
BlueGene/L
Single Node Performance Issues

Siddhartha Chatterjee (sc@us.ibm.com)
Kenneth Dockser
John A. Gunnels
Manish Gupta

Fred G. Gustavson
Mark Mendell

James C. Sexton
T. J. C. Ward

IBM (Raleigh, Toronto, Yorktown)

13 August 2002 BG/L Tahoe Workshop 2

Outline
n Single-core architecture review

n Dual FPU
n Memory hierarchy

n Performance issues
n Memory issues
n FPU issues
n Dual-core issues

n Available programming options
n Case study: DAXPY
n Case study: Matrix multiplication

13 August 2002 BG/L Tahoe Workshop 3

Disclaimer

n All performance projections are preliminary
and subject to change

n Performance estimates come from a variety
of sources:
n Simulations on MTI VHDL simulator
n Simulations on BGLsim simulator
n Numbers provided by hardware designers
n Best practice estimates from algorithm designers

13 August 2002 BG/L Tahoe Workshop 4

Single Core Architecture
Dual FPU

n Two 32-element 64-bit register files
n Primary (P), secondary (S) registers individually addressable
n Register pair (Pi, Si) jointly used in SIMD operations

n Dual floating-point ALU
n Based on SIMD FMAs
n Primary FPU used for scalar operations; both FPUs used for

SIMD operations
n All computational operations are double-precision only
n No support for defining exceptions, exception handlers, and

status flags
n Results conform to IEEE 754 behavior when exceptions are

disabled

13 August 2002 BG/L Tahoe Workshop 5

Single Core Architecture
Dual FPU Instructions

n 2-way SIMD extensions of elementary
arithmetic instructions
n Add, subtract, multiply, reciprocal estimate,

reciprocal square root estimate

n 2-way SIMD extensions of FMA ops (T =
A*C+B)
n Parallel
n Cross
n Copy-primary
n Copy-secondary

13 August 2002 BG/L Tahoe Workshop 6

Single Core Architecture
SIMD FMA Details

*

+

*

+

A C B

ParallelCrossCopy-PCopy-S

13 August 2002 BG/L Tahoe Workshop 7

Single Core Architecture
More FPU Instructions

n Asymmetric and complex FMAs
n Primary and secondary FPUs perform related but

non-identical operations
n Useful for performing operations such as FFT

butterfly operation and complex arithmetic in
general

n Select operations
n Register-register move operations
n Conversion and rounding operations

13 August 2002 BG/L Tahoe Workshop 8

Single Core Architecture
FPU-Memory Interface

n Load/store one double-precision number (doubleword
access)
n To/from primary register
n To/from secondary register
n Lower bandwidth, more instructions, greater flexibility

n Load/store two double-precision numbers (quadword
access)
n Parallel
n Cross
n Higher bandwidth, fewer instructions, less flexibility

13 August 2002 BG/L Tahoe Workshop 9

Single Core Architecture
FPU-Memory Interface

8 B

L1 cache line

•EA for QW access must be aligned on 128-bit (16 B) boundary
•Registers accessed in QW L/S must be a Primary-Secondary pair

13 August 2002 BG/L Tahoe Workshop 10

Single Core Architecture
Unit Latencies

n All non-memory operations have def-to-use
latency of 5 pclks

n Memory loads have load-to-use latency of 4
pclks (assuming L1 cache hit)

n Memory stores have 3 pclk latency to
completion

n Can initiate one memory operation and one
FP operation in each cycle

n There is no register renaming in hardware
n Need to unroll to software pipeline

13 August 2002 BG/L Tahoe Workshop 11

Programming Options
Low level

n In-line assembly (gnu only)
n User responsible for instruction selection, register

allocation, and scheduling
n Double Hummer intrinsics (XL only)

n Complex data type used to model pair of double-
precision numbers that occupy a (P, S) register
pair

n User responsible for instruction selection
n Compiler responsible for register allocation and

scheduling
n Supported in C99 and Fortran, not in C++

13 August 2002 BG/L Tahoe Workshop 12

Programming Options
High Level

n Compiler optimization to find SIMD
parallelism (XL only)
n Currently uses Larsen-Amarasinghe “Superword

Level Parallelism” algorithm (PLDI’00) to detect
and generate SIMD operations

n Needs user input for specifying memory alignment
and lack of aliasing
n __alignx assertion
n disjoint pragma

n Currently limited to parallel SIMD and memory
operations

13 August 2002 BG/L Tahoe Workshop 13

Single Node Performance
Memory Issues

n DW vs. QW accesses
n Misalignment trap is very expensive; program defensively,

especially for libraries
n L1 line size is 32 bytes

n 4 elements / line, 2 QW accesses / line
n Use single-precision if appropriate (8 elements / line)

n L1 cache issues
n 32 KB capacity, 64-way associative, round-robin replacement

within categories
n Sets can be split into locked, transient, and normal ways

(caution: requires supervisor mode)
n L2, L3, main memory issues

n Prefetching of streams

13 August 2002 BG/L Tahoe Workshop 14

Single Node Performance
FPU Issues

n Register organization
n 64 64-bit registers, organized as 32×2
n Tricky but possible to use as 64 registers
n Consciously tile for registers

n Lack of register renaming
n Increases register usage in SWP’d loops

n Effective use of FP operations
n Asymmetric and complex FMAs are powerful

13 August 2002 BG/L Tahoe Workshop 15

Single Node Performance
Dual-Core Issues

n Cores have symmetric access to
communication devices

n L1 caches are not coherent between
cores

n Possible operation modes
n Heater mode
n Communication coprocessor mode
n Symmetric mode

13 August 2002 BG/L Tahoe Workshop 16

Programming Example
DAXPY

for (i=0; i<n; i++) {
y[i] = a*x[i]+y[i];

}

for (i=0; i<n; i+=2) {
y[i] = a*x[i]+y[i];
y[i+1] = a*x[i+1]+y[i+1];

}

1:(P0,S0) = LD(x[i],x[i+1])

2:(P1,S1) = LD(y[i],y[i+1])

3:(P1,S1) = LD(y[i],y[i+1])

4:(P1,S1) = LD(y[i],y[i+1])

5:(P1,S1) = LD(y[i],y[i+1])

7:(P1,S1) = LD(y[i],y[i+1])

10:(P1,S1) = LD(y[i],y[+1)

9:(P1,S1) = LD(y[i],y[i+1])

8:(P1,S1) = LD(y[i],y[i+1])

6:(P1,S1) = LD(y[i],y[i+1]) (P2,S2) = P8*(P0,S0)+(P1,S1)

11:(y[i],y[i+1]) = ST(P2,S2)

13 August 2002 BG/L Tahoe Workshop 17

Alignment Issues
DAXPY

X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7]

Y[0] Y[1] Y[2] Y[3] Y[4] Y[5] Y[6]

(P0,S0) = LD(X[0],X[1])
(S1,P1) = LD(Y[1],Y[2])
(P2,S2) = LD(X[2],X[3])

(P3,S3) = P8*(P0,S0)+(P1,S1)
P3= P8*P2+P1

(Y[1],Y[2]) = ST(S3,P3)

(P0,S0) = LD(X[0],X[1])

13 August 2002 BG/L Tahoe Workshop 18

Matrix Multiplication

n Problem size chosen
from L3 capacity
constraints

n Three levels of tiling
n For dual core
n For L1 cache
n For registers

A

120

120

120

13 August 2002 BG/L Tahoe Workshop 19

Matrix Multiplication
Tiling for Dual Cores

n Lack of coherence in
L1 dictates split of C

n B “streams” through
L1: split it to control
stream traffic

n Total data volume =
120×120×8×3 B =
345,600 B
n Easily fits in L3 cache

A

120

120

120

13 August 2002 BG/L Tahoe Workshop 20

Matrix Multiplication
Tiling for L1

A

120

120

120

120

24

60

13 August 2002 BG/L Tahoe Workshop 21

Matrix Multiplication
Tiling for L1 (Analysis)

n L1 holds 32KB = 4K elts = 1024 lines
n Configured as 16 sets × 64 ways

n A occupies 24 × 120 elts = 2880 elts = 720
lines = 45 ways of L1 cache

n B streams through L1 in 4-col groups
n 120 ×4 elts = 480 elts = 120 lines = 8 ways

n C is L3-hot, and loaded into registers
n Some interference between A and C

13 August 2002 BG/L Tahoe Workshop 22

Matrix Multiplication
Tiling for Registers

A

120

120

120

120

24

60

4
4

4

13 August 2002 BG/L Tahoe Workshop 23

Matrix Multiplication
Tiling for Registers (Dependences)

M

F

8
5

16

F2

F1

M1

M2

8

8

16

16

F2

F3

M1

M2

8

8

16

16

F1 16

M38

13 August 2002 BG/L Tahoe Workshop 24

Matrix Multiplication
Tiling for Registers (Analysis)

n Usual kernel updates C(i:i+3,j:j+3) with outer
product of A(i:i+3,k) and B(k,j:j+3)

n Change to A(i:i+3,k:k+1) and B(k:k+1,j:j+3)
for double register file
n 16 SIMD FMAs, eight QW loads, 16 register pairs

n Unroll by factor of two
n 24 register pairs, 15 cycle load-to-use latency

n Could go to 3-way unroll if needed
n 32 register pairs, 31 cycle load-to-use latency

13 August 2002 BG/L Tahoe Workshop 25

Matrix Multiplication
Performance Results

n MTI simulation, Stage 7 model
n Single core (problem size: 24×16×58)

n Optimal cycles = (24×16×58)/2 = 11136
n A L1-hot, B and C DDR-hot

n 15049 cycles, 74% of peak flops
n A, B, C L1-hot

n 12218 cycles, 91% of peak flops

n Dual core (problem size: 24×8×58 per core)
n Optimal cycles = (24×8×58)/2 = 5568
n A L1-hot, B and C DDR-hot

n 7325 cycles, 76% of peak flops
n A, B, C L1-hot

n 5987 cycles, 93% of peak flops

13 August 2002 BG/L Tahoe Workshop 26

Conclusions and Directions

n Preliminary idea of single-node performance
programming strategies
n Measurements for matrix multiplication

n Necessary future work
n Systematic and more extensive measurements of

memory access patterns
n More complete analysis of other benchmarks
n Performance models for linear algebra kernels

n Questions? Comments? Feedback?

