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Synopsis

C++ is an efficient object-oriented language Of rapidly growing popularity. It can be of real value in a

wide range of disciplines, including numerical computing, where it seems to offer important advantages over

most competing languages. : : :

Object-oriented languages

What exactly is an object-oriented language'? The most important defining characteristic is support for

"polymorphic data types:" Procedural languages, like Fortran :and CI Contain built-in types such as integers,
reals, characters and so on. The integer type, for example, consists of the requisite bits of data, a set of

• otherassociated operations, +, *, /, , and coercions to and from the built=in typesl :One can build data

structures of arbitrary complexity in Fortran, but these are not"first: class" types, like integers.

For example, one can form a "sparse_matrix" from arrays of integers indexing into arrays of reals. But
Fortran 77 does not let one declare several of these as

sparse_matrix A,B,C

and then perform operations such as:

A=B+C

Languages like Clu and Ada, supporting "abstract data types," let one do precisely this. One can, for

example, in Ada define a "set_of_words" abstract data type. This would be a user defined type which might
be usefi_l in comparing documents. Once the type is defined, one can then declare several such sets

se__of__ords A,B,C

One can also operate on them just as with the built in types

A := B .+. C

],

!

where .+. might be a user-defined union operation.

O0 languages push this concept further, allowing one to define a "set_of_<type T>", where T can be

any type in the language. This new type, a "set_of_<type T>", is "first class" in O0 languages, one can use

variables of that type exactly like those of the built-in types. To make this clear, types are called "classes"

in the O0 world, while values of those types (classes) are called "objects," though whehter these new terms

do more to clarify or obfuscate is not clear.

To see how O0 ideas might be used in numerical computing, it might, for example, be useful to define
a class "mesh_cell" which would be the basic unit of an unstructured mesh. Mesh cells come in a number

of varieties, which can be thought of as subtypes (subclasses) of the type (class) "mesh_cell", as shown in

Figure .
All mesh cells share certain properties, volume, temperature, pressure etc. declared as part of class

"mesh_cell." C,ubes and tetrahedrons share these properties, but have their own unique properties as well.

They have different numbers of faces and vertices for example.

The ability to allow useful computing on a set of related but not identical user-defined types is the defining
characteristic of O0 languages. In the above case, one can make an array of "mesh_cells", consisting of prisms,

tetrahedrons, and cubes. One can access the volume of any element of this array, since all "mesh_cells"

have volume. To access specialized properties, one may have to select on the particular subclass of each
"mesh_cell".
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mesh__cell

prism tetrahedron cube

Figure 1: Mesh cell type hierarchy

CA-+ in numerical computing

How useful will C,++ be in numerical computing? C++ contains most of the useful new features in Ada

or Fortran 90, and is easily extensible in a number of ways. People around the world are rapidly developing

class libraries for finite element analysis, for sparse matrix arithmetic, and so on. C++ together with a new

class library is essentially a new applicati0n-specific language, and one that may have a powerful impact on
a particular subdiscipline.

To see how this could have an impact, one need only realize that there are, for example, at least a dozen

different unstructured grid codes here at Langley, with relatively little code shared between them. Given the

appropriate class library supporting unstructured grids, one should be able to prototype new unstructured

grid algorithms much faster, by borrowing large chunks of previously written code. This is the promise of

OO computing in C++. Efficient execution, compatibility with previously written C and Fortran, and the

OO approach are the major advantages to C++.

C,++ also has its problems. One is that its syntax and semantics, inherited from C,, are needlessly

complex, significantly steeping the learning curve for new programmers. Another problem is that, like Ada

and Fortran 90, C++ is a large language, full of complexities most programmers will never master. Only

experts will master the full language, with most programmers limping along on their own particular subset.

These problems are real, but clearly not fatal, given the exponential growth of C++. From one perspec-

tive, C++ is essentially a halfway point between traditional procedural languages, like C and Fortran, and
"rapid prototyping" languages like Srnalltalk. Over the longer term, as computer power increases and our

algorithms become more complex, one expects research numerical computing, like that done at Langley, to

shift in the "rapid prototyping" direction. Use of C,++ is an important step in that direction.
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An object oriented language is one allowing users to

create a set of related types and then intermix and ma-

nipulate values of these related types.

• Such types are called classes.

• Values of such types are called objects.

b_ Intermixing related user-defined types is called poly-

morphism. Polymorphism, and the things that go with

it, encapsulation, inheritance, and dynamic binding give

O0 languages their increased semantic power.
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Fortran is not 00. Integer variables, for example, have

powerful properties the user cannot duplicate in new

types. There is no way to define a sparse-matrix type,

then do:

sparse_matrix A,B,C

A = B+C

U.
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Typical class lattice:

window

_q
t'o

bordered window

bordered

slider window
l

slider window
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What is C++ ?

• A statically-checked object oriented language down-
ward compatible with C

• Useful on any program with complex data struc-

tures (though originally intended for systems pro-
gramming)

• Potentially useful in scientific programming, since it
is efficient and supports complex data structures well
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Templates data abstractions

template<class T>

class stack {

T* v;

T* p;

int sz ;

with types as parameters

0¢

public:

stack (int s){ y = p = new T[sz = s] ; }

-stack () { delete[] v; }

void push(T a){ *p++=a; }

T pop(){ return ,--p; }

};

int size() const { return p-v; }



Operator Overloading the ability

for the built-in operator symbols (+ -

to define new uses

/v= )

Example: polygon union

P4 = P1 + P2 + P3

P4 = union(union(P1,P2) ,P3)

P4 = P1 °union(P2.union(P3))
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Using inheritance in numerical codes

cell

prism tetrahedron cube

t J1

cell:

- volume

- flow variables

cube:

prism:

- 8 vertices

- 6 faces

- 6 vertices

- 5 faces
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Efficiency

t_

• C++ provides much of the semantic power of dynami-

cally typed languages, like Smalltalk, but is much more
efficient.

• C++ code runs about as fast as C or Fortran, if one

avoids polymorphism and abstractions.

• The overhead in using large objects (e.g. a sparse matrix

object) is minor.

• Fine grained objects, such as complex variables, are inef-

ficient and should usually be avoided.
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Observations

• Efficiency should be thought of in terms of the entire

programming, debugging, and execution cycle.

tll

• If a language would make programming substantially

easier, there could be such a gain from algorithmic

improvements, that significant run-time inefficiency
could be tolerated.
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Conclusions

• C++ is an effective O0 language, and has become
the defacto standard.

• C++ supports the data structures needed for com-

plex numerical algorithms very well.

t_
t_

• It is efficient, and can be readily intermixed with C,

Fortran and perhaps HPF.

• Developing numerical algorithms in C++ should in-

crease opportunities for code reuse and for sharing

code between programmers.


