[J. Res. Natl. Inst. Stand. Technol. 106, 691-707 (2001)]

Powder X-Ray Reference Patterns of Sr₂RGaCu₂O_y (R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, and Y)

Volume 106	Number 4	July–August 2001
W. Wong-Ng	X-Ray Rietveld refinements were conducted	and $c = 5.44743(7)$ Å for R = Pr, to
National Institute of Standards and	on a series of eleven lanthanide phases, Sr PCaCu O (2112 phase $R = Rr$ Nd Sm	a = 22.8059(2) Å, $b = 5.46031(5)$ Å, and $a = 5.37773(5)$ Å for $\mathbf{R} = \mathbf{Y}\mathbf{h}$. An algorithm
Technology	$Si_2 K Ga Cu_2 O_y$ (2112 phase, $K = FI$, Nd, Shi, Eu, Gd, Dy, Ho, Y, Er, Tm, and Yb) that	c = 5.57775(5) A for $R = 10$. All electon diffraction study of the Sm- and Er-analogs
Gaithersburg, MD 20899-8520	are structurally related to the high T_c super- conductor Ba ₂ YCu ₃ O ₇ (213). In the 2112	showed characteristic diffuse streaks along the <i>b</i> -axis, suggesting some disorder
J. A. Kaduk	structure, instead of square planar Cu-O chains, tetrahedral GaO4 chains were	within the GaO ₄ chains.
BP-Amoco Corporation.	found to run in a zig-zag fashion along the diagonal of the basal 213 <i>ab</i> -direction	Key words: Rietveld refinements;
Naperville, IL 60566-7011	Reference powder patterns for these com- pounds were prepared by using the Ri-	Sr ₂ RGaCu ₂ O ₇ , superconductor related phases; x-ray powder patterns.
I. Levin	etveld decomposition technique. The unit cell volume of these compounds follows	
National Institute of Standards and	the expected trend of the lanthanide con-	Accepted: April 6, 2001
Technology,	from $a = 22.9694(3)$ Å, $b = 5.5587(2)$ Å.	Available online: http://www.nist.gov/ires
Gaithersburg, MD 20899-8520		
and		

W. Greenwood and J. Dillingham

Geology Department, University of Maryland, College Park, MD

1. Introduction

During the search of high T_c superconductors, various related phases built from the alternate blocks of perovskite (ABO_{3-x}) and rock salt (AO) units were discovered; these compounds have a general formula (AO)_m(ABO_{3-x})_n. Two such families are the wellknown high temperature superconductor Ba₂RCu₃O₇ (213, R = lathanides and yttrium) [1], and also the $Sr_2R(M_{3-x}Cu_x)O_y$ series [2-5], where R = lanthanides and Y. Superconductivity was observed in some $Sr_2R(M_{3-x}Cu_x)O_y$ compounds [2,3]. The structure with x = 1 is known as the 2112 type. Detailed structural analysis of these compounds can provide further understanding of the behavior of cuprate superconductors.

Sr₂RGaCu₂O_v (Ga-2112) crystallizes in a space group Ima2 [4] with structure related to that of Ba₂YCu₃O₇. Ba₂YCu₃O₇ crystallizes in a space group Pmmm with lattice parameters of a = 3.8198(1) Å, b = 3.8849(1) Å, and c = 11.6762(3) Å [1]. Substitution of one-third of Cu in Sr₂RCu₃O_{6+v} by Ga results in the chemical formula of Sr₂RGaCu₂O_y. The relationship between the lattice parameters of Sr₂RGaCu₂O_v and those of Ba₂YCu₃O₇ was found to be: $a_{(2112)} \approx 22.8$ Å $\approx 2 \cdot c_{(213)}$, $b_{(2112)} \approx 5.5 \text{ Å} \approx \sqrt{2} \cdot b_{(213)}$ and $c_{(2112)} \approx 5.4 \text{ Å} \approx \sqrt{2} \cdot a_{(213)}$. The structure of the 2112 phase (Fig. 1) has been discussed in detail by Vaughey et al. [4] and Roth et al. [5]. In both the 2112 and 213 structures [6], double-layers of corner-sharing CuO₅ pyramids are separated by the lanthanide ions. In $Sr_2RGaCu_2O_v$, the connection between two double-layers of CuO_5 along the *a*-axis is mediated by GaO₄ tetrahedra. Tetrahedral GaO₄ chains were found running along the *c*-axis (the diagonal of the basal plane of the Ba₂YCu₃O₇ compound) in a zig-zag fashion, which is contrast to the square-planar copper chains typically observed in the 213 compounds. The 8-fold oxygen coordination of R is similar to that found in the 213-phase. Sr plays the role of Ba in 213 by filling the large voids located approximately at the same x-coordinates as the apical oxygens of the CuO₅ units. As a result, Sr has a total of 9-fold coordination.

As the powder x-ray diffraction technique is of primary importance for phase characterization, extensive coverage and accurate reference diffraction patterns of the superconductor and related phases in the Powder Diffraction File (PDF) [7] is essential for the high T_c superconductivity community. The main goal of this paper is to prepare the standard reference patterns for this series of compounds using the Rietveld refinement method. An electron diffraction study was also carried out to determine if the superlattice lattice exists for the lanthanide Ga-2112 structures.

2. Experimental

2.1 Sample Preparation

About (1-2) g each of the eleven polycrystalline samples of the Sr₂RGaCu₂O_y series (R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm,Y, and Yb) were prepared by the high temperature solid state sintering method. Stoichiometric powders of SrCO₃, R₂O₃ (R = Nd to Lu) or Pr₆O₁₁, Ga₂O₃ and CuO were mixed and compacted by pressing the powder in a pelletizing die, and were heat treated in air according to the schedule of 850 °C for 2 d, 960 °C for 5 d and 1000 °C for 8 d. Each time after the samples were taken out of the furnace, they were reground and repelletized. Since the differential thermal

Fig. 1. Crystal Structure of Sr₂RGaCu₂O_y [5].

analysis (DTA) melting temperatures of the Y- and Ndanalogs take place at 1080 °C and 1130 °C, respectively [5], the highest temperature of sample preparation for most samples is below 1050 °C to avoid melting. The highest temperatures of heat treatment for the Tm, Yb, and Lu compositions were around 975 °C and 980 °C. X-Ray powder diffraction was used to identify the phases synthesized and to confirm phase purity.

2.2 Reference Powder X-ray Patterns

2.2.1 Experimental Measurement

For standard pattern measurements, the black $Sr_2RGaCu_2O_y$ powders were mounted in zero-background quartz holders with double-sided adhesive tape. A Scintag PAD V diffractometer¹ equipped with an Ortec intrinsic Ge detector was used to measure the powder patterns (CuK α radiation, 40 KV, 30 mA) from 3° -140° 2 θ in 0.02° steps every 10 s.

2.2.2 Patterns Analysis

All data processing was carried out using the Rietveld structural refinement technique [8] with the computer program suite GSAS [9]. Published structural models were used [4,5]. A scale factor, a sample displacement coefficient, the atomic coordinates, isotropic displacement coefficients, and the orthorhombic lattice parameters were refined. The diffraction peak profiles were described using a pseudo-Voigt function; only the Gaussian W and Cauchy X (size) terms were refined. Background intensities were described using a 3-term cosine Fourier series.

Reference x-ray patterns of the 10 $Sr_2RGaCu_2O_y$ compounds, where R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, and Y were obtained with a Rietveld pattern decomposition technique. These patterns represent ideal specimen patterns. They are corrected for systematic errors both in *d*-spacings and intensity *I*. The reported peak positions are calculated from the refined lattice parameters, as they represent the best measure of the true positions. For peaks resolved at the instrument resolution function, the individual peak positions are reported. For overlapping peaks, the intensity-weighted average peak position is reported with multiple indices. For marginally-resolved peaks, individual peaks are reported to simulate the visual appearance of the pattern.

2.2.3 Electron Diffraction Studies

Electron diffraction patterns were measured for the R = Sm and R = Er samples to ensure that a superlattice does not exist in these compounds. The specimens were prepared from the sintered pellets by conventional grinding, polishing and ion thinning. The specimens were examined using a Phillips 430 TEM operated at 200 kV.

3. Results and Discussion

All samples except the Tm and Yb compounds were confirmed to contain a single phase. A small quantity of Yb₂Cu₂O₅, SrYb₂O₄ and GaCuO₂ were found to coexist with the Sr₂YbGaCu₂O_y phase. The pattern for the Yb-analog was not measured because of impurities in the powder. In addition, the smaller size Lu analog cannot be prepared even at a relatively high temperature of 1050 °C. Rather, an x-ray diffraction pattern of a specimen with a nominal composition of Sr₂LuGaCu₂O_y clearly showed a mixture of Lu₂Cu₂O₅, (Sr,Lu)₁₄Cu₂₄O₄₁, and Sr₄Ga₂O₇, etc. Apparently, the Lu³⁺ ion is too small for the 8-fold oxygen coordination cage; therefore, the compound Sr₂LuGaCu₂O_y is unstable.

The Rietveld refinement results in an acceptable fit to the experimental data (Fig. 2). The similarity of both $Sr_2NdGaCu_2O_y$ and $Ba_2NdCu_3O_{6+y}$ structures is revealed in the similarity of their x-ray powder patterns (Fig. 3). X-ray diffraction patterns of three selected samples ($Sr_2RGaCu_2O_y$, R = Nd, Gd, and Ho) are shown in Fig. 4; as expected, the patterns of these analogs are similar up to the small displacements of the corresponding reflections.

X-ray powder diffraction showed the structure of SR₂RGaCu₂O_y to be Ima2. The lattice parameters, densities, and ionic radii [10,11] of these phases are listed in Table 1. The lattice parameters of Sr₂RGaCu₂O_y range from a = 23.129(1) Å, b = 5.5587(2) Å, and c = 5.4596(3) Å for R = La [12], to a = 22.7964(3) Å for R = Er, and b = 5.46031(5) Å, and c = 5.37773(5) Å for R = Yb. The numbers in parentheses indicate the standard uncertainties, Type A, calculated by the GSAS program suite [9]. Fig. 5 shows a dependence of the unit cell volume on the ionic radius r (R³⁺) of R = La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Y, Er, Tm, and Yb. Except for Ho, a monotonic decrease in volume on going from La to Yb is observed.

In the 2112 structure, instead of square planar Cu-O chains, tetrahedral GaO₄ chains were found to run in a zig-zag fashion along the diagonal of the basal 213 *ab*-direction. A set of selected area (electron) diffraction (SAD) patterns for the R = Sm sample is illustrated in Fig. 6. In addition to the strong fundamental reflections, the pattern of the [100] zone axis exhibits continuous streaks of diffuse intensity along the *b*-direction. Formation of a superstructure with a doubled periodicity along the *c*-direction has been reported for the Sr₂YCoCu₂O₇ and Sr₂ (Nd,Ce)₂GaCu₂O₉ compounds by Krekels et al. [13]. However, in the present study, no such doubling was observed. The observed streaks can be attributed to a disorder due to presence of oxygen vacancies and/or copper atoms within tetrahedral GaO₄

¹ Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Fig. 2. Observed, calculated, and difference x-ray Rietveld powder patterns of $Sr_2EuGaCu_2O_y$. The crosses represent the observed data points, and the solid line represent the calculated pattern. The difference pattern is plotted at the same scale as the other patterns. The row of tick marks indicates the calculated peak positions.

Fig. 3. X-Ray diffraction patterns of $Sr_2NdGaCu_2O_y$ and $Ba_2NdCu_3O_{6+y}$. Similarity of these patterns is discernible. Representative *hkl* values are indicated.

Fig. 4. X-Ray diffraction patterns of three selected samples ($Sr_2RGaCu_2O_y$, R = Nd, Gd and Ho).

Fig. 5. Plots of the unit cell volumes of $Sr_2NdGaCu_2O_y$ vs ionic radius of R^{3+} , $r(R^{3+})$ [10,11]. A general trend parallel to the lanthanide contraction is shown.

Fig. 6. Selected area (electron) diffraction (SAD) patterns of $Sr_2SmGaCu_2O_y$ showing various zone-axis orientations. Continuous streaks of diffuse intensity along the *b*-direction is observed in the [100] zone-axis pattern.

Table 1.	Crystall	lographic dat	a for the	Sr ₂ RGaCu ₂ C	Dy series (Ima2	Z = 4;	R = La,	Pr, Nd	, Sm,	Eu, Gd,	Dy,	Y, Ho,	Er, Ti	m, and Y	b). '	The eff	ective
ionic radi	i of R ³⁺	(eight-coord	lination)	were taken f	rom Shannon	's Table	[10,11]	. D _c re	fers to	calcula	ated o	density					

R	R^{3+} Å	a (Å)	b (Å)	<i>c</i> (Å)	Volume (Å ³)	$D_{\rm c}({\rm kg/m^2})$
La	1.160	23.129(1)	5.5587(2)	5.4596(3)	701.93	5.895 [12]
Pr	1.126	22.9694(3)	5.55081(7)	5.44743(7)	694.54	5.977
Nd	1.109	22.9206(2)	5.54344(5)	5.44229(5)	691.49	6.035
Sm	1.079	22.8708(2)	5.52690(5)	5.42790(5)	686.11	6.147
Eu	1.066	22.8441(3)	5.51870(8)	5.42102(8)	683.47	6.181
Gd	1.053	22.8294(2)	5.51236(5)	5.41835(5)	681.87	6.247
Dy	1.027	22.8015(2)	5.49286(5)	5.40138(5)	676.50	6.348
Ý	1.019	22.8113(2)	5.48069(5)	5.39397(5)	674.36	5.643
Но	1.015	22.7975(2)	5.48433(5)	5.39562(5)	674.61	6.390
Er	1.004	22.7964(3)	5.47497(6)	5.38837(6)	672.52	6.433
Tm	0.994	22.8024(3)	5.46762(7)	5.38158(7)	670.95	6.464
Yb	0.985	22.8059(2)	5.46031(5)	5.37773(5)	669.67	6.554

chains extending along the *b*-direction, similar to that described by Krekels et al. [12]. X-ray diffraction, however, is not as sensitive as neutron diffraction to the disorder of light elements such as oxygen, as reflected in relatively small values (≈ 0.004 Å) of the refined isotropic temperature factors (U_{iso}).

Tables 2-11 list the reference patterns for $Sr_2RGaCu_2O_y$ (R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, and Y). The tables present the *d*-spacing values, Miller indices and integrated intensities which were normalized to a maximum value of 999. The symbols "M" and "+" refer to peaks containing two or more than two reflections, respectively.

Table 2. X-Ray reference pattern for Sr₂PrGaCu₂O_y (space group Ima2, Z = 4, a = 22.9694(3) Å, b = 5.55081(7) Å, and c = 5.44743(7) Å)

							_					_	
d I	h	k	l	d	Ι	h	k	l	d	Ι	h	k	l
11.4847 91	2	0	0	5.39550	6	1	1	0	4.49403	20	3	1	0
3.88795 59	0	1	1	3.82823	6	6	0	0	3.68265	47	2	1	1
3.53906 21	5	1	0	3.21943	11	4	1	1	2.87117	11	8	0	0
2.82470 16	7	1	0	2.77541	191	0	2	0	2.726899	999*	6	1	1M
2.726899999*	0	0	2M	2.69775	5	2	2	0	2.65020	10	2	0	2
2.49884 5	4	2	0	2.45922	14	4	0	2M	2.45922	14	1	2	1M
2.30965179	8	1	1	2.24701	50	6	2	0	2.21932	40	6	0	2
2.15848 7	5	1	2	1.99551	22	8	2	0	1.97617	29	8	0	2+
1.94397207	0	2	2	1.91671	26	2	2	2	1.91412	87	12	0	0
1.84132 8	4	2	2	1.77598	7	9	2	1	1.75197	10	0	3	1
1.73330 9	6	2	2	1.72582	6	0	1	3	1.71629	11	5	3	0
1.70665 5	2	1	3	1.65278	5	4	1	3	1.64067	27	14	0	0
1.61078 11	7	3	0M	1.61078	11	8	2	2M	1.593071	29	6	3	1
1.57571 39	12	2	0	1.573331	57	6	1	3	1.56607	53	12	0	2
1.51618 7	1	2	3	1.51159	43	14	1	1	1.49553	46	8	3	1
1.47917 34	8	1	3	1.45205	10	5	3	2	1.41235	21	14	2	0
1.40539 11	14	0	2	1.38757	26	0	4	0M	1.38757	26	7	3	2
1.37768 10	2	4	0	1.36392	75	12	2	2	1.36186	29	0	0	4
1.34246 5	1	4	1	1.29598	5	0	3	3	1.25381	36	14	2	2
1.23647 16	0	4	2	1.22937	5	2	4	2	1.22755	40	6	3	3
1.22260 25	0	2	4	1.21244	15	18	1	1	1.19754	10	14	3	1
1.18923 23	9	4	1M	1.18923	23	14	1	3M	1.18123	20	8	3	3
1.17662 14	6	4	2	1.16465	10	6	2	4	1.12351	12	12	4	0
1.10966 14	12	0	4	1.10142	39	20	1	1	1.08780	5	0	5	1
1.06120 6	20	2	0	1.05953	16	14	4	0	1.05824	9	20	0	2
1.04789 12	14	0	4	1.04638	23	6	5	1	1.03862	13	12	4	2
1.03147 10	18	3	1	1.02991	58	12	2	4M	1.02991	58	6	1	5M
1.02606 11	18	1	3	1.01716	25	8	5	1M	1.01716	25	14	3	3M
1.00323 6	5	5	2	1.00189	11	8	1	5	0.98880	7	20	2	2
0.98745 19	14	4	2	0.98034	17	14	2	4	0.97199	17	0	4	4
0.96852 5	2	4	4	0.96049	36	20	3	1	0.95611	26	20	1	3
0.94717 7	0	5	3	0.91944	21	6	5	3	0.91180	27	6	3	5
0.90928 7	18	3	3	0.90790	9	0	0	6	0.89942	23	8	5	3M
0.89942 23	6	6	0M	0.89571	10	14	1	5	0.89233	14	8	3	5
0.88342 11	26	0	0M	0.88342	11	6	0	6M	0.87796	6	20	0	4
0.87598 15	0	6	2	0.87345	9	2	6	2	0.86665	24	12	4	4
0.86291 28	0	2	6	0.86148	23	26	1	1	0.86048	6	2	2	6
0.85953 49	20	3	3	0.85875	10	9	6	1M	0.85875	10	24	2	2M
0.85391 6	6	6	2	0.84874	11	12	5	3M	0.84874	11	21	4	IM
0.84171 30	26	2	0M	0.84171	30	20	4	2M	0.84034	14	26	0	2
0.83705 26	20	2	4M	0.83705	26	24	1	3M	0.83620	43	14	4	4M
0.83620 43	11	6	1M	0.83295	5	12	6	0	0.82783	9	18	5	1
0.82030 26	12	0	6M	0.82030	26	14	5	3M					

d	Ι	h	k	l	d I	h	k	l	d I	h	k	l
11.46031	45	2	0	0	4.48683 15	3	1	0	3.88355 68	0	1	1
3.82010	6	6	0	0	3.67810 45	2	1	1	3.53269 18	5	1	0
3.21478	6	4	1	1	2.86508 8	8	0	0	2.81928 16	7	1	0
2.771722	209	0	2	0	2.72286999*	6	1	1M	2.72286999*	0	0	2M
2.69405	6	2	2	0	2.64754 9	2	0	2	2.45564 8	1	2	1
2.305552	212	8	1	1	2.29206 5	10	0	0	2.24341 57	6	2	0
2.21634	53	6	0	2	2.15576 7	5	1	2	1.99209 24	8	2	0
1.941772	234	0	2	2	1.91449 27	2	2	2	1.91005 93	12	0	0
1.77301	8	9	2	1	1.75304 5	10	0	2	1.74971 12	0	3	1
1.73099	10	6	2	2	1.72412 9	0	1	3	1.71382 13	5	3	0
1.70494	5	2	1	3	1.63719 26	14	0	0	1.60838 11	7	3	0M
1.60838	11	8	2	2M	1.59078153	6	3	1	1.57174191	12	2	0M
1.571741	91	6	1	3M	1.56336 52	12	0	2	1.51457 8	1	2	3
1.50861	48	14	1	1	1.49327 49	8	3	1	1.47727 44	8	1	3
1.45017	13	5	3	2	1.40964 32	14	2	0	1.40285 19	14	0	2
1.38571	25	0	4	0M	1.38571 25	7	3	2M	1.37584 9	2	4	0
1.36138	95	12	2	2M	1.36138 95	0	0	4M	1.35108 6	2	0	4
1.34402	6	16	1	1	1.34070 6	1	4	1	1.29452 5	0	3	3
1.25166	43	14	2	2	1.23493 23	0	4	2	1.22782 6	2	4	2
1.22603	50	6	3	3	1.22136 30	0	2	4	1.20999 17	18	1	1
1.19547	12	14	3	1	1.18737 20	9	4	1M	1.18737 20	14	1	3M
1.17969	18	8	3	3	1.17505 15	6	4	2	1.16335 11	6	2	4
1.12353	5	8	2	4	1.12171 13	12	4	0	1.10817 18	12	0	4
1.09917	46	20	1	1	1.08637 5	0	5	1	1.05907 8	20	2	0
1.05777	22	14	4	0	1.05618 8	20	0	2	1.04640 15	14	0	4
1.04494	32	6	5	1	1.03705 15	12	4	2	1.02873 60	12	2	4M
1.02873	60	6	1	5M	1.02429 10	18	1	3	1.01568 29	8	5	1M
1.01568	29	14	3	3	1.00079 13	8	1	5	0.98696 7	20	2	2
0.98590	23	14	4	2	0.97896 20	14	2	4	0.97089 13	0	4	4
0.95869	29	20	3	1	0.95442 30	20	1	3	0.91827 22	6	5	3
0.91080	27	6	3	5	0.90779 6	18	3	3	0.90705 6	0	0	6
0.89823	23	8	5	3	0.89823 23	6	6	0	0.89454 9	14	1	5
0.89131	15	8	3	5	0.88251 6	6	0	6	0.88156 5	26	0	0
0.87485	14	0	6	2	0.87232 10	2	6	2	0.86549 25	12	4	4
0.86206	21	0	2	6	0.85967 23	26	1	1M	0.85967 23	2	2	6M
0.85808	39	20	3	3	0.85278 7	6	6	2	0.84773 6	12	5	3
0.84701	6	21	4	1	0.84092 7	6	2	6	0.84007 26	26	2	0M
0.84007	26	20	4	2M	0.83865 15	26	0	2	0.83573 19	20	2	4
0.83509	34	14	4	4	0.83461 5	11	6	1	0.83172 6	12	6	0
0.82647	8	18	5	1								

Table 3. X-Ray reference pattern for Sr₂NdGaCu₂O_y (space group Ima2, Z = 4, a = 22.9206(2) Å, b = 5.54344(5) Å, and c = 5.44229(5) Å)

d I		h	k	l	d I	h	k	l	d I	h	k	l
11.4356213	3	2	0	0	5.71781 8	4	0	0	5.37248	5 1	1	0
4.47485 14	4	3	1	0	3.87263 56	0	1	1	3.81187	56	0	0
3.66801 60	0	2	1	1	3.52395 20	5	1	0	3.20641	5 4	1	1
2.85891	6	8	0	0	2.81264 12	7	1	0	2.76356242	2 0	2	0
2.71613999	9*	6	1	1M	2.71613999*	0	0	2M	2.64051	5 2	0	2
2.44856	5	1	2	1	2.30005186	8	1	1	2.28712 23	3 10	0	0
2.23742 43	3	6	2	0	2.21079 31	6	0	2	2.15014	75	1	2
1.96932 2	1	10	1	1	1.93632220	0	2	2	1.9062011	9 2	2	2M
1.9062011	9	12	0	0M	1.76852 7	9	2	1	1.72551 1	4 6	2	2M
1.72551 1	4	2	3	1M	1.70958 13	12	1	1M	1.70958 1	3 5	3	0M
1.70034	7	2	1	3	1.63366 18	14	0	0	1.60482	57	3	0
1.58871	5	11	2	1	1.58636125	6	3	1	1.56898 34	4 12	2	0
1.56737157	7	6	1	3	1.55972 49	12	0	2	1.51039	51	2	3
1.50521 4	1	14	1	1	1.48922 44	8	3	1	1.48471	53	2	3
1.47782	6	10	2	2	1.47348 31	8	1	3	1.46985	5 15	1	0
1.44612	9	5	3	2	1.40632 29	14	2	0	1.39963 12	2 14	0	2
1.38162 40	0	0	4	0M	1.38162 40	7	3	2M	1.37180	5 2	4	0
1.35831 70	0	12	2	2	1.35692 23	0	0	4	1.34747	5 2	0	4
1.34101	9	16	1	1	1.29853 5	3	1	4	1.28689	5 12	3	1
1.24863 4	5	14	2	2	1.23136 14	0	4	2	1.22267 48	3 6	3	3
1.21802 24	4	0	2	4	1.20730 19	18	1	1	1.20376	5 4	4	2
1.19247	7	14	3	1	1.18455 18	9	4	1M	1.18455 18	3 14	1	3
1.17650 18	8	8	3	3	1.17174 10	6	4	2	1.16023 13	3 6	2	4
1.11871 1	6	12	4	0	1.10553 13	16	3	1M	1.10553 1	3 12	0	4M
1.09676 4	1	1	4	3M	1.09676 41	20	1	1M	1.05667	3 20	2	0
1.05501 2	1	14	4	0	1.05382 8	20	0	2	1.04382 13	3 14	0	4
1.04194 2	5	6	5	1	1.03428 13	12	4	2	1.02618 6	9 12	2	4+
1.02618 69	9	6	1	5+	1.02188 8	18	1	3	1.01292 23	3 8	5	1
0.99904	5	5	5	2	0.99816 13	8	1	5	0.98466 10) 20	2	2
0.98332 18	8	14	4	2	0.97648 13	14	2	4	0.96816 20) 0	4	4
0.96560	8	10	1	5	0.95641 30	20	3	1	0.95457	5 4	4	4
0.95220 29	9 2	20	1	3	0.94329 5	0	5	3	0.93530	5 18	4	0
0.93294	5	16	4	2	0.91574 23	22	2	2M	0.91574 2	3 6	5	3M
0.90832 3	1	6	3	5	0.90461 10	0	0	6	0.89579 18	3 8	5	3
0.89521	5	19	4	1	0.89350 7	4	0	6	0.89227	5 14	1	5
0.88915 17	7 2	22	1	3M	0.88915 17	8	3	5M	0.88017	56	0	6
0.87215 20	0	0	6	2M	0.87215 20	10	5	3M	0.86978	5 2	6	2
0.86568	5	10	3	5	0.86318 12	12	4	4	0.86233	7 4	6	2
0.85973 20	6	0	2	6	0.85781 18	26	1	1	0.85599 48	3 20	3	3
0.85523	8	9	6	1	0.85413 10	16	1	5	0.85303	5 1	4	5
0.85017	7	4	2	6	0.84493 11	21	4	1	0.83822 33	3 26	2	0
0.83656 2	7 2	26	0	2M	0.83656 27	24	3	1M	0.83351 22	2 24	1	3
0.83288 2	7	14	4	4	0.83227 8	11	6	1	0.82939	7 12	6	0
0.82524	6 3	22	0	4	0.82431 7	18	5	1	0.82038	5 1	6	3

Table 4. X-Ray reference pattern for Sr₂SmGaCu₂O_y (space group Ima2, Z = 4, a = 22.8708(2) Å, b = 5.52690(5) Å, and c = 5.42790(5) Å)

d I	h	k	l	d I	h	k	l	d I	h	k	l
11.4221175	2	0	0	5.71104 5	4	0	0	4.46854 16	3	1	0
3.86731 55	0	1	1	3.80736 7	6	0	0	3.66305 53	2	1	1
3.51929 21	5	1	0	3.20220 7	4	1	1	2.85552 7	8	0	0
2.80905 11	7	1	0	2.75935347	0	2	0	2.71251999*	6	1	1M
2.71251999*	0	0	2M	2.63727 12	2	0	2	2.44499 10	1	2	1
2.29717191	8	1	1	2.28441 10	10	0	0	2.23427 47	6	2	0
2.20811 42	6	0	2	2.14742 6	5	1	2	1.98428 21	8	2	0
1.96589 29	8	0	2	1.93366275	0	2	2	1.90418 98	2	2	2M
1.90418 98	12	0	0M	1.78813 5	3	3	0	1.76617 10	9	2	1
1.75964 5	10	2	0	1.74678 6	10	0	2	1.74200 10	0	3	1
1.72405 12	6	2	2	1.71729 10	0	1	3	1.70644 10	5	3	0
1.69821 6	2	1	3	1.64455 5	4	1	3	1.63172 22	14	0	0
1.60110 5	8	2	2	1.58407142	6	3	1	1.56577188	12	2	0M
1.56577188	6	1	3M	1.55785 58	12	0	2	1.50840 5	1	2	3
1.50338 46	14	1	1	1.48712 48	8	3	1	1.47591 7	10	2	2
1.47166 50	8	1	3	1.44409 8	5	3	2	1.40453 17	14	2	0
1.39796 16	14	0	2	1.37963 37	0	4	0M	1.37963 37	7	3	2M
1.36972 7	2	4	0	1.35617 92	12	2	2M	1.35617 92	0	0	4M
1.33939 10	16	1	1	1.33477 5	1	4	1	1.29714 5	6	4	0
1.28910 5	0	3	3	1.24705 37	14	2	2	1.22956 22	0	4	2
1.22102 47	6	3	3	1.21645 29	0	2	4	1.20585 18	18	1	1
1.19088 12	14	3	1	1.18290 18	14	1	3	1.17493 21	8	3	3
1.17006 11	6	4	2	1.15875 10	6	2	4	1.11714 9	12	4	0
1.10405 12	12	0	4	1.09543 32	20	1	1	1.05536 8	20	2	0
1.05355 18	14	4	0	1.05257 11	20	0	2	1.04255 12	14	0	4
1.04039 27	6	5	1	1.03285 14	12	4	2	1.02491 61	12	2	4+
1.02491 61	6	1	5+	1.02065 9	18	1	3	1.01146 24	14	3	3M
1.01146 24	8	5	1M	0.99711 18	5	5	2M	0.99711 18	8	1	5M
0.98345 10	20	2	2	0.98198 23	14	4	2	0.97526 16	14	2	4
0.96683 24	0	4	4	0.95519 30	20	3	1	0.95105 28	20	1	3
0.91978 8	0	6	0	0.91436 23	6	5	3	0.90715 26	6	3	5
0.90439 5	18	3	3	0.90350 6	0	0	6	0.90150 5	14	5	1
0.89440 29	8	5	3M	0.89440 29	6	6	0M	0.89118 10	14	1	5
0.88776 18	8	3	5	0.87909 5	6	0	6	0.87100 16	0	6	2
0.86848 10	2	6	2	0.86203 21	12	4	4	0.85865 20	0	2	6
0.85679 20	26	1	1	0.85623 5	2	2	6	0.85490 43	20	3	3
0.84907 9	6	6	2	0.83722 34	26	2	0+	0.83581 13	26	0	2
0.83267 17	20	2	4	0.83178 28	14	4	4	0.82318 7	18	5	1

Table 5. X-Ray reference pattern for Sr₂EuGaCu₂O_y (space group Ima2, Z = 4, a = 22.8441(3) Å, b = 5.51870(8) Å, and c = 5.42102(8) Å)

d	Ι	h	k	l	d	Ι	h	k	l	d	Ι	h	k	l
11.41472	208	2	0	0	4.46419	12	3	1	0	3.86416	57	0	1	1
3.80491	7	6	0	0	3.66013	49	2	1	1	3.51630	20	5	1	0
3.19976	6	4	1	1	2.85368	6	8	0	0	2.80688	13	7	1	0
2.75618	209	0	2	0	2.710729	99*	6	1	1M	2.710729	999*	0	0	2M
2.67919	5	2	2	0	2.63595	14	2	0	2	2.44252	8	1	2	1
2.29555	189	8	1	1	2.28294	16	10	0	0	2.23210	46	6	2	0
2.20691	36	6	0	2	2.14608	5	5	1	2	1.98249	20	8	2	0
1.96432	29	8	0	2M	1.96432	29	7	2	1M	1.932082	237	0	2	2
1.90315	94	2	2	2M	1.90315	94	12	0	0M	1.76469	6	9	2	1
1.74012	10	0	3	1	1.72271	12	6	2	2	1.71634	7	0	1	3
1.70460	10	5	3	0	1.69726	6	2	1	3	1.63067	19	14	0	0
1.60086	7	7	3	0	1.582481	20	6	3	1	1.56478	174	12	2	0M
1.56478	174	6	1	3M	1.55692	43	12	0	2	1.50736	5	1	2	3
1.50238	39	14	1	1	1.48569	43	8	3	1	1.47481	8	10	2	2
1.47081	45	8	1	3	1.44277	10	5	3	2	1.40344	17	14	2	0
1.39711	15	14	0	2	1.37809	17	0	4	0	1.36816	8	2	4	0
1.35527	81	12	2	2M	1.35527	81	0	0	4M	1.33851	8	16	1	1
1.28805	5	0	3	3	1.24616	42	14	2	2	1.22831	17	0	4	2
1.22015	58	6	3	3+	1.21570	29	0	2	4	1.20505	11	18	1	1
1.18987	8	14	3	1	1.18209	19	14	1	3M	1.18209	19	9	4	1
1.17400	20	8	3	3	1.16891	12	6	4	2	1.15803	9	6	2	4
1.11605	7	12	4	0	1.10345	11	12	0	4	1.09471	42	20	1	1
1.05461	6	20	2	0	1.05237	28	14	4	0M	1.05237	28	20	0	2
1.04198	16	14	0	4	1.03926	26	6	5	1	1.03192	12	12	4	2
1.02455	16	18	3	1M	1.02455	16	12	2	4M	1.02408	36	6	1	5
1.02002	7	18	1	3	1.01048	20	14	3	3M	1.01048	20	8	5	1
0.99640	12	8	1	5	0.98277	7	20	2	2	0.98111	23	14	4	2
0.97465	13	14	2	4	0.96604	18	0	4	4	0.96260	5	2	4	4
0.95445	28	20	3	1	0.95047	32	20	1	3	0.91349	16	6	5	3
0.90655	27	6	3	5	0.90335	12	18	3	3M	0.90335	12	0	0	6M
0.89368	15	8	5	3	0.89306	6	6	6	0	0.89069	7	14	1	5
0.88717	12	8	3	5	0.87865	6	6	0	6	0.87006	11	0	6	2
0.86754	10	2	6	2	0.86135	16	12	4	4	0.85817	18	0	2	6
0.85623	16	26	1	1	0.85429	33	20	3	3	0.84817	7	6	6	2
0.83661	32	26	2	0+	0.83528	14	26	0	2	0.83215	13	20	2	4
0.83114	33	14	4	4	0.82731	5	12	6	0	0.82242	5	18	5	1

Table 6. X-Ray reference pattern for Sr₂GdGaCu₂O_y (space group Ima2, Z = 4, a = 22.8294(2) Å, b = 5.51236(5) Å, and c = 5.41835(5) Å)

d	Ι	h	k	l	d	Ι	h	k	l	d	Ι	h	k	l
11.4008	192	2	0	0	4.45195	17	3	1	0	3.85129	75	0	1	1
3.80025	6	6	0	0	3.64872	57	2	1	1	3.50868	18	5	1	0
3.19122	10	4	1	1	2.85019	10	8	0	0	2.80176	15	7	1	0
2.746432	209	0	2	0	2.704079	999*	6	1	1M	2.70407	999*	0	0	2M
2.67005	6	2	2	0	2.62796	17	2	0	2	2.43414	10	1	2	1
2.33024	5	3	2	1	2.291032	203	8	1	1	2.28015	16	10	0	0
2.22597	43	6	2	0	2.20141	34	6	0	2	2.14013	5	5	1	2
1.97768	17	8	2	0	1.96040	24	8	0	2	1.925642	237	0	2	2
1.89969	92	12	0	0M	1.89969	92	2	2	2M	1.78003	5	3	3	0
1.76050	6	9	2	1	1.74224	5	10	0	2	1.73404	13	0	3	1
1.71771	10	6	2	2	1.71089	7	0	1	3	1.69912	10	5	3	0
1.69195	6	2	1	3	1.63868	5	4	1	3	1.62868	26	14	0	0
1.59609	7	7	3	0	1.58196	5	11	2	1	1.57757	161	6	3	1
1.56260	46	12	2	0	1.560081	47	6	1	3	1.55403	51	12	0	2
1.50247	6	1	2	3	1.50006	34	14	1	1	1.48141	53	8	3	1
1.47119	11	10	2	2	1.46690	47	8	1	3	1.43817	10	5	3	2
1.40088	18	14	2	0	1.39469	17	14	0	2	1.37339	34	7	3	2M
1.37339	24	0	4	0M	1.36336	10	2	4	0	1.35252	49	12	2	2
1.35034	27	0	0	4	1.34097	5	2	0	4	1.33653	8	16	1	1
1.24354	41	14	2	2	1.22407	17	0	4	2	1.21707	5	2	4	2
1.21624	41	6	3	3	1.21179	18	0	2	4	1.20333	12	18	1	1
1.18715	9	14	3	1	1.17964	12	14	1	3	1.17051	21	8	3	3
1.16512	16	6	4	2	1.15452	9	6	2	4	1.10070	10	12	0	4
1.09318	29	20	1	1	1.05296	5	20	2	0	1.05032	5	20	0	2
1.04985	15	14	4	0	1.03952	20	14	0	4	1.03577	30	6	5	1
1.02903	13	12	4	2	1.02288	6	18	3	1	1.02123	50	12	2	4M
1.02123	50	6	1	5M	1.01807	9	18	1	3	1.00822	6	14	3	3
1.00709	14	8	5	1	0.99349	16	8	1	5	0.98103	6	20	2	2
0.97852	20	14	4	2	0.97221	24	14	2	4	0.96282	18	0	4	4
0.95262	32	20	3	1	0.94873	23	20	1	3	0.91048	31	6	5	3
0.90372	26	6	3	5	0.90023	9	0	0	6	0.89081	17	8	5	3
0.88839	6	14	1	5	0.88447	16	8	3	5	0.87698	6	26	0	0
0.87599	5	6	0	6	0.86702	10	0	6	2	0.86452	17	2	6	2
0.85886	20	12	4	4	0.85535	37	0	2	6M	0.85535	37	26	1	1M
0.85253	38	20	3	3+	0.83542	15	26	2	0	0.83427	33	20	4	2+
0.83041	28	24	1	3M	0.83041	28	20	2	4M	0.82883	40	14	4	4
0.82474	7	12	6	0	0.82032	6	18	5	1					

Table 7. X-Ray reference pattern for Sr₂DyGaCu₂O_y (space group Ima2, Z = 4, a = 22.8015(2) Å, b = 5.49286(5) Å, and c = 5.40138(5) Å)

d	Ι	h	k	l	d	Ι	h	k	l	d	Ι	h	k	l
11.3988	270	2	0	0	4.44713	25	3	1	0	3.84626	66	0	1	1
3.79959	8	6	0	0	3.64438	57	2	1	1	3.50609	31	5	1	0
3.18818	20	4	1	1	2.84969	8	8	0	0	2.80026	22	7	1	0
2.74217	251	0	2	0	2.703069	999*	6	1	1	2.697812	297	0	0	2
2.66611	6	2	2	0	2.62528	17	2	0	2	2.43064	23	1	2	1
2.32713	9	3	2	1	2.30657	5	3	1	2	2.28972	298	8	1	1
2.27975	34	10	0	0	2.22357	68	6	2	0	2.19972	53	6	0	2
2.13811	11	5	1	2	1.97592	26	8	2	0	1.95913	36	8	0	2
1.95509	6	7	2	1	1.923133	377	0	2	2	1.89979	110	12	0	0
1.89633	49	2	2	2	1.82219	9	4	2	2	1.77740	6	3	3	0
1.75903	13	9	2	1	1.74129	8	10	0	2	1.73143	11	0	3	1
1.71586	13	6	2	2	1.70899	7	0	1	3	1.69681	21	5	3	0
1.69010	5	2	1	3	1.63698	9	4	1	3	1.62839	43	14	0	0
1.59414	14	7	3	0	1.58084	8	11	2	1	1.57556	147	6	3	1
1.56163	55	12	2	Õ	1.558591	182	6	1	3	1.55330	69	12	0	2
1.51006	5	1	3	2	1.49974	67	1	2	3M	1.49974	67	14	1	1M
1.48423	5	3	3	2	1.47971	74	8	3	1	1.46996	13	10	2	2
1.46563	69	8	1	3	1.43633	14	5	3	2	1.42484	6	16	0	0
1.40013	28	14	2	0	1.39412	23	14	0	2	1.37244	7	7	3	2
1.37108	26	0	4	Õ	1.36127	13	2	4	0	1.35153	75	12	2	2
1.34890	38	Ő	0	4	1.33956	9	2	0	4	1.33611	16	16	1	1
1 32660	6	1	4	1	1 28209	5	0	3	3	1 24273	44	14	2	2
1 22220	27	0	4	2	1.20209	6	2	4	2	1 21479	52	6	3	3
1 21039	28	Ő	2	4	1 20299	11	18	1	1	1 18620	11	14	3	1
1 17891	18	14	1	3	1.20277	7	9	4	1	1 16915	37	8	3	3M
1 16915	37	15	3	ом	1 16356	14	6	4	2	1 15328	12	6	2	4
1 13988	6	20	0	0	1 11178	9	12	4	0	1 09986	10	12	0	4
1.09438	8	16	1	3	1.09289	52	20	1	1	1.05256	5	20	2	0
1.05000	7	20	0	2	1.02202	19	14	4	0	1.03279	16	14	0	4
1.03429	26	6	5	1	1.02792	13	12	4	2	1.02223	5	18	3	1
1.02081	17	12	2	4	1.02792	40	6	1	5	1.01755	8	18	1	3
1.02001	5	14	3	3	1.01572	23	8	5	1	0.00252	10	8	1	5
0.99177	7	5	5	2	0.98057	7	20	2	2	0.97754	23	14	4	2
0.97142	24	14	2	4	0.96156	23	20	4	4	0.95816	5	2	4	4
0.97142	33	20	3	1	0.94829	31	20	1	3	0.90925	20	6	5	3
0.95200	33	20 6	3	5	0.94027	7	20	0	6	0.90925	20	10	1	1
0.90209	22	8	5	3	0.89927	8	6	6	0	0.89033	8	17	1	5
0.00900	25	22	1	2	0.88870	20	0	2	5	0.007692	0	26	0	0
0.00000	11	4	1	5	0.00550	20	20	5	1	0.07003	20	20	6	2
0.8/309	11	2	6	0	0.87004	21	12	4	4	0.80372	20	26	1	2 1 M
0.00525	10	2	0	2 6 M	0.85100	21 57	12	4	4 614	0.85100	57	20	2	1 IVI 2 N J
0.83403	5/	0	4		0.85190	ו כ ד	15	2		0.85190	5/	20	5	2 NI
0.84908	0	9	0	1	0.84470	7	13	5	2	0.84408	0	0	0	414
0.840/2	10	21	4		0.83995	/	12	2	3	0.83030	11	2	2	4M
0.83656	11	10	0	0M	0.83517	15	26	2	0	0.83389	14	26	0	2
0.83363	9	20	4	2	0.83026	5	24	1	3	0.82982	14	20	2	4
0.82918	6	23	3	2	0.82799	43	14	4	4	0.82646	7	11	6	1
0.82351	11	12	6	0M	0.82351	11	7	5	4M	0.82176	5	22	0	4

Table 8. X-Ray reference pattern for Sr₂HoGaCu₂O_y (space group Ima2, Z = 4, a = 22.7975(2) Å, b = 5.48433(5) Å, and c = 5.39562(5) Å)

d	Ι	h	k	l	d I	h	k	l	d I	h	k	l
11.3982	266	2	0	0	5.69911 15	4	0	0	5.32359 10	1	1	0
4.44207	29	3	1	0	3.84040 97	0	1	1	3.79940 9	6	0	0
3.63938	89	2	1	1	3.50354 28	5	1	0	3.18480 17	4	1	1
2.84955	38	8	0	0	2.79891 23	7	1	0	2.73749268	0	2	0
2.70096	999*	6	1	1	2.69418297	0	0	2	2.66180 13	2	2	0
2.62194	18	2	0	2	2.42672 14	1	2	1	2.32368 7	3	2	1
2.30360	8	3	1	2	2.28841315	8	1	1	2.27964 13	10	0	0
2.22103	66	6	2	0	2.19772.56	6	0	2	2.13573 8	5	1	2
1.97412	36	8	2	0	1.95770.42	8	0	2	1.95301 6	7	2	1
1.92020	345	0	2	2	1 89970 92	12	0	0	1.89352.50	2	2	2
1 81969	6	4	2	2	1 77453 7	3	3	Ő	1 75750 11	9	2	1
1 74026	6	10	0	2	1 72854 16	0	3	1	1 71377 17	6	2	2
1 70663	13	0	1	3	1 69430 15	5	3	0	1 68782 10	2	1	3
1 63490	7	4	1	3	1.62832 40	14	0	0	1.59222 16	8	2	2M
1 59222	16	7	3	ом	1.57971 8	11	2	1	1.57222 10	6	3	1
1.550222	51	12	2	0	1.55670104	6	1	3	1.57556150	12	0	2
1 49904	60	14	1	1M	1 49904 60	1	2	3M	1.33230 37	3	3	$\frac{2}{2}$
1 /7780	70	8	3	1	1.45967 6	10	2	2	1.46413 76	8	1	3
1.47707	11	5	3	2	1.40002 0	16	0	0	1 39946 34	14	2	0
1 30357	32	14	0	2	1.42478 0	7	3	2	1.36874 32	14	1	0
1 35808	12	2	4	0	1.37003 0	12	2	2	1.30074 32	0	0	1
1 33778	10	2	0	4	1.33581 10	16	1	1	1.34709 54	0	3	3
1.33770	70	14	2	+ 2	1.33331 10	10	1	2	1.23013 0	2	1	5 ЭМ
1.24191	75	6	2	2 3M	1.22029 24	0	2	4	1.21310 73	18	1	1
1 18524	13	14	3	1	1.20808 30	14	1	3	1.20275 12	10	1	1
1.16524	24	0	2	1	1.1/011 10	14	1	2	1.17319 7	9	4	1
1.10771	5	0	2	1	1.10164 20	12	4	0	1.15180 12	12	0	4
1.00271	11	20	1	1	1.11052 8	12	5	1	1.05225 8	20	2	0
1.09271	++ 0	20	0	2	1.07300 7	14	1	0	1.03223 8	14	0	4
1.04974	0 26	20	5	1	1.04773 21	14	4	2	1.03794 24	14	2	4
1.03207	10	12	2	1	1.02072 19	12	4	5	1.02100 /	10	1	2
1.01977	19	14	2	4	1.01607 42	0	5	1	1.01702 8	10	1	1
0.00122	20	14	3	5	1.00422 23	20	2 2	1	1.00042 8	14	1	1
0.99133	20	0 14	2	1	0.96010 12	20	4	4	0.97031 30	14	4	4
0.97032	23 41	20	2	4	0.90010 22	20	4	4	0.93071 5	2	4	4
0.93130	41	20	2	1	0.94780 41	20	1	5	0.93495 5	6	5	2
0.92790	22	6	2	5	0.91230 7	10	2	2	0.90787 51	0	5	5
0.90140	52	14	5	5	0.90032 3	10	2	3	0.89800 8	0	5	2
0.89600	э 7	14	5	1	0.88874 7	14	3	1	0.88835 24	8 22	3	3
0.88727	21	0	0	0	0.88681 10	14	1	5	0.88572 9	22	1	5
0.88235	21	8	3	2	0.8/6/9 /	26	0	0	0.8/398 9	6	0	6
0.8/013	6	20	0	4	0.86427 27	20	0	2	0.86180 18	2	6	2
0.85688	26	12	4	4	0.85479 18	26	1		0.85332 38	0	2	0
0.85123	65	20	5	3M	0.85123 65	2	2	6M	0.84779 6	9	0	1
0.843/2	2	15	5	2	0.842/4 11	0	0	2	0.84012 /	21	4	1
0.83886	8	12	5	3	0.83500 19	26	2	0	0.83376 23	12	3	5M
0.83376	23	26	0	2M	0.83282 21	20	4	2M	0.83282 21	6	2	6M
0.82925	22	20	2	4	0.82704 59	14	4	4	0.82527 6	11	6	1
0.82253	13	12	6	0								

Table 9. X-Ray reference pattern for $Sr_2ErGaCu_2O_y$ (space group Ima2, Z = 4, a = 22.7964(3) Å, b = 5.47497(6) Å, and c = 5.38837(6) Å)

Table 10. X-Ray reference pattern for Sr ₂ TmGaCu ₂ O _y (space group In	ma2, $Z = 4$,
a = 22.8024(3) Å, $b = 5.46762(7)$ Å, and $c = 5.38158(7)$ Å)	

	A														
	u	Ι	h	k	l	d	Ι	h	k	l	d	Ι	h	k	l
11.4	0122	282	2	0	0	5.70060	18	4	0	0	4.43854	22	3	1	0
3.83	3541	114	0	1	1	3.80040	17	6	0	0	3.63523	98	2	1	1
3.50	0216	31	5	1	0	3.18221	12	4	1	1	2.85030	72	8	0	0
2.79	9847	40	7	1	0	2.733814	17	0	2	0	2.699589	999*	6	1	1
2.69	0793	391	0	0	2	2.65846	18	2	2	0	2.61884	31	2	0	2
2.46	501	5	4	2	0	2.43334	5	4	0	2	2.42355	13	1	2	1
2.32	2094	6	3	2	1	2.287743	37	8	1	1	2.28024	13	10	0	0
2.21	927	79	6	2	0	2.19607	51	6	0	2	2.13372	12	5	1	2
1.97	299	57	8	2	0	1.95745	50	10	1	1M	1.95745	50	8	0	2M
1.95	5154	5	7	2	1	1.93963	5	7	1	2	1.917713	377	Ő	2	2
1.90	02.01	118	12	0	0	1.89114	57	2	2	2	1 81675	10	1	3	0
1 75	651	12	9	2	1	1 75108	8	10	2	õ	1 73961	7	10	0	2
1 72)62A	18	Ó	3	1	1 71208	24	6	2	2	1 70374	17	0	1	2 3M
1.72	1374	17	12	1	1M	1.60240	10	5	2	0	1.68574	18	2	1	3
1.70	574	6	12	2	1	1.63304	12	4	1	3	1.62874	56	14	0	0
1.05	077	22	•	2	1 2M	1.05504	12 22	7	2	л ОМ	1.02074	50	14	2	1
1.59	1701	23	0	2	21VI 1	1.59077	23 65	12	2	0.01	1.57908	9	11	1	1
1.57	210	70	10	5	1	1.30031	05	14	1	1	1.333222	14	1	1	2
1.55	0218	12	12	0	2	1.49917	/0 05	14	1	1	1.49057	14	10	2	2
1.48	2010	8	3	3	2	1.4/055	12	ð	3	1	1.40/0/	10	10	2	2
1.46	286	73	8	1	3	1.43260	13	5	3	2	1.42515	9	16	0	0
1.39	924	23	14	2	0	1.39337	23	14	0	2	1.36921	5	/	3	2
1.36	691	30	0	4	0	1.35719	14	2	4	0	1.34979	70	12	2	2
1.34	1540	32	0	0	4	1.33600	18	2	0	4M	1.33600	18	16	1	1M
1.32	2261	5	1	4	1	1.28624	7	6	4	0	1.27818	13	0	3	3M
1.27	818	13	12	3	1M	1.24142	58	14	2	2	1.21868	32	0	4	2
1.21	174	73	2	4	2M	1.21174	73	6	3	3M	1.20713	39	0	2	4
1.20)289	14	18	1	1	1.20042	7	2	2	4	1.18466	16	14	3	1
1.17	756	23	14	1	3	1.16650	35	8	3	3	1.16047	17	6	4	2
1.15	5049	13	6	2	4	1.14387	5	16	2	2	1.11156	5	8	2	4
1.10)963	9	12	4	0	1.09803	9	12	0	4	1.09289	64	20	1	1+
1.05	5228	9	20	2	0	1.04977	11	20	0	2	1.04704	28	14	4	0
1.03	3728	22	14	0	4	1.03141	31	6	5	1	1.02583	19	12	4	2
1.02	2130	6	18	3	1	1.01892	24	12	2	4	1.01740	60	6	1	5M
1.01	740	60	18	1	3M	1.00566	9	14	3	3	1.00307	30	8	5	1
1.00	058	11	22	1	1	0.99027	19	8	1	5	0.98896	7	5	5	2
0.98	3001	10	20	2	2	0.97577	33	14	4	2	0.96981	25	14	2	4
0.95	5885	47	0	4	4	0.95548	11	2	4	4	0.95135	36	20	3	1
0.94	1766	43	20	1	3	0.93361	11	0	5	3M	0.93361	11	12	5	1M
0.92	2972	6	6	4	4	0.90837	5	2	6	0	0.90675	23	6	5	3
0.90	033	43	6	3	5+	0.89693	8	0	0	6	0.89523	6	14	5	1
0.88	8860	9	22	3	1	0.88732	30	8	5	3	0.88612	24	6	6	ом
0.88	3612	24	14	1	5M	0.88559	11	22	1	3	0.88135	25	8	3	5
0.00	702	2- 1 5	26	0	0	0.87205	8	6	0	6	0.86081	25	20	0	4
0.86	312	20	20	6	2	0.86065	16	2	6	2	0.85604	28	12	4	4
0.00	512	20	26	1		0.85222	36	0	2	6	0.85004	20 58	20	+	3
0.03	1096	14	20	1 2	1 6	0.03223	50 7	1	2 1	5	0.03091	15	20 6	5	2
0.04	1200	14 2	21	4	1	0.04303	12	12	4 5	2	0.04108	10	20	0	4
0.83	980	3	21	4	1	0.83801	12	12	3	3 51 6	0.83510	19	20	2	0
0.83	5384	16	26	0	2	0.83269	27	12	3	5M	0.83269	27	20	4	2M
0.83	3158	9	6	2	6	0.82887	27	20	2	4	0.82630	68	14	4	4
0.00		-		~		0 0 0 1 (-			~	0					

d	Ι	h	k	l	d I	h	k	l	d I	h	k	l
11.4057	131	2	0	0	5.32904 5	1	1	0	4.44611 21	3	1	0
3.84441	25	0	1	1	3.64303 18	2	1	1	3.50639 26	5	1	0
3.18773	44	4	1	1	2.85142 11	8	0	0	2.80103 26	7	1	0
2.74035	262	0	2	0	2.70325999*	6	1	1	2.69699308	0	0	2
2.62461	16	2	0	2	2.46998 8	4	2	0	2.42924 18	1	2	1
2.32602	7	3	2	1	2.30591 5	3	1	2	2.29022224	8	1	1
2.28113	53	10	0	0	2.22306 46	6	2	0	2.19972 34	6	0	2
2.13777	10	5	1	2	1.97582 22	8	2	0	1.95938 26	8	0	2
1.95478	6	7	2	1	1.92220339	0	2	2	1.90094 71	12	0	0
1.89547	30	2	2	2	1.82152 11	4	2	2	1.77635 8	3	3	0
1.75900	14	9	2	1	1.75320 8	10	2	0	1.74168 14	10	0	2
1.73035	8	0	3	1	1.71542 8	6	2	2	1.70841 5	0	1	3
1.69598	16	5	3	0	1.63655 9	4	1	3	1.62938 28	14	0	0
1.59356	11	7	3	0	1.58100 7	11	2	1	1.57490153	6	3	1
1.56193	56	12	2	0	1.55831191	6	1	3	1.55377 67	12	0	2
1.50017	57	14	1	1M	1.50017 57	1	2	3M	1.48348 6	3	3	2
1.47928	55	8	3	1	1.46992 26	10	2	2	1.46550 46	8	1	3
1.43570	15	5	3	2	1.40051 22	14	2	0	1.39462 18	14	0	2
1.37197	8	7	3	2	1.37017 29	0	4	0	1.36039 11	2	4	0
1.35162	64	12	2	2	1.34849 38	0	0	4	1.33917 5	2	0	4
1.33675	22	16	1	1	1.32575 8	1	4	1	1.24292 64	14	2	2
1.22157	26	0	4	2	1.21434 56	6	3	3	1.20993 33	0	2	4
1.20359	13	18	1	1	1.18623 11	14	3	1	1.17909 16	14	1	3
1.17631	6	9	4	1	1.16886 27	8	3	3	1.16301 11	6	4	2
1.15296	10	6	2	4	1.11153 7	12	4	0	1.09986 13	12	0	4
1.09462	9	16	1	3	1.09346 42	20	1	1	1.05300 6	20	2	0
1.05049	8	20	0	2	1.04867 26	14	4	0	1.03886 17	14	0	4
1.03372	25	6	5	1	1.02767 17	12	4	2	1.02072 24	12	2	4
1.01970	42	6	1	5	1.01783 7	18	1	3	1.00727 6	14	3	3
1.00522	23	8	5	1	1.00111 5	22	1	1	0.99232 17	8	1	5
0.99122	6	5	5	2	0.98089 9	20	2	2	0.97739 29	14	4	2
0.97140	24	14	2	4	0.96110 23	0	4	4	0.95771 5	2	4	4
0.95230	38	20	3	1	0.94859 36	20	1	3	0.90879 24	6	5	3
0.90238	30	6	3	5	0.89900 8	0	0	6	0.88925 21	8	5	3
0.88787	16	6	6	0M	0.88787 16	14	1	5M	0.88640 5	22	1	3
0.88324	17	8	3	5	0.87487 6	6	0	6	0.87084 7	20	0	4
0.86517	23	0	6	2	0.86269 15	2	6	2	0.85771 22	12	4	4
0.85537	24	26	1	1	0.85420 45	0	2	6	0.85196 60	20	3	3M
0.85196	60	2	2	6M	0.84987 6	16	1	5	0.84864 5	9	6	1
0.84450	7	15	5	2	0.84361 8	6	6	2	0.84080 8	21	4	1
0.83967	6	12	5	3	0.83617 6	5	5	4	0.83558 20	26	2	0
0.83432	17	26	0	2	0.83357 15	20	4	2M	0.83357 15	6	2	6M
0.82994	17	20	2	4	0.82782 52	14	4	4	0.82608 5	11	6	1
0.82333	8	12	6	0								

Table 11. X-Ray reference pattern for $Sr_2YGaCu_2O_y$ (space group Ima2, Z = 4, a = 22.8113(2) Å, b = 5.48069(5) Å, and c = 5.39397(5) Å)

4. Summary

X-ray diffraction patterns of the $Sr_2RGaCu_2O_y$ phases were prepared for R = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, and Y. These patterns are similar to those of the well known high-temperature superconductors $Ba_2YCu_3O_{6+y}$. The Lu analog could not be prepared even using higher temperature and prolonged heat-treatments, possibly due to a small size of Lu^{3+} , which makes it unstable in the 8-fold coordination. X-ray powder diffraction showed the structure of $SR_2RGaCu_2O_y$ to be Ima2. GaO_4 tetrahedral chains were found along the diagonal base of the 213-type cell. Electron diffraction study revealed continuous streaks of diffuse intensity attributed to the presence of oxygen vacancy disorder, and/or the presence of a Cu atom within the GaO₄ chains. A neutron diffraction study will be conducted to investigate the possible presence of the disordered chains.

5. References

- W. Wong-Ng, R. S. Roth, L. Swartzendruber, L. H. Bennett, C. K. Chiang, F. Beech, and C. R. Hubbard, X-Ray Powder Characterization of Ba₂YCu₃O_{7-y}, Adv. Cer. Mater. 2 (3B), 565 (1987).
- [2] T. Den and T. Kobayashi, Preparation and properties of $YSr_2Cu_{3-x}M_xO_y$ (M = Li, Al, Ti, V, Cr, Fe, Co, Ga, Ge, Mo, W, and Re), Physica C **196**, 141 (1992).
- [3] S. A. Sunshine, L. F. Schneemeyer, T. Siegrist, D. C. Douglass, J. V. Waszezak, R. J. Cava, E. M. Gyorgy, and D. W. Murphy, Chem. Mater. 1, 331 (1989).
- [4] J. T. Vaughey, J. P. Thiel, E. F. Hasty, D. A. Groenke, C. L. Stern, K. R. Poeppelmeier, B. Dabrowski, D. G. Hinks, and A. W. Mitchell, Synthesis and Structure of a New Family of Cuprate Superconductors: LnSr₂Cu₂GaO_y, Chem. Mater. **3**, 935 (1991).
- [5] G. Roth, P. Adelmann, G. Heger, R. Knotter, and Th. Wolf, The Crystal Structure of RESr₂GaCu₂O_y, J. Phys. 1, 721 (1991).
- [6] F. Beech, F. S. Miraglia, A. Santoro, and R. S. Roth, Phys. Rev. B 35, 8778 (1987).
- [7] PDF, Powder Diffraction File, produced by International Centre for Diffraction Data (ICDD), Newtown Square, 12 Campus Blvd., Newtown Squares, PA 19073-3273.
- [8] H. M. Rietveld, A Profile Refinement Method for Nuclear and Magnetic Structures, J. Appl. Cryst. 2, 65 (1969).
- [9] A. C. Larson and R. B. Von Dreele, GSAS. The General Structure Analysis System, Los Alamos National Laboratory, November 1994.
- [10] R. D. Shannon and C. T. Prewitt, Effective Ionic Radii in Oxides and Fluorides, Acta Cryst. 25, 925 (1969).
- [11] R. D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Cryst. A32, 751 (1976).
- [12] E. Antipov, S. Putlin, and R. Shpanchenko, 45-302, PDF, ICDD Grant-in-Aid program, Moscow State University, Russia (1993).
- [13] T. Krekels, O. Milat, G. van Tendeloo, S. Amelinckx, T. G. N. Babu, A. J. Wright, and C. Greaves, J. Solid State Chem. 105, 313 (1993).

About the authors: Winnie Wong-Ng is a senior research chemist in the Phase Equilibria group of the Ceramics Division of the NIST Materials Science and Engineering Laboratory. She has been actively engaged in research in the crystallography, crystal chemistry, and phase equilibria of high temperature electronic oxides since 1986, particularly high temperature superconductor materials. James Kaduk is an associate research scientist with BP Amoco PLC Corporation. He works extensively in the research areas of x-ray and neutron diffraction, including powder and single crystal crystallography. Igor Levin is an expert in transmission electron microscopy (TEM) who is working primarily on high temperature oxides after joining the Phase Equilibria group of the Ceramics Division. William Greenwood was a graduate student, and Jeremy Dillingham was a senior student from the Geology Department of the University of Maryland. The National Institute of Standards and Technology is an agency of the Technology Administration, U.S. Department of Commerce.