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Abstract— Sensor-centric navigation of Unmanned
Ground Vehicles (UGVs) operating in rugged and expansive
terrains requires the competency to evaluate the utility
of sensor information such that it results in intelligent
behavior of the vehicles. In this paper, we propose an
entropic information metric for the above purpose where
entropy is used to quantify the probabilistic uncertainty
in sensor measurements. We present results using data
obtained from field trials on an unmanned vehicle to
substantiate the utility of the proposed metric. We also show
how low and high level tasks can be predicated upon this
metric in potential application areas related to autonomous
vehicle navigation.

I. INTRODUCTION

The quantification of information contained in sensor
measurements and its efficient utilization for generat-
ing intelligent behavior of Unmanned Ground Vehicles
(UGVs) operating in unstructured, expansive and harsh
rugged terrains is the main theme of this paper. In the
context of this paper, unstructured implies a physical
environment that does not have much regular structure
or layout. An expansive environment is one which is
much larger than the range of the sensors available on the
vehicle. Harshness refers to the uneven undulatory terrain
of the operating environment.

Various researchers have employed entropy as a mea-
sure of information. Roy et al. generate a map of the
environment that contains the information content of each
position in the environment. The information content is
computed off-line from an a priori map [15]. Beckerman
[3] presents a Bayes-maximum entropy formalism for
fusing ultrasound and visual data acquired by a mobile
robot to construct a map for navigation. In [4], a com-
posite utility metric based on the ideas of entropy has
been developed for the dual objective of mapping and
localization for an indoor multiple robot team. Musto and
Saridis have employed entropy for reliability analysis of
intelligent machines [12]. Entropy has found its use in
encoding prior knowledge about the discriminability of
objects as a function of viewing position [2] and in the
so-called optimal sensor placement techniques [18]. In
recent years, entropy has also been extensively utilized

in decentralized and distributed data fusion systems [11],
[13].

Even though entropy has been used in a wide array of
sensor fusion applications, its use has been very limited in
the image interpretation, pattern recognition and matching
areas with respect to outdoor robotic vehicle navigation
tasks. This paper borrows ideas from information theory
towards the development of a scheme for images obtained
from typical sensors that are utilized in such domains. We
propose an entropic metric for the evaluation of informa-
tion of sensed images and show that this metric serves
as a strong intuitive measure for evaluating and ultimately
utilizing sensor measurements for robotic navigation tasks.

The paper is organized as follows: Section II intro-
duces the concept of entropy. This is directly followed
by the methodology by which the entropic information
of images obtained from various sensing modalities can
be obtained. Section III shows how the proposed metric
can be employed in the information evaluation of images
for two sets of mobility sensors. Section IV shows the
utility of the information evaluation of sensory perception
for UGVs in three different areas of robotic navigation.
Section V provides conclusions and avenues for further
research.

II. INFORMATION EVALUATION OF SENSED IMAGES

A. The Concept of Entropy

Entropy is a quantitative measure of the uncertainty
associated with a probability density function. Since its
introduction in classical thermodynamics, the entropy
function has been widely applied in communications and
systems theory. The entropy of a probability distribution
p(x) defined on a random variable x is defined as the
expected value of the negative of the log-likelihood 1 [14]
and is given by:

h(x)
�
= E{−�np(x)}

1In this paper, the log is taken to mean the natural logarithm to the
base e. When natural logarithm to the base e is used, the units for entropy
is nats. In telecommunications, it is common to take all logarithms to
base 2 and entropy is consequently measured in bits.
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where E denotes the mathematical expectation operator.
For discrete random variables

h(x) = − ∑
x∈X

p(x)�np(x) (1)

The entropy h( · ) is a measure of the average uncertainty
of a random variable and thus represents the compactness
of the probability distribution, p(x). Subsequently, it is
a measure of the informativeness of the distribution and
consequently the entropy is minimum when information
is maximum.

B. Computing Entropic Information of Sensor Images

Equation (1) can be rewritten as:

h(p1, p2, . . . , pn) = −
n

∑
k=1

pk�npk (2)

where pk is the probability associated with the kth event.
Entropy can be used to measure the information gained

from the selection of a specific event among an ensem-
ble of events. It can be seen from Equation (2) that
h(p1, p2, . . . , pn) is a maximum when pk = 1

n ; k = 1, . . . ,n
and thus uniform probability distribution yields the max-
imum entropy (minimum information).

The gray-level histogram of the sensed images are used
to define a probability distribution such that:

pi =
Npi
N ; i = 1, . . . ,Ng (3)

where Npi is the number if pixels in the image with gray-
level i, N is the total number of pixels in the image, and Ng

is the number of gray-levels, respectively. Using Equation
(3) in Equation (2) yields the entropic information. As
noted in Section II-A, the entropy is maximum for an
image in which all pi are same. Thus, the less uniform
the histogram, the lower the entropy and higher the
information content of the image.

III. EXPERIMENTAL SETUP AND RESULTS

The primary goal of the U.S. Army’s Demo III
eXperimental Unmanned Vehicle (XUV) program [17]
is to develop and demonstrate technology required to
develop survivable mobile robots capable of autonomous
operation over rugged terrain as part of a mixed military
force, containing both manned and unmanned vehicles.
The XUV shown in Figure 1 is a hydrostatic diesel, 4
wheel drive, 4 wheel steer vehicle utilizing the NIST
developed Real-Time Control System (RCS) [1] using
Neutral Message Language (NML) communications for
autonomous navigation in unstructured and off-road driv-
ing conditions.

Fig. 1. The Demo III eXperimental Unmanned Vehicle can drive
autonomously at speeds of up to 60 km/h on-road, 35 km/h off-
road in daylight, and 15 km/h off-road at night or under inclement
weather conditions. The Camera is mounted above the LADAR
shown in white.

The sensor suite of the XUV consists of a pair of
cameras for stereo vision, a Schwartz2 Electro-Optics
LADAR (LA ser Detection And Ranging), a stereo pair
of Forward Looking Infra-Red (FLIR) cameras, a stereo
pair of monochrome cameras, Global Positioning System
(GPS), Inertial Navigation System (INS), a force bumper
sensor and actuators for steering, braking and transmission
[6]. An integrated Kalman filter navigation system fuses
measurements from odometry, inertial and differential
GPS sensors for position estimation.

The primary sensors we are interested in for the pur-
poses of this paper are the camera and the scanning laser
range finder mounted on a pan-tilt platform. The camera
produces images at up to 30 Hz. The LADAR produces a
32 row × 180 column range image with a field of view
of 20◦× 80◦ at 20 Hz. Field data was acquired as the
vehicle traversed rugged terrain on an experimental site at
Fort IndianTown Gap, PA.

Figure 2 shows the Camera and LADAR images and
their gray-level histograms, respectively. To construct the
histogram of the intensity images, the default value for the
number of bins has been selected to be 256. The horizontal
axes of the histograms in Figure 2 represent the gray-level
values and the vertical axes represent the number of times
the corresponding gray-level occurred in the image. Peaks
in the histogram are indicative of particular structures
(features) that are present in the scene from which the
image was acquired. Once the histograms are constructed,
it is straightforward to obtain the information content of
Camera and LADAR images by using Equations (3) and
(2).

2Commercial equipment and materials are identified in this paper in
order to adequately specify certain procedures. Such identification does
not imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.
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Fig. 2. Sensed Camera and LADAR Images and their gray-level
histograms. In the histograms, the horizontal scale is brightness
and the vertical scale is the number of pixels in the image with
that brightness value. In the LADAR image, dark pixels are close
to the sensor and light pixels are farther away.

Figure 3(a) (shown in the next page) depicts three
scenes as the vehicle traversed the terrain. The first Cam-
era image shows the scene from the farthest distance of
all the three images, and the third image is the closest. As
witnessed by the values marked in the histogram plots, the
entropy of the third image exceeds that of the other two
and can be interpreted as follows: As the vehicle moves
closer to the scene, the features of the scene are viewed
with better clarity as a result of reduction in the number
of visible features. Accordingly, the histogram of the third
image is more uniform than the other two resulting in a
higher entropy value. This type of information evaluation
is analogous to the scale space concept. In scale space
schemes, an image is analyzed at varying levels of detail
for various purposes including feature extraction. At a
finer scale level, several features exist than at a coarser
scale level where fewer features persist. Accordingly fea-
ture identification is done at the coarsest scale, and the
feature is localized at the finest scale [8]. These ideas
have their use in map registration (Section IV-A).

In Figure 3(b), two sets of similar scenes as viewed
by both the Camera and LADAR are shown. The left
column depicts the Camera images and their histograms
while the right column shows the same for the LADAR
images. The entropy values for these images are obtained
as before and are marked in the histogram plots. For the
particular scene under consideration, it can be clearly seen
that the LADAR images contain more information than
their Camera counterparts. Even though for the data sets
considered in this paper, the LADAR images have been
found to contain more information, it is not always the
case. In fact, information evaluation of other sets of data
have shown that Camera images contain more information
and thus it should be emphasized that the underlying
information is scene-specific.

In the following paragraphs, we show how the proposed
metric can be used in various tasks related to unmanned
ground vehicle navigation.

IV. POTENTIAL APPLICATION AREAS

Before we proceed further, we describe the RCS [1]
to better understand the navigation tasks within which
the proposed metric has its utility. The Demo III XUV
was designed in accordance with the RCS reference
model architecture. It consists of a multi-layered multi-
resolutional hierarchy of computational nodes, each con-
taining elements of sensory processing, world modeling,
value judgment, behavior generation (path planning) and
a knowledge database as shown in Figure 4. These nodes
receive goals, priorities, and plans from superiors and
produce the same for subordinates.

Knowledge
Database

Sensory
Processing
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Judgement

World
Modeling

Behavior
Generation

COMMANDED TASK
(GOAL)

PLAN
UPDATE

PREDICTED
INPUT COMMANDED

ACTIONS
(SUBGOALS)
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OBJECTS &
EVENTS

PLAN
RESULTS

Fig. 4. Internal Structure of an RCS Node. The functional elements
within a RCS node are behavior generation (task decomposition
and control), sensory processing (filtering, detection, recognition,
grouping), world modeling (store and retrieve knowledge and predict
future states), and value judgment (compute cost, benefit, importance,
and uncertainty). These are supported by a knowledge database, and
a communication system that interconnects the functional models
and the knowledge database. This collection of modules and their
interconnections make up a generic node in the architecture. Each
module in the node may have an operator interface.

For Demo III, the RCS architecture consists of five
levels: Section Level, Vehicle Level, Subsystem Level,
Primitive Level, and Servo Level. The Section Level
receives a general plan generated by a human. This plan
contains general commands and a plan based on a priori
information from various sources such as digital maps.
At the Vehicle Level, the vehicle refines the commands
from the Section Level by developing a plan based on its
world model that contains information from digital maps
and low-resolution information from on-board sensors. At
the Subsystem Level, path planning for avoiding obstacles
in the path is performed. The Primitive Level controls
the steering, acceleration and braking of the vehicle, and
the Servo Level controls the actuators for each of the
subsystems.

A. Map Registration

Recent developments in miniaturization and increased
computer processing capabilities have led to significant
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Fig. 3. (a) depicts three Camera images and (b) depicts two sets of similar scenes as seen by Camera and LADAR. The corresponding entropy values
are marked in the histogram plots. In the histograms, the horizontal scale is brightness and the vertical scale is the number of pixels in the image with
that brightness value. In the LADAR images, dark pixels are close to the sensor and light pixels are farther away. See text for further details.
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improvements in LADAR devices which are now small
enough to operate on aircraft and in ground vehicles. In
the near future, such systems will allow military aircraft to
identify enemy ground vehicles accurately in battle zones
and permit spacecraft and robotic vehicles to navigate
safely through unfamiliar terrain. Motivated by these con-
siderations, we are developing robust LADAR registration
algorithms for unmanned vehicles [9]. We also envisage
the results from the registration to be useful for terrain
mapping and in scenarios where GPS is unreliable or
unavailable within required accuracy bounds.

Specifically, we are interested in registering LADAR
scans to a priori maps for use in UGVs. In RCS, the
Vehicle Level world model includes feature and elevation
data from a priori digital terrain maps such as information
about roads, bridges, streams, woods, and buildings. This
information needs to be registered and merged with data
from the Autonomous Mobility level maps that are gener-
ated by sensors. By image segmentation and thresholding 3,
the objects of interest (features) can be extracted from the
sensed images. The information metric can facilitate in
this process of reducing images to information (see Figure
3(a)) so that the sensed images can be reliably registered
to a priori maps. This is an area that is being actively
investigated.

B. UGV Localization and Mapping

The Kalman filter (and its variants thereof) has been ex-
tensively employed for autonomous mobile robot localiza-
tion and mapping including the eXperimental Unmanned
Vehicle. In such applications, the selection of stable fea-
tures using sensor measurements is an important issue. To
select features from a given vehicle location in a reliable
and robust manner, in addition to the uncertainty of the
measurements either due to the physics of the sensors,
or as a byproduct of the environment, the uncertainty
associated with the vehicle location itself has to be taken
into account. The entropic metric can be easily applied for
this purpose.

For use with Kalman filters that assume Gaussian dis-
tributions to model sensor uncertainties, a mathematical
expression for entropy can be derived. Consider an n-
dimensional state vector xk conditioned on a stacked

observation vector denoted by Z k
�
= (z1,z2, . . . , zk) where

z1,z2, . . . , zk are individual sensor measurements. Using
Bayesian statistics, the posterior entropy can be derived

3During thresholding, although it is possible that in certain images no
histogram peaks may correspond to unique features in the environment,
there exist image processing techniques by which either the original
intensity values can be transformed to a new image such that the pixel
brightness in the new image represents some derived parameter such as
the local brightness gradient or direction [16] or by deriving measurement
parameters of features from images at many threshold levels [19].

to be [5]:

hk|k
�
= h(p(xk | Zk))
= E{−�n p(xk | Zk)}
= 0.5 �n

(
(2πe)n ∣

∣Pk|k
∣
∣)

where P is the covariance matrix that captures the vehicle
pose uncertainty.

The posterior and prior information metrics can then
be defined as:

imk|k
�
= −h(p(xk | Zk))

= −0.5 �n
(
(2πe)n ∣

∣Pk|k
∣
∣)

imk|k−1
�
= −0.5 �n

(
(2πe)n ∣

∣Pk|k−1

∣
∣)

The resultant information contribution, ic, from mea-
surements, is thus given by the relation:

ick|k
�
= imk|k − imk|k−1 (4)

Using Equation (4), it is straightforward to include
the features’ measurement that provides the maximum
information for localization and mapping. The metric
evaluates information content of measurements thereby
facilitating the acceptance or rejection of features. The
metric has been shown to be an optimal way of efficiently
utilizing measurements by implicitly incorporating the
features’ utility towards reducing localization error and in
the selection of the sensing modality/scheme that provides
maximum information [7]. Since the information metric
provides a scalar value, it is a suitable representation for
decision making.

C. Utility-driven Behavior Generation

The entropic information metric can be readily inte-
grated into the behavior generation module of RCS and
can be used for on-road driving for avoiding discrete ob-
stacles, or for off-road driving for avoiding untraversable
regions. Examples of untraversable regions are holes,
ditches, rocks, trees etc. Since it is infeasible to process
all range images within a given time to avoid latency
problems, attention is focused on important regions within
the image. Currently, this is done by predicting which
regions of future images will contain the most useful
information based on current images and the current world
model [6]. The proposed metric can be utilized for such
prediction by facilitating the comparison and detection of
images that contain information unchanged from previous
views. Thus the metric enables the prediction of expected
information utility of an action.

For UGVs to react appropriately to moving objects
in dynamic environments, we have developed a Moving
Object Representation, Prediction, and Planning System
[10]. Within this framework, as soon as a sensor image
becomes available, the proposed metric can facilitate in the
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development of a traversability criterion by evaluating ex-
pected new information. This in turn enables to determine
which parts of the terrain are traversable, thus resulting in
planning safe paths through the terrain.

V. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we have presented an entropic infor-
mation metric to evaluate information content of sensed
images. This was accomplished by constructing an image-
specific histogram, and using image intensity levels, the
corresponding information contained in the sensed images
was evaluated. Entropy was shown to be an intuitive
measure for evaluating and ultimately utilizing sensor
measurements for several robotic navigation tasks in ac-
cordance with the RCS hierarchical architecture. Since the
information metric provides a scalar value, it is a suitable
representation for decision making.

Continuing research efforts will concentrate on formally
verifying the concepts developed in this paper on UGVs.
Sensor data from field trials on the XUV will be used to
refine the applicability of the proposed metric within RCS.

A notable area of further research is to extend the ideas
developed in this paper towards information theoretic
descriptions of visual spatial and geometric features of
color images. Another area that we are investigating is the
extension of the information metric to 3D scenes where
instead of the number of pixels, the number of voxels are
considered.
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