## Recycling of Target Materials vs One-Shot Use Scenario

#### L. El-Guebaly and P. Wilson, D. Henderson, A. Varuttamaseni

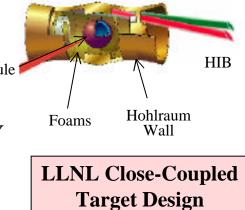
Fusion Technology Institute University of Wisconsin - Madison

> ARIES Project Meeting October 2-4, 2002 PPPL



## Objectives

- Update target recycling analysis for thick liquid wall concept
- Identify pros and cons for recycling and one-shot use options
- What is the preferred option for ARIES-IFE-HIB power plant?
  - Metrics: Activation (WDR and Clearance)
    - Overall cost
    - Design complexity




## **HIB Target Parameters**

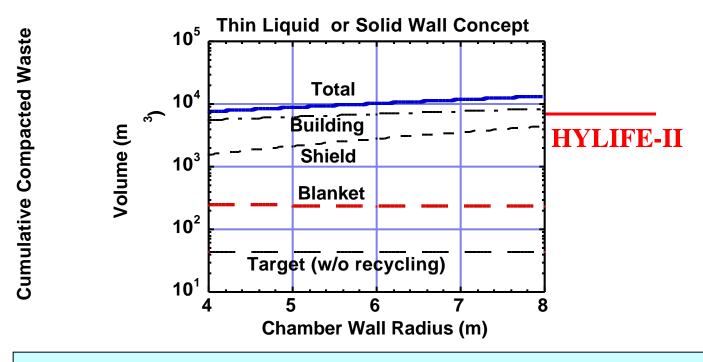
Capsule Radius<sup>\*</sup> Hohlraum Wall Thickness<sup>\*</sup> Target yield Rep Rate # of Shots Plant Lifetime Availability Volume of Hohlraum Wall

Mass of Hohlraum Materials

2.34 mm
15 μm
458.7 MJ Capsule
4 Hz Capsule
4 Hz Foat
126 million shots/FPY
40 FPY (47 y)
40 FPY (47 y)
85%
0.0085 cm<sup>3</sup>/target
1.1 m<sup>3</sup>/FPY
43 m<sup>3</sup>/40 FPY
3-21 tons/FPY
120-830 tons/40 FPY



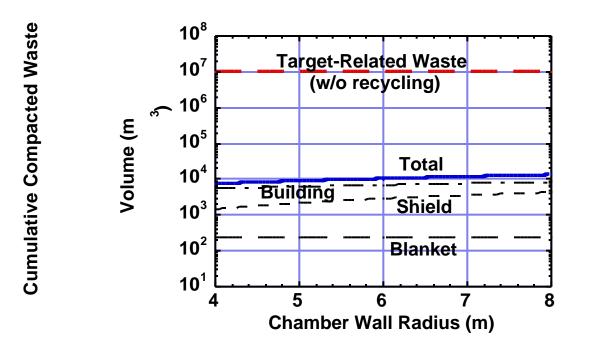



<sup>\*</sup> D. Callahan-Miller and M. Tabak, Phys of Plasmas, Vol 7, p 2083, May 2000

## Selection Criteria for Hohlraum Wall Materials

- Target performance
- Fabricability (and complexity)
- Separability from Flibe
- Waste inventory
- Activation and waste disposal
- Unit cost and overall cost




## Hohlraum Wall Materials Represent <1% of IFE-HIB Waste Stream



Recycling is not a "must" requirement for ARIES-IFE-HIB unless materials have cost/resource problems (e.g., Au and Gd).

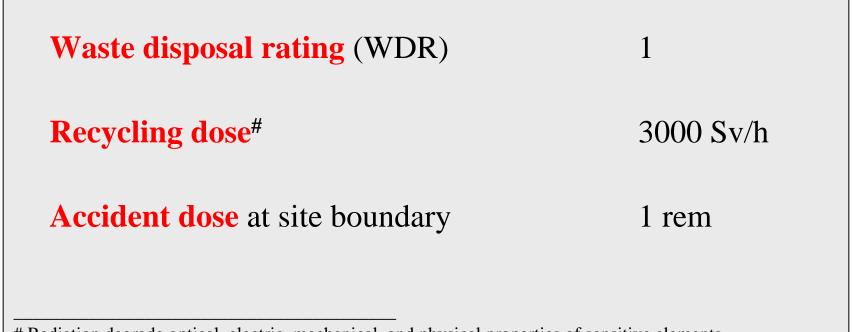


## Example of IFE System Mandating Target Recycling



Target-related waste exceeds buildings by orders of magnitude ⇒ Recycle target-related materials

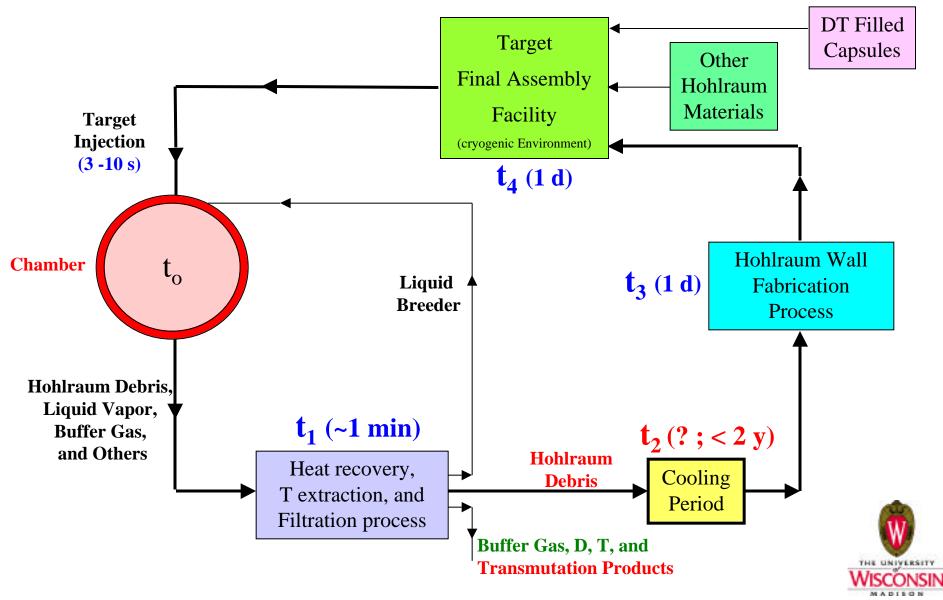



## **Recycling Introduces Problems**

- Produces high level waste (HLW) for most materials
- Mandates remote handling in target fab (costly and slow process)
- Requires radioactive storage system
- $\Rightarrow$  Recycling adds cost and complexity to target fab. and

design, and may violate ARIES top-level requirements




## **ARIES** Design Requirements



# Radiation degrade optical, electric, mechanical, and physical properties of sensitive elements such as cables, electrical connectors, coatings, detectors, insulators, cameras, sensors, etc



### Cooling Period Controls WDR and Dose



## Without cooling period, Recycling Generates High Level Waste Except for W, Ta, and Xe

| <u>Candidate Hohlraum Materials</u> | <b>One-Shot WDR</b>  | Recycling WDR* |
|-------------------------------------|----------------------|----------------|
| Gold/Gadolinium (reference)         | 2 x 10 <sup>-8</sup> | $3 \ge 10^5$   |
| Gold                                | 0                    | 645            |
| Tungsten                            | 2 x 10 <sup>-6</sup> | 0.6            |
| Lead                                | 2 x 10 <sup>-5</sup> | 31             |
| Mercury                             | 5 x 10 <sup>-4</sup> | 11             |
| Tantalum                            | 0                    | 0.5            |
| Lead/Tantalum/Cesium                | 1 x 10 <sup>-5</sup> | 13             |
| Mercury/Tungsten/Cesium             | 2 x 10 <sup>-4</sup> | 5              |
| Lead/Hafnium                        | 8 x 10 <sup>-5</sup> | 24             |
| Hafnium                             | 3 x 10 <sup>-4</sup> | 1.2            |
| Solid Kr                            | 0.01                 | 68             |
| Solid Xe                            | 2 x 10 <sup>-5</sup> | 0.2            |

\* No cooling period. No transmutation products removal

All materials qualify as Class A (or C) LLW after one shot

Gd produces HLW shortly after operation (10 shots)



### Several One-shot Use Materials Could be Released to Commercial Market After Storage Period

| One-Shot Use Hohlraum Materials(CI < 1 @ end of storage period) | <b>Storage Period</b> |
|-----------------------------------------------------------------|-----------------------|
| Au                                                              | 25 у                  |
| Та                                                              | 25 у                  |
| Hg                                                              | 32 y                  |
| Hg/W/Cs                                                         | 142 y                 |
| W                                                               | 175 y                 |
| Au/Gd                                                           | 225 у                 |

Others cannot released to commercial market for having high Clearance Index >> 1 even after long storage period.

At present, no US market exists for cleared metals.



# Cooling Periods 18 days Meet Both WDR and Dose Requirements<sup>#</sup>

| Au/Gd                                                                     | > 2 y |
|---------------------------------------------------------------------------|-------|
| Au                                                                        | 12 d  |
| W                                                                         | 6 d   |
| Pb                                                                        | 13 d  |
| Hg                                                                        | 5 d   |
| Та                                                                        | 1 d   |
| Pb/Ta/Cs                                                                  | 17 d  |
| Hg/W/Cs                                                                   | 18 d  |
| Pb/Hf                                                                     | 12 d  |
| Hf                                                                        | 2 d   |
| Solid Kr                                                                  | 250 d |
| Solid Xe                                                                  | 7 d   |
| $\frac{1}{47 \text{ y of operation. No transmutation products removal.}}$ |       |

No significant inventory reduction if cooling period exceeds 2 y (e.g., Gd)

On-line removal of transmutation products shortens cooling period and may allow recycling of Gd.



## Economic Impact<sup>#</sup> of Hohlraum Materials (Close-Coupled Target)

| Relative<br>rgy Loss <sup>**</sup><br>Johl, Wall | Driver<br>Energy <sup>##</sup><br>(MJ)                                                                    | Driver<br>Cost <sup>#</sup><br>(\$B)                                                                                                              | Change<br>in Direct<br>Cost <sup>#</sup>                                                                    | Change in<br>(mills/                                                                                                                                | COE <sup>#,*</sup><br>/kWh)                                                                                                                                                                                                                                                           |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  |                                                                                                           |                                                                                                                                                   | (\$B)                                                                                                       | w/o Recycling                                                                                                                                       | w/ Au and Gd<br>Recycling                                                                                                                                                                                                                                                             |
| 1                                                | 3.3                                                                                                       | 2.03                                                                                                                                              | 0                                                                                                           | 0 + Au/Gd<br>cost                                                                                                                                   | 0 + recycling<br>cost                                                                                                                                                                                                                                                                 |
| 1.01                                             | 66                                                                                                        | "                                                                                                                                                 | "                                                                                                           | 0                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                     |
| 1.04<br>1.04                                     | 3.4                                                                                                       | 2.06                                                                                                                                              | 0.03                                                                                                        | 0.4                                                                                                                                                 | 0.4                                                                                                                                                                                                                                                                                   |
| 1.25                                             | 3.7                                                                                                       | 2.16                                                                                                                                              | 0.13                                                                                                        | $1.8 + Au \cos t$                                                                                                                                   | 1.8 + recycling                                                                                                                                                                                                                                                                       |
| 1.25<br>1.25<br>1.26<br>1.28                     | 66<br>66<br>66<br>66                                                                                      | 66<br>66<br>66<br>66                                                                                                                              | 66<br>66<br>66<br>66                                                                                        | 1.8<br>"<br>"                                                                                                                                       | cost<br>1.8<br>"                                                                                                                                                                                                                                                                      |
|                                                  | rgy Loss <sup>**</sup><br>Iohl. Wall<br>1<br>1.01<br>1.04<br>1.04<br>1.25<br>1.25<br>1.25<br>1.25<br>1.26 | rgy Loss <sup>**</sup> Energy <sup>##</sup><br>Iohl. Wall (MJ)<br>1 3.3<br>1.01 "<br>1.04 3.4<br>1.04 "<br>1.25 3.7<br>1.25 "<br>1.25 "<br>1.26 " | rgy Loss**Energy##Cost#<br>(\$B)1 $3.3$ $2.03$ 1.01""1.04 $3.4$ $2.06$ 1.04""1.25 $3.7$ $2.16$ 1.25""1.26"" | rgy Loss**Energy##Cost#in Direct<br>Cost#<br>(\$B)1 $3.3$ $2.03$ $0$ 1.01"""1.04 $3.4$ $2.06$ $0.03$ 1.04"""1.25 $3.7$ $2.16$ $0.13$ 1.25"""1.26""" | rgy Loss**Energy##Cost#in Direct(mills/<br>Cost#1 $3.3$ $2.03$ 0 $0 + Au/Gd$<br>cost1 $3.3$ $2.03$ 0 $0 + Au/Gd$<br>cost1.01"""01.04 $3.4$ $2.06$ $0.03$ $0.4$<br>"1.04 $3.4$ $2.16$ $0.13$ $1.8 + Au cost$ 1.25 $3.7$ $2.16$ $0.13$ $1.8 + Au cost$ 1.25"""" $1.25$ """" $1.26$ """" |

Courtesy of W. Meier (LLNL), Feb. 2001.
\*\* Ref.: D. Callahan-Miller and M. Tabak, Phys of Plasmas (Vol 7, p 2083, May 2000).
## D Callahan-Miller (LLNL), personal communication (Feb. 2001).
\* Using same target cost for all hohlraum materials.

#### Excessive recycling and material unit costs may outweigh benefits of Au/Gd.



# Qualitative Comparison

| <b>One-Shot Use Option</b> | <b>Recycling Option</b> |
|----------------------------|-------------------------|
| <b>_</b>                   |                         |

| <b>Inventory</b> @ EOL                          | 40 m <sup>3</sup> (< 1% of total waste)               | < 1 m <sup>3</sup> |                                                 |  |
|-------------------------------------------------|-------------------------------------------------------|--------------------|-------------------------------------------------|--|
| Materials' cost                                 | Higher<br>(< 1 mill/kWhr for all<br>except Au and Gd) | Lower              |                                                 |  |
| <b>Cleared metals</b>                           | some                                                  | No                 |                                                 |  |
| High level waste                                | No                                                    | Yes,               | Costly to dispose<br>Violates ARIES requirement |  |
| Hohl. purification system                       | No                                                    | Yes                | Costly, complex                                 |  |
| Cooling period                                  | No                                                    | < 18 d             | Complexity                                      |  |
| Radioactive storage facilit                     | y No                                                  | Yes                | Cost?                                           |  |
| Remote handling<br>in hohl. Fab.                | No                                                    | Yes                | Costly, slow, complex                           |  |
| Hohl. fabrication process                       | Fast                                                  | Slow               | No personnel access                             |  |
| <b>Overall cost</b>                             | Lower                                                 | Higher             | r 👝                                             |  |
| <b>One-shot use is preferred option for all</b> |                                                       |                    |                                                 |  |

hohlraum materials except Au and Gd.



## Conclusions

- Recycling introduces activation problems, adds complexity, increases COE, and mandates remote handling in target Fab (costly, slow, complex).
- Hohlraum walls represent small waste stream for IFE-HIB (< 1% of total nuclear island waste) Recycling is not a "must" requirement for ARIES-IFE-HIB unless materials have cost/resource problems (e.g., Au and Gd).
- With or without recycling, Au and Au/Gd hohlraums result in highest COE.
- One-shot use is preferred option for all materials except Au and Gd, offering
  - Attractive safety features

- Less complex design

Radiation-free target Fab

- Lower COE
- Make hohlraum out of breeding or liquid wall materials (Pb, LiPb, Li?, Flibe?, Flinabe?) to avoid separation from liquid walls.
- To recycle Au/Gd, attractive scheme would combine controlled cooling period and efficient clean-up system to filter out small amount (cups?) of HLW. This waste could be burned in special module to avoid deep geological burial\* of waste and meet ARIES Class C-only waste requirement.

\* L. El-Guebaly, "Need for Special Burning Modules in Fusion Devices to Transmute Fusion High Level Waste", University of Wisconsin, UWFDM-1155 (June 2002).



## Importance of Results and What Needs to be Done

- Recycling results do not impact feasibility of HIB concept.
- Target recycling analysis is almost complete. Oral paper will be given at 15<sup>th</sup> TOFE in November 2002. Work will be published in 2003 in Journal *Fusion Science and Technology*.
- Will perform analysis for **new** candidate hohlraum materials and provide WDR, recycling dose, and cooling period
- Will post on UW web site activation results for accident assessment.

