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INTRODUCTION

The use of cylindrical candle filters to remove fine (~0.005 mm) particles from hot (~500-
900 °C) gas streams currently is being developed for applications in advanced pressurized
fluidized bed combustion (PFBC) and integrated gasification combined cycle (IGCC)
technologies. Successfully deployed with hot-gas filtration, PFBC and IGCC technologies will
allow the conversion of coal to electrical energy by direct passage of the filtered gases into non-
ruggedized turbines and thus provide substantially greater conversion efficiencies with reduced
environmental impacts [1].

In the usual approach, one or more clusters of candle filters are suspended from a
tubesheet in a pressurized (P ~< 1 MPa) vessel into which hot gases and suspended particles
enter, the gases pass through the walls of the cylindrical filters, and the filtered particles form a
cake on the outside of each filter ([2-4]). The cake is then removed periodically (typically, two
or three times per hour), by a backpulse of compressed air from inside the filter, which passes
through the filter wall and filter cake.

In various development or demonstration systems the thickness of the filter cake has
proved to be an important, but unknown, process parameter. For example, the distance between
adjacent filters typically is on the order of 5 cm. If the filter-cake thickness should reach 2.5 cm,
"bridging" of cake between adjacent filters would occur, leaving little space between the filters
into which the incoming gases and particles could flow. Bridging might eventually occur if the
removal of cake at each cleaning were not quite complete, or if a fraction of the particles
removed were re-entrained and refiltered after each cleaning backpulse.


The figure pages in this document have a very large file size and may not print as displayed.  If you experience printing problems, try printing the text pages (1 through 13) separately and then print the figure pages one page at a time. 


The accumulation of particulates around and among filters is not just a hypothetical
concern. Operating experience with the Tidd PFBC Demonstration Plant revealed that under
some conditions the buildup of large masses of particulates among the filters can, indeed, be an
important problem, producing excessive pressure drops within the filter vessel and even filter
breakage [5].

Because of the high temperatures and pressures, the geometries of the filter clusters and
mechanical supports, and the presence of fine particles to scatter any light, on-line measurement
of cake thicknesses during filter-system operation has not been feasible in most systems.
However, when the pressure drop across the filter tubesheet, the gas flow rate, and the particle
concentration in the incoming gases are measured, these data can be used to calculate the mass
of filter cake on each filter. If filter-cake samples can be obtained (e.g., from the filter-vessel
hopper or during shut-down) so that the filter cake porosity can be measured, then the filter-cake
thickness can be estimated during plant operation, as well. In a typical filter system, the needed
flow data are logged and the cake thickness can be estimated several times per minute, so that
the filter system need not be operated “blindly,” without knowledge of the extent of cake buildup.

The following section describes a physical model for cake and pressure buildups between
cleaning backpulses, and for longer term buildups of the “baseline” pressure drop, as caused by
incomplete filter cleaning and/or re-entrainment. When combined with operating data and
laboratory measurements of the cake porosity, the model may be used to calculate the (average)
filter permeability, the filter-cake thickness and permeability, and the fraction of filter-cake left
on the filter by the cleaning backpulse or re-entrained after the backpulse.

When used for a variety of operating conditions (e.g., different coals, sorbents,
temperatures, etc.), the model eventually may provide useful information on how the filter-cake
properties depend on the various operating parameters.

MODELS

Consider a filter vessel with candle filters. For each filter, the gas flows through the
filter cake, then through the filter wall, so that ftiie filter and the corresponding filter cake
constitute two resistances in series:

R, =R, +R.. (1)

All n filters (and their cakes) operate in parallel and are subjected to the same pressure drop.
Thus their effective resistance R is given as:

1/R =(1/R)). (2)
The net, measured pressure drop is the sum of the pressure drop across filters and filter cakes and
the pressure drop through other flow paths in the filtration system. Therefore, the net vessel

resistance Ris:

R,=R+R, 3)



where R is the passage resistance. It should be noted here that the passage resistance is, in
general, a function of flow rate.

The model used here makes the following assumptions: (1) fdters have the same
permeability; (2) essentially all particles that enter the filter vessel are deposited on the filters;
(3) the particles are distributed uniformly among the filters and on each filter surface; and (4) the
filter cakes (as well as the filters) obey Darcy’s law,

v = (k/p)dP, (4)
wherev is the velocity vector, P is the pressure and k is the permeability.

To simplify the model, the small area at the bottom of the filter (about 1% of the total
filter surface), for which the gas flow rate differs significantly from the rest of the filter, is
ignored in the subsequent analysis. Under assumptions (1R(3nd 'R, are the same for all
n filters, and eq (3) reduces to

R, = IR +R) + R, (5)

Because of the cylindrical geometry of the filters and filter cakes, Darcy’s law is solved
in polar coordinates. Assuming that the pressure varies only radially, the resulting pressure drop
across each clean candle filter (in the absence of filter cake) is (Yang et al.[4]):

AP, = (1/2rk)u(Qhh)in(b/a), (6)

where Q is the vessel (volumetric) gas flow ratés khe filter permeabilityh is the filter length,
anda andb are the inside and outside radii of the filter wall, respectively.

At constant gas flow rate into the filter vess@, and constant volume fraction of
particles in the incoming gak, the volume of filtered particles per filter that arrives in the filter
vessel during time intervalis

V= FQt/n. (7)
The corresponding volume of each filter cake is
V(t) = FQUn(1- @) (8)

where@ is porosity of the cake. The outer radius of the filter cake , B(t), at time t then is given
by

B(t) = b[1 +FQUmh(1- )b (9)



The increase in the pressure drop across the filter cakes over the time interviakfoto time
tis

AP(t) = (1/4k ) (Q/nh) In [1 + FQt/nhr(1- @)b?, (10)
where kis the filter-cake permeability. Typically the filters are cleaned periodically after interval

t' ('~ 20 to 60 min) with a backpulse of compressed air of about 0.2 s duration. In eq (10), t
is the time measured after the backpulse.

Ideal operation
In the simplest case, cleaning of the filters by the backpulse is complete and no "re-
entrainment” (i.e., refiltration) of any of the cake occurs. At time0 the filter cake thickness
is zero, and the pressure drAp - AP, arises only from the clean filters:
AP - AP, = (1/21k,)u(Qhh) In(b/a). (12)

Over the time interval = 0 tot = t' filtration occurs, and

AP - AP, = p(Q/2mh){(1/k,) In(b/a) + (1/2k) In [1 + FQt/nhr(1- @)b7}. (12)
At t = t' the backpulse occurs, addP - AP, becomes negative. Because cake removal is
complete and no re-entrainment occurs, after the backpulse the pressure drop returns to the initial
value for the clean filters:

AP(t = t) - AP,= AP(t = 0) - AP, (13)

[whereAP(t = 0) - AP, is given by eq (11)]. During the second cycle and all subsequent cycles,
the cake buildup, pressure buildup, and cleaning of the first cycle are simply repeated.

If the flow that producedP, in various passages is turbulent and
AP = c@’, (14)
the value ofc can be obtained from pressure drops measured at different flow rates. Then, from
on-line measurements & and Q (and of the temperature, to gg}, and from laboratory
measurements of the filter dimensiorss I, h) and cake porosityq, fits of eq (12) to the
experimental data yield the filter permeability;)(khe filter-cake permeability (k and the
thickness of the filter cake

5= B(t) - b = b{[1 + Fqt/Ih(1p)b3*2 - 1} (15)

at any time.



Incomplete cleaning

If the performance of filter systems always conformed to the ideal case, there would be
little need to determine filter-cake permeabilities and thicknesses during system operation.
However, all too often, filter systems do not exhibit ideal behavior. It seems unavoidable that,
after each cleaning, some portion of the cake will remain on the filter and/or some of the
fragments of filter cake removed by the backpulse will be recollected on the filter surface.
Intuitively, it also may appear inevitable that the thickness of the "residual” cake from incomplete
cleaning and re-entrainment must increase without limit, until all of space between adjacent
filters is filled and bridging occurs.

Imagine that an outer cylinder of cake of uniform thickness is removed bjththe
backpulse, leaving a uniform cake of outer radiusrBthe filter at the beginning of thth +
1 cycle. Hence, at the start of tjte + 1 cycle the pressure drop is no longer- AP,= AP, =
(1/21k)u(Q/nh) In(b/a) [eq (11)], but

AP - AP, = (1/2mu(Q/nh) [In(b/a)lk + In(B /b)/k]. (16)

If the incremental thickness of cake left on the filter after each cleaning is a constant
fraction,'f, of the cake depositeduring that cycle then

AB =AB="f (B -b), (17)

whereB '= B(t=t ') is the radius of the cake at the end of the first cycle. Assuming that the
deposited cake thickness for different cycle is essentially constant, at the beginningtiofthe
cycle the cake thickness is

B-b=jf (B -b), (18)
and
AP - AP, = (1/2u(Q/nh){(1/k,) In(b/a) + (1/K) In[j 'f (B' - b)/b + 1]}. (29)

After j = 1/f cycles the thickness of the residual cake left after the filter cleaning is equal
to the thickness of the cake deposited just before the first cleaning backpulse. Thusf imless
very small, the cake thickness quickly becomes many times as large as the thickest cake ever
encountered in the ideal case. In normal opera&jop- b >>B'- b, where B,,,is the maximum
possible filter-cake thickness (less than half the nearest neighbor distance between filters).
Hence, if'f = constant, satisfactory operation requires

T, < (t'/f) (Byax- b )/(B'- b) (20)

whereT, is the time of operation before the filter vessel must be opened and manually cleaned.



Re-entrainment

In refiltration, or re-entrainment, the removal of filter cake by the cleaning backpulse is
complete, but some fraction of the resulting filter-cake fragments return to the filter surface. The
fraction of re-entrained particles is a function of the size distribution of the cake fragments:
fragments that are sufficiently large move downward under the force of gravity and tend to
escape; fragments that are not much larger than the largest particles entering the vessel have a
high probability of being re-entrained. The new locations of these fragments on the filters may
be different from their location before the backpulse, but these fragments will be refiltered within
a short time after the backpulse occurs.

The mass (or volume) of particles and filter cake re-filtered duringgiibfdtration cycle
will be some fractionf;, of the total mass of cake removed by jtie- 1 backpulse. By the
end of the first cycle a mass of cdke=m' = pFQt/n (and volume?V, = V' = FQt/n(1- @) [eq
(8)]) forms on each filter, which causes a pressure increase
(AP), = AP' = AP(t), (21)
as given by eq (10). Within a short while after the first cleaning backpulse an amount
'm, = f,m' (22a)
of blown-off cake fragments is recaptured on each filter, which causes an increased pressure drop
'(AP), = f, AP (22b)
Here {, is the fraction recaptured; and it is assumed that, for small f's, the increase in pressure
drop is proportional to the increase in cake radius. During the second cycle an amowoint
freshly filtered particles is added to the cake already present from re-entrainment, so that at the

end of the second cycle (just before the cleaning backpulse) the mass of filter cake is

m,=m' +fm" = (1 +f) m' (22c)

and the pressure drop is
AP), = (1 +f1,)) AP (22d)

After the second backpulse and the re-entrainment at the beginning of cycle 3, the cake-
mass is

'm,=1,41+f)m (23a)



and the pressure drop is

'(AP), = f,(1 +1,) AP (23b)
At the end of cycle 3 the filter-cake mass and the pressure drop are, respectively,

‘m,=[1+f 1 +f)m (23c)
and

(AP), = [1 +f ,(1 +£,)]AP". (23d)
For thejth cycle the recaptured cake-mass is

mo= F R R f R )M (24a)

J

and the increase in pressure drop is

OP) = (f + ff L +ff .f , + ...+ £f .. Gf)AP (24b)

1]

At the end of thgth cycle the filter-cake mass and the pressure drop are, respectively,

mo= (L o+ ff R, F L )M (24c)

1]

and

(OP) = (L4 +hf G, A L AP (24d)

1]

These quantities define the "baseline” and "topline” of the pressure drop versus time.
Thus, egs (22b) and (22d) may be used with the pressure drops measured at the beginning and
end, respectively, of the second cycle to give "duplicate" measuremeptshef "best" value of
f,, along with eqgs (23b) and (23d) and the pressure drops measured at the beginning and end of
the third cycle give "duplicate” measurementd,petc.

A plausible hypothesis is that the fraction of filter cake re-entrained during each cycle
should be constant for all cycles. With this hypothesis eq (24d) reduces to

C(AP) = (1 +f +f2+ ... +f")AP' (25)
{

As the number of cycles becomes very largeld( infinity), the maximum pressure drop
encountered at the beginning of each cycle is

(AP) = APY/(19), (26)

where 0< f < 1 is assumed.



RESULTS

Figure 1 shows the variation of the ratio of pressure drop to flow rate versus time for
fifteen one-hour cycles of operation of the "MGCR" filter vessel. The corresponding time
variation of the flow rate through the vessel is shown in Figure 2. (The units are pressure drop
[AP] = Ib/ir?, flow rate [Q] = scfh, and time [t] =s.) The roughly linear buildup of pressure
drop after each backpulse is clearly observed from Figure 1. The flow rate appears to be steady
with some random variations. At about 15,000 s, there is a step change of about 10 percent in
the mean flow rate. For t < 15,000 s, a portion of the gas from the gasification unit was sampled
for particle concentration measurements, while for larger times, the entire flow was passed
through the filter vessel. During the transition, some adjustment of the operation was also
required. As a result, the pressure variation in the fifth cycle shows an abnormal behavior.

Ideal operation

If only a few filtration/cleaning cycles are monitored, the operation of the filter system
may appear ideal upon casual inspection. To clearly illustrate the details of the pressure drop
buildup and its sharp reduction during the backpulse, a set of operationdiRigtaersus, for
three cycles of the filter vessel of the MGCR (gasification) unit are shown in in Figure 3. The
apparent constancy of the baseline values seems to indicate that no incomplete cleaning or re-
entrainment occurred (unless an asymptotic limit for re-entrainment had been nearly reached).

Laboratory measurements showed that the filter cake had high porosity. Here a porosity
of @ = 0.6 for the filter cake is assumed, and a least-square error fit of the ideal operation model
[eg (12)] to the data for the fifteen cycles (of 54,000 s duration) is evaluated. The resulting
expression is given as

AP/Q = 0.00135 + 0.003097 In [1 + 3.67 x4, (27)
where the operation condition units are used.

The predictions of equation (27) for the three and the fifteen cycles are plotted in Figures
4 and 5, respectively. Comparing Figures 1 and 3 with 4 and 5, it is readily apparent that the
ideal operation model provides a reasonable fit to the data. By including the time variations of
the flow rate, it was even possible to predict some of the "noise" in the operating pressure drop
data. Here the statisticafRalue is 0.78 (which indicates that roughly 78 percent of the data
are explained by the ideal model).

A more detailed check on the statistical fit of the model is provided by Figure 6. This
figure illustrates the statistical residual [measured value minus value calculated from the fit] for
each of the individual measured values. The observed low level of residual indicates that the
statistical fit is quite good. The very largest residuals correspond to the sporadic fluctuations in
the detectors and/or other system "noise." It also appears from Figure 6 that the residuals for the
first 15,000 s with lower flow rate are positive, while those for the larger times are negative.
There is also a high level of residual for the fifth cycle, which is as expected from the operational
changes made at that time.



The coefficient of the logarithm term in eq (12) is related to the cake permeability. The
correlation given by eq (27) may then be used to estimatéécordingly, the estimated cake
permeability is 8.8 x I& m? which is in the expected range. The cake thickness may also be
evaluated from equation (9) as a function of time, under the idealized cleaning assumption. For
a gas flow rate of 2,000 scfh, the corresponding peak cake thickness at the end of an ideal cycle
(with complete cleaning after each backpulse) becomes B(#) domm.

In spite of the reasonable agreement, one feature of the ideal model prediction is
noticeably different from the experimental data. Figures 4 and 5 show that the model leads to
an identical pressure drop level after each backpulse, while Figure 1 indicates a random deviation
in the baseline pressure drop due to incomplete cleaning, re-entrainment and/or removal of some
additional residual filter cake deposited in the earlier cycles. The ideal model was extended to
account for the effect of initial variation of the pressure drop after each backpulse. The resulting
best statistical fit to the data then is given as

AP/Q = 0.001526 + 0.003172 In [1 + 3.67 x*[@] - O, (28)

where0, = [i(APj) - i(APJ-_I)]/Q is the change in the base pressure drop (divided by the flow rate)
just after the backpulse for tlha cycle. With an average 08, .= - 1.06 x 10, the values of

O vary from -1.32 x 10to 9.4 x 10, with the extreme values appearing at the beginning and
the end of the fifth cycle. (The operating system unit used @ois Ib/irf/scfh.)

Figures 7 and 8 show the predictions of eq (28) for the fifteen and the three cycles of
operation, respectively. Comparison of these figures with Figures 1 and 3 indicates good
agreement with the data. The statisticagvRlue is now 0.93, which shows a significant
improvement over that for eq (27). Figure 9 shows the corresponding time variation of the
residuals of the fit. Comparing with Figure 6, it appears that the amplitude of the residuals are
reduced and the residuals now fluctuate around zero. However, a systematic and roughly periodic
variations in the residuals is observable in both Figures 6 and 9. These periodic deviations
appear to be associated with the statistical effect of operational changes made at the time of cycle
five on the fitted correlation.

Use of the correlation given by (28) leads to an estimated cake permeabiljty &.&
x 10" m?, which is comparable with the earlier value for the idealized case. The value of filter
permeability, k could not be estimated because the pressure drop of the spfigrmas not
measured.

Incomplete cleaning

The volume of "residual” cake remaining on the filter immediately after cleaning and
the baseline pressure drop caused by this residual cake, as calculated from the incomplete filter-
cleaning model [eq (19)], are illustrated in Figure 10. Results are included for 1%, 5%, or 10%
of the cake left on the filter after each cleaning. 'er 0.01, after 70 cleaning cycles (i.e.,

35 hr, if t' = 1/2 hr) the cake volume after cleaning is about 1/2 the volume of cake deposited
during one filtration cycle. Fdf = 0.05, after 70 cleaning cycles the cake volume after cleaning
is almost 4 times the volume of cake deposited during one filtration cycle. Affd=if0.10,



the volume of cake left after cleaning is about 10 times the volume of cake deposited during one
filtration cycle. To a first approximation, more-frequent cleaning will extend the time-to-
shutdown only if it reduce$ (e.g., by reducing the cake sintering time and cake strength).

Re-entrainment

Counter-intuitive insights into the effects of re-entrainment on filter-cake thickness and
tubesheet pressure drops can be obtained by examining the effects of different fractions of re-
entrainment in the constant-fraction re-entrainment model [eq (26)]. Figure 11 illustrates the
behavior of AP - AP.)/AP' versud, as predicted for 25%, 50%, 75%, and 90% re-entrainment
fractions. Although re-entrainment of 25% of the removed cake may seem substantial, its effects
on the pressure drop and cake thickness are not large; this degree of re-entrainment increases the
baseline pressure drop by slightly less than halfR}f(i.e., the maximum cake-induced pressure
drop, if no re-entrainment occurs). Likewise, the additional cake thickness caused by the re-
entrainment is less than 1/2 the thickness of the cake just before cleaning, if no re-entrainment
occurred. For 25% re-entrainment, the approach to these asymptotic limits is very rapid, being
almost complete after two cycles. As the re-entrainment fraction increases, both the asymptotic
limit and the time required to approach this limit increase. For 50% re-entrainment, the
maximum pressure drop (and cake thickness) are doubled by the re-entrainment. For 75% re-
entrainment the maximum cake thickness is quadrupled, and for 90% re-entrainment the cake
thickness and pressure drop increase nine-fold. Even for this extreme degree of re-entrainment,
the approach to steady-state operation is very rapid compared to the required operating time of
the filter system.

Evaluation of f's
The ©, term was introduced in the model equation given by (28) to account for the
changes in the baseline differential pressure after each backpulse. These are equal to the
differences between the initial pressure drops in consecutive cycles normalized by the volumetric
gas flow rate. Thus, for the jth cycle,
0., = [(&P.) - '(AP)I/Q, (29)
Wherei(AP)J is the baseline pressure drop in the jth cycle given by (22b). It then follows that
Oy = [fis (AP) -f; (AP)IQ. (30)

Here %(AP) is the pressure drop at the end of the jth cycle before the backpulse. Assuming that
eq (21) holds, we find

o= (f -f.) AP)Q, (31)
from which f may be evaluated as
f,=f, +06 QAP (32)

J
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Equation (32) provides an iterative expression for determining the valués 85 was noted

before, the values 0P could be positive or negative. The positive value®oindicate an
increase in the cake thickness due to re-entrainment and/or incomplete cleaning. The negative
values of© correspond to the cases that the backpulse causes part of the residual cake buildup
from the earlier cycles together with the one of the current cycle to be removed.

CONCLUSION

The presented results indicate that the simple filter model together with appropriate
statistical fits may be used to capture the main features of the MGCR filter vessel pressure drop
variations. The results may also be used to estimate the filter cake permeability. Such
information could provide a semi-empirical procedure for estimating the filter cake thickness
during the operation of the filter vessel.

The analyses of MGCR data indicate the importance of simultaneously measuring particle
concentrations as well as gas-flow rates and tubesheet pressure drops. The analyses also suggest
that computer control of cleaning backpulses may be important to maintain accurate
reproducibility and measurement of the length of the filtration cycle.

It might seem that re-entrainment should cause the tubesheet pressure drop and filter-cake
thickness to increase without limit, but the results presented here indicate that this is not
necessarily so. So long as no more than about 25% of the cake fragments are re-entrained, the
pressure-drop increases caused be re-entrainment should be acceptable. The calculations indicate
that for re-entrainment the approach to "stable" (i.e., asymptotic-limit) operation occurs relatively
rapidly. Re-entrainment should be a problem only if more than 1/2 of the cake removed by each
backpulse is re-entrained. For the incomplete filter-cleaning model presented, however, the
pressure drop and cake thickness do increase without limit, and stable operation never is
achieved.

The difference between stable and unstable operation is this: In unstable operation the
amount of cake permanently removed by the filter-cleaning step was a constant fraction of the
cake depositeduring that cycle in stable operation, the amount of cake permanently removed
by each backpulse was a constant fraction oftéled cake presenjust before cleaning. The
crucial difference is, that in the latter case, as the total amount of accumulated cake increases,
the amount of cake removed by cleaning also increases; hence, an asymptotic limit exists. If the
absolute amount of cake removed by each cleaning stays constant (or decreases) as filter cake
accumulates over multiple cycles, stable filter-system performance cannot be achieved.

NOMENCLATURE

a = inside filter radius

b = outside filter radius

c = proportionality constant betwed&®P, and G

f = fraction of filter-cake fragments re-entrained (in constant re-entrainment fraction
model)

f = fraction of filter-cake not removed by a cleaning backpulse

f. = fraction of filter-cake fragments re-entrained during jth cycle
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h = filter length

K. = filter-cake permeability

k; = filter permeability

n = number of filters

t = time (measured from the time of backpulse)

T, = limiting operation time

B = outside filter-cake radius

Brax = filter-cake radius at which bridging occurs

F = volume fraction of particulates in incoming gas/particle stream
N = number of filtration cycles

AP = total pressure drop across tubesheet

AP = increase of pressure drop across cake during one cycle

AP, = pressure drop across (clean) filter

AP, = total pressure drop minus pressure drop across filters and filter cakes
Q = (volumetric) gas flow rate

R = resistance

V1 = gas viscosity

(0] = filter-cake porosity

p = volume-average particle density
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Figure 1. Variation of operational data, AP/Q versus t, for the filter vessel of the MGCR
(gasification) unit.
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Figure 2. Variation of operational data, Q versus t, for the filter vessel of the MGCR
(gasification) unit.
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Figure 3. Variation of operational data, AP/Q versus t, for the filter vessel of the MGCR

(gasification) unit.
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Figure 4. Variation of AP/Q with time as calculated from equation (27).
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Figure 5. Variation of AP/Q with time as calculated from equation (27).
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Figure 6. Residuals from the fit of equation (27) to the operation data of Figure 1.
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Figure 7. Variation of AP/Q with time as calculated from equation (28).
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Figure 8. Variation of AP/Q with time as calculated from equation (28).
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Figure 9. Residuals from the fit of equation (28) to the operation data of Figure 1.
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Figure 10. Filter-cake thickness and pressure ddp,- B, versud for the case of
constant-fraction incomplete filter cleaning and no re-entrainment.
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Figure 11. (AP -APR,)/AP’ versug, as predicted by the constant-fraction re-entrainment

model [eq (26)], for different fractions of re-entrainment.
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