twice the performance of a single processor of the Cray

20

Table 1: Adjacency processor list for the sample problem.

Processor iadjproc
o1 6 7 2 4 3 5
1412 0 7 3 6
2143 1 0 4 7
3|14 2 0 5 1
4045 3 0 2
5110 3 4 6
6|5 7 0 1
711 0 6 2

Table 2: Communication Schedule.

Processor Permuted iadjproc
0|1 6 7 2 4 3 5
140 2 3 7 6
2113 1 4 0 7
3112 4 1 5 - 0
4015 3 2 - 0
514 - 6 3 - - 0
617 0 5 - 1
716 - 0 1 2

Table 3: Performance of Unstructured Grid Code on the Intel iPSC/860.

Procs small grid large grid
secs/step | Mflops | efficiency || secs/step | Mflops | efficiency
1 4.86 4.6 100 - - -
2 3.05 74 80 7.39 7.9 86
4 1.31 17.1 93 3.70 15.8 86
8 0.71 31.6 86 1.94 30.2 82
16 0.41 54.9 74 1.08 54.1 74
32 0.25 90.0 61 0.59 99.2 67
64 0.17 | 1324 45 0.31 187.5 64
128 0.13 | 173.1 29 0.19 | 307.9 52
Y-MP 0.15 150 - 0.39 | 150.0 -

21

Figure 7. Inter-partition boundary for the partitioning of vertices
22

Y-MP. It also shows that the performance of the code on a single processor of the iPSC/860 is about
4.8 Mflops, considerably less that the advertised peak speed of this processor of 60 Mflops. A third
point to note from Table 3 is that for a fixed problem size, the efliciency decreases as the number of
processors is increased and that for the same number of processors the performance improves with
increasing problem size. However neither of these trends is uniform (due to cache effects). The best
performances of the code on the iPSC/860 for the two problems are shown graphically in Fig. 8.
The ideal curve is determined by assuming 4.8 Mflops per processor and no communication. There
is sufficient memory on the iPSC/860 to run much larger problems since two processors are enough
to solve test case 2.

The various partitioning strategies are compared in Tables 4 and 5. In Table 4, the results from
domainwise partitions are shown and in in Table 5, results from stripwise partitions are shown. In
both tables the results derived from applying the partitioning techniques to both the centroidal
dual and the true communication graph (described in section 3.1) are shown. All the results are
shown for the larger problem with the number of processors fixed at 64. The tables present the
total time taken per time step, the time spent in communication alone and the Mflop rates. The
times shown are the maximums across all processors. We can also characterize the eflicacy of
the partitioning methods by the average number of neighboring partitions and the total number of
shared boundary vertices (which represents the perimeter of the interior boundaries). It is seen that
the spectral partitioning based on the centroidal dual produces the shortest perimeter of the interior
boundaries. The communication time is determined by the processor that has to communicate the
most. Therefore, we also characterize the partitionings by two other measures, the maximum over
all partitions of the number of adjacent partitions (nadjproc) and of the total number of IBVs
that a partition has. These two measures represent the maximum over all processors of the total
number of messages that need to be sent and the total length of the messages, respectively. Recall
that IBVs are duplicated if shared by more than two processors. Spectral partitioning requires
fewer, shorter messages as compared to the coordinate bisection and RCM strategies. Table 4 also
shows that there is little to be gained from using the true communication graph for domainwise
partitioning. The table shows that a more efficient partitioning scheme can result in a considerable
improvement in the communication time, and thus in the effective Mflop rating.

We also attempted to reduce latency by using stripwise decompositions which try to reduce
the number of neighboring sub-domains and consequently, the message startup costs. With the
spectral and the RCM techniques we use the true communication graph as well as the centroidal
dual to achieve stripwise decompositions. We expect the use of the true communication graph to
be crucial in reducing the number of neighbors and Table 5 seems to confirm this. In examining
Table 5, we notice that the average number of neighbors and the maximum number of neighbors
do decrease especially with the true communication graph, but at the expense of vastly increased
message lengths. Using the RCM partitioning strategy with the true communication graph leads
to a maximum of only 4 neighbors, but the total message length has increased more than five fold.
The result is that the communication time is about four times what we achieve using domainwise
spectral partitioning. We also observe in Table 5 that using the true communication graph with
stripwise spectral decomposition also leads to poor communication times. We conclude that on the
iPSC/860 it is still desirable to reduce the number of startups, but in such a way that the lengths
of the boundaries are not greatly increased. In examining Tables 4 and 5 we also observe that some
of the schemes exhibit differing computation times (differences between total and communication
times). This is mainly due to the computational load imbalance caused by having disparate inte-
rior boundary perimeters. Since the various partitions have nearly the same number of triangles,
disparate boundary perimeters lead to differing number of vertices and edges in various partitions;
and these are directly related to amount of computation.

23

Figure 8. Parallel performance of the unstructured grid code on the iPSC/860
24

Table 4: Performance of domainwise partitioning algorithms.
No. of vertices = 15606, No. of processors = 64

Centroidal dual

True comm. graph

Coordinate | RCM | Spectral || RCM Spectral
Seconds/time step 0.39 | 0.43 0.31 || 0.37 0.33
Mflops 150 136 189 158 177
Comm. time (secs.) 0.15 | 0.19 0.08 13 0.10
Average # of neighbors 6.7 7.4 4.5 6.7 4.5
Total # of shared vertices 2528 | 3117 1766 || 2425 1756
Max. # of neighbors 14 18 12 15 4
Max. # of IBVs 175 255 99 147 109

Table 5: Performance of stripwise partitioning algorithms.
No. of vertices = 15606, No. of processors = 64

Centroidal dual

True comm. graph

Coordinate | RCM | Spectral || RCM Spectral
Seconds/time step 0.69 | 1.12 0.45 0.61 0.45
Mflops 85 52 130 96 130
Comm. time (secs.) 0.46 | 0.65 0.16 35 0.18
Average # of neighbors 23.2 3.8 3.6 2.7 3.5
Total # of shared vertices 4997 | 13235 6012 || 12344 6101
Max. # of neighbors 35 6 6 4 6
Max. # of IBVs 390 | 1389 356 516 349

Table 6: Performance Comparison across Architectures

Machine Processors | secs/step | Mflops
Cray Y-MP 1 0.39 | 150.0
Intel iPSC/860 64 0.31 187.5

128 0.19 | 307.9
CM-2 (32 bit) 8192 0.45 | 130.0

25

By implementing the scheduling algorithm and by forcing pairwise exchanges in a prescheduled
manner, as discussed earlier, we obtained almost a factor of three improvement in performance
over a naive implementation. The naive implementation here refers to having random adjacency
processor lists (iadjproc) and using synchronized sends (CSEND) and receives (CRECV).

5 Conclusions

The performance figures for the unstructured grid code are summarized in Table 6 across three
different computers, where all Mflops numbers are Cray Y-MP equivalent numbers. The CM-2 per-
formance numbers are from [3]. The numbers in Table 6 show that current parallel supercomputers
yield approximately 1-2 times the performance of a single processor Cray Y-MP for typical inviscid
problems on unstructured meshes.

We have thus demonstrated in our work that an explicit unstructured flow solver can be im-
plemented on a MIMD machine, and that supercomputer performance can be obtained. We also
demonstrated the successful use of a new partitioning strategy for unstructured computations.
Finally our work shows that a careful implementation of message passing is critical, even for an
explicit code.

References

[1] R. D. WiLLIAMS, Supersonic fluid flow in parallel with an unstructured mesh, Concurrency:
Practice and Experience, Vol. 1, No. 1, pp. 51 — 62, September 1989.

[2] T.J. BARTH AND D. JESPERSEN, The design and application of upwind schemes on unstruc-

tured meshes, in Proceedings, 27th Aerospace Sciences Meeting, January 1989. Paper ATAA
89-0366.

[3] S. HamMonD anD T. J. BARTH, An efficient massively parallel Euler solver for two-
dimensional unstructured grids, to appear in AIAA Journal, November, 1991.

[4] B. W. KERNIGHAN AND S. LiN, An Effective Heuristic Procedure For Partitioning Graphs,
The Bell System Technical Journal, pp. 291-308, February, 1970.

[5] J. A. Bonpy anD U. S. R. Murry, Graph Theory with Applications, Published by North
Holland, 1982.

[6] A. PoruENn, H. D.SiMoN, aND K.-P. Liov, Partitioning sparse matrices with eigenvectors of
graphs, SIAM J. Mat. Anal. Appl., 11 (1990), pp. 430 — 452.

[7] H. D. SiMmoN, Partitioning of unstructured problems for parallel processing, Tech. Report RNR-
91-08, NASA Ames Research Center, Moffett Field, CA 94035, February 1991. (to appear in
Computing Systems in Engineering).

[8] S. H. Bokuarl, Complete exchange in the iPSC/860, ICASE Report 91-4, ICASE, NASA
Langley Research Center, Hampton, VA 23665, January 1991. (Submitted to 1991 International
Conference on Parallel Processing).

[9] S. SEIDEL, M. LEE, AND S. FOTEDAR, Concurrent bidirectional communication on the Intel
iPSC/860 and iPSC/2, Computer Science Tech. Report CS-TR 90-06, Michigan Tech. Univer-
sity, Houghton ,MI 49931, November 1990.

26

[10] J. HonG, K. MELHORN, AND A. L. ROSENBERG, Cost trade-offs in graph embeddings, with
applications, Journal of the ACM, Vol. 30, No. 4, pp. 709 — 728, October 1983.

27

