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THE INVISCID PRESSURE FIELD ON THE TIP OF A SEMI-INFINITE WING 

AND ITS APPLICATION TO THE FORMATION OF A TIP VORTEX 

By G. F . Hall, S . J. Shamroth, H. McDonald and W. R. Br i ley  
United  Technologies  Research  Center 

SUMMARY 

A method has  been  developed for  determining  the  aerodynamic  loads on the 
t i p  of an   in f in i te ly   th in ,   swept ,  cambered semi- inf ini te  wing a t  an  angle of 
a t t ack  which i s  operating  subsonically i n  an inv isc id  medium and i s  subjected 
t o  a s inusoidal  gust. Under the  assumption of linearized  aerodynamics,  the 
loads on the   t i p   a r e   ob ta ined  by superposition  of  the  steady  aerodynamic 
resu l t s   for   angle  of a t t ack  and  camber,  and the  unsteady  resul ts  for the   res -  
ponse to   the   s inusoida l   gus t .  The assumption that the major e f f e c t s  of  the 
t i p   a r e   con f ined   t o  a r e l a t i v e l y  small f i n i t e  spanwise  length  permits  the 
loading  over  the  inboard  portions  of  the wing t o  be approximated by known 
r e s u l t s  for t h e   i n f i n i t e  wing. The t i p   r e g i o n  i s  t r e a t e d  by a numerical 
double t - la t t ice  method. The leading edge s ingu la r i ty   i n   t he   l oad ing  i s  
removed by applying a cor rec t ion   fac tor  due t o   L i g h t h i l l .  The nea r   f i e ld  
dis turbance  pressures   in   the  f luid  surrounding  the  t ip   are   obtained by assum- 
ing a dipole   representat ion  for   the  loading on t h e   t i p  and  calculating  the 
pressures  accordingly.   In  addition  to  providing  insight  into  the  inviscid  f low 
behavior   in   the  vicini ty  of the   t ip ,   the   near   f ie ld   p ressures   a re   a l so   used   to  
dr ive a reduced  form of the  Navier-Stokes  equations which y i e l d   t h e   t i p   v o r t e x  
formation. 

Although the   der iva t ion  i s  val id   for   the  general   condi t ions  descr ibed 
above  and several   inviscid  cases  have  been  calculated,  the combined viscid-  
inviscid  analysis  has  only  been  applied  to  determining  the  pressures  and 
examining  the  vortex  rollup  in  the  vicinity  of  an  unswept, uncambered  wing 
moving s t e a d i l y   a t  a Mach number of 0.2 a t  an  angle of a t t ack  of 0.1 rad.  
Generally,  the  pressure  behavior i s  as  expected. A s  the  wing surface i s  ap- 
proached i n  the  normal  direction,  the  pressure  magnitude  increases,-culminat- 
ing a t  one-half  the  dipole  magnitude a t   t he   su r f ace .   Ex te rna l   t o   t he   r eg ion  
conta in ing   e i ther   the  wing or the  wake, the   p ressures  go continuously  and 
monotonical ly   to   zero  as   the wing plane i s  approached.  In  the wake, the 
magnitude  increases  as  the wake is  approached mtil, near  the wake, an abrupt 
reversal   in  trend  occurs  and  the  magnitude  goes  to  zero.   Finally,   in  the 
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v i c i n i t y  of the  t ra i l ing  edge,   the   pressure  magni tude  increases   unt i l ,   near  
t he  wing surface,  a r e v e r s a l   i n   t r e n d  i s  noted  with  the  magnitude  decreasing 
and terminating a t  one-half   the  dipole  strength.  This behavior   ref lects   the 
change i n  boundary c o n d i t i o n   a t   t h e   t r a i l i n g  edge. 

The v i scous   t i p  flaw calculat ion  has  shown features  expected in t h e   t i p  
flaw such  as  the  quali tatively  proper development of boundary layers  on both 
the  upper  and  1-mer a i r f o i l   s u r f a c e s .  I n  addi t ion ,   appl ica t ion  of the  vis-  
cous solut ion  leads  to   the  generat ion of a ' c i r c u l a r '  ty-pe flow pa t t e rn  
above t h e   a i r f o i l   s u c t i o n   s u r f a c e .  
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INTRODUCTION 

I n  recent  years,   there  has  been a growing i n t e r e s t   i n   t h e   v o r t e x  formed 
due to   the   p ressure   equal iza t ion   condi t ion  a t  t h e   t i p s   o f   l i f t i n g   s u r f a c e s .  
This t i p   v o r t e x ,  whose presence  can  often be n e g l e c t e d   i n   i s o l a t e d   a i r f o i l  
aerodynamics,  requires a p rec i se   de f in i t i on  of i t s  phys ica l   cha rac t e r i s t i c s  
i n  problems  involving  interference  aerodynamics. A primary  example  of t h i S  
type  of  problem is the   i n t e r sec t ion  of a he l icopter   ro tor   b lade   t ip   vor tex  
with  the  next   fol lowing  blade.   This   intersect ion  represents  a po ten t i a l ly  
ser ious  acoust ic  problem, ( R e f .  1) and  has  been shown t o  have some e f f e c t  on 
r o t o r  performance  (Ref. 2 ) .  In   add i t ion   t o   t he   d i r ec t   r e l evance   t o   cu r ren t  
helicopter  problems, a more complete knowledge of t i p   v o r t e x  dynamics is  
needed t o   a s s i s t   i n   t h e   d e s i g n  of  novel  helicopter  blade  t ips  for optimum 
performance,  and to   provide  basic   information on the   behavior   o f   t ra i l ing   t ip  
vo r t i ce s   beh ind   l a rge   a i r c ra f t ,   t o  name only two of many appl ica t ions .  

I n   t h e   p a s t ,   t h e   t i p   v o r t e x   r o l l - u p   r a t e  and pos i t i on  have  been de ter -  
mined e i t h e r  by direct   experimentat ion or by ana ly t i ca l   t echn iques   u t i l i z ing  
Trefftz  plane  calculations  (e.g. ,   Ref.  3) .  Experimental  procedures are reason- 
a b l e   f o r  many steady  flow  problems,  but tk-iey a re   no t   ye t   suf f ic ien   ly   sophis -  
t i c a t e d   t o  show a l l   t h e   d e t a i l s  of the  vortex  formation.  Trefftz  plane  analy- 
ses genera l ly   p red ic t   the   pos i t ion  of the  t ip   vortex  adequately,   but   yield 
ro l l -up   r a t e s  much too  slow. Hall (Ref. 4 )  has modeled the  vortex wake behind 
a f ixed  wing s ta r t ing   impuls ive ly  from r e s t  which predic t s   bo th  a r a t e  and 
pos i t i on  of   the  t ip   vortex more compatible w i t h  those  observed,  but  this  tech- 
nique  requires   large amounts of computer  time  and storage.  Another  approach 
to   determining  the  t ip   vortex  behind a l i f t i n g   s u r f a c e  i s  a direct   numerical  
assault on the  Navier-Stokes  equations,  but  this  apprca  ch  also  requires  large 
amounts of  computer  time  and s torage.  It should be noted tha t  c l a s s i c a l  
l i f t ing   sur face   ana lyses   a re   incapable   o f   t rea t ing  the ro l l -up  problem; the  
l i nea r i za t ion   i nhe ren t   i n   t hese  methods i s  n o t   v a l i d   i n   t h e   t i p   r e g i o n .  The 
ana lys i s   o f   the   t ip   vor tex   format ion  i s  a h ighly   nonl inear   rea l  f lu id  problem. 
Figure 1 is a sketch  depicting t h i s  formation. 

The present   ana lys i s  i s  an  attempt  to  provide a s impl i f ied  model of the 
t ip  vortex  formation  problem. A boundary layer  approach is  used i n  which the 
v o r t i c i t y   l a d e n   f l u i d   c o n t a i n e d   i n  the t ip   vor tex   o r ig ina tes   in   the   reg ion   near  
enough the wing s u r f a c e   t o  be a f f ec t ed  by v iscos i ty .  The boundary layer  condi- 
t i o n   t h a t   t h e   p r e s s u r e   f i e l d  i s  unaffected by viscous  displacement  effects i s  
assumed so that th i s   p re s su re  f i e ld  can be determined from i n v i s c i d   p o t e n t i a l  
t h e o r y   i n  which  shed  vorticity i s  modeled.by discrete   vortex  e lements .  It i s  
fu r the r  assumed that t h e  phenomenon i s  su f f i c i en t ly   con f ined   t o   t he   t i p   r eg ion  
t h a t  a semi- inf ini te  wing can be used t o  determine  the  pressure  f ield.   Since 
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the  presence of the  vortex  requires  a l o a d i n g   t o   e x i s t  on the  w i n g ,  angle of 
a t t ack ,  camber and unsteadiness must be.  considered,  but  thickness  can  be 
neglected, a t   l e a s t  as a first approximation.  This models the  wing as an  
in f in i t e ly   t h in ,   cu rved   p l a t e  i n  a subsonic  compressible  flow  containing a 
s inusoida l   gus t .  Once the  loading on the wing i s  determined,  the  pressure 
f i e l d   i n   t h e   f l u i d  around  the wing i s  determined  from  a  pressure  dipole  solu- 
t i on .  The viscous  rol l -up i s  then  obtained  from a  reduced  form  of  the  Navier- 
Stokes  equation. A sketch of the  expected t ip   vortex  formation on  a f l a t   p l a t e  
t i p  i s  shown i n  Fig. 2. A comparison with  Fig.  1 shows that   the   only  basic  
difference  in  the  hypothesized  vortex  formation  process i s  t h a t  on the wing of 
f in i t e   t h i ckness   t he   vo r t ex   i n i t i a t ion   po in t  may l i e   a f t  of  the  leading edge 
whereas on t h e   i n f i n i t e l y   t h i n  wing t h e   i n i t i a t i o n   p o i n t  i s  fo rced   t o   occu r   a t  
the  t ip   leading  edge.  

The approach t o  be  used in t h i s  analysis  i s  broadly  based on t h e   i n f i n i t e  
wing analysis  of  Adamczyk (Refs. 5,6) and the   doub le t - l a t t i ce  method of  Giesing, 
e t   a 1  (Ref. 7) .  I n   b r i e f ,  Adamczyk examined the  problem of an   a rb i t ra ry   gus t  
encounter  of  an  infinite swept w i n g  i n  a subsonic  flow. The solut ion,  which 
bas ica l ly   t rea ted   the   s inusoida l   gus t   response ,  i s  usea i n  a Fourier  super- 
pos i t i on  method f o r  any arb i t ra ry   d i s turbance ,  and this  technique is  employed 
herein for the  unsteady  vortex  formation.  Although Adamczyk's  method i s  posed 
fo r   an   i n f in i t e  wing, it i s  known t h a t  with appropriate  modifications  in  the 
v i c i n i t y  of a f i n i t e   t i p ,  such  a  two-dimensional method will'stil.1 be v a l i d   a t  
some distance  inboard of t he   t i p .  Hence, the  Giesing method i s  applied  over 
t he   ac tua l   t i p   r eg ion  and i s  matched to   the  Adamczyk solution  inboard  of  the 
t i p .  The match poin t   loca t ion  was determined by numerical  experimentation 
and was chosen t o   y i e l d  a  smooth t r a n s i t i o n  between  inboard  and  outboard s o h -  
tions.  This  procedure i s  desc r ibed   i n   t he   t ex t  below. . 
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LIST OF SYMBOLS 

a0 

A 

b 

C 

cP 

A C  
P 

*GP, 

D 

JO, J1 

h 

h l ,  h2, h3 

k 

Speed of sound., m/sec 

Influence  coefficient 

Semichord, normal t o  span, m 

Chord, p a r a l l e l   t o   f r e e  stream, m 

Pressure  coefficient  (p-po> 2/p0u2 

change across   l i f t ing  surface,  

ACp due t o  an  inf ini te  wing i n  a given  flow 

Sublayer damping factor  

Defined by Eq. 11 

Complex Fresnel   integral  

Equation  of  the l i f t ing  surface 

Zeroth and f i rs t  order  Bessel  functions,  respectively 

Wing thickness, m 

metric  coefficients 

Zeroth and f i rs t  order Hankel fhnctions of the f i rs t  kind 

Gust wave number, rn-l 

Gust wave  number , x-component, m - l  

Gust wave number, y-component, m- 1 

Gust wave  number i n  streamwise direct ion (Ref. 7), m - l  
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Complex gust amplitude  (Ref. 5 ), m/sec 

Complex gust  amplitude, m/sec 
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directed  inboard.   Origin  a t  midchord of t i p .  

Coordinate  normal to   p lane  of w i n g ,  rn 
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cy 

B 

Y 

c 

G u s t  incl inat ion  angle ,   degree,   or   di f ference  operator  

Frequency  parameter,  defined by Eq. (22a) 

Cutoff  parameter,  defined by Eq. (22b) 

Included  angle  between a p o i n t   a t  which  induced  velocity i s  
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Wing sweep angle,  deg 
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THEORETICAL FORMULATION 

It i s  assumed for   the  purpose  of  analysis tha t   t he   s emi - in f in i t e  wing i s  
at r e s t   i n  a subsonic  compressible stream having an imbedded s inusoidal  gust 
which i s  swept p a s t   t h e  wing at the  stream  speed, U. The pe r t inen t  geometry 
of the  semi- inf ini te  wing i s  given i n   F i g .  3. O f  p a r t i c u l a r   i n t e r e s t  i s  - the 
spanwise  distance, L. This length  represents   the  dis tance  within which the  
t i p   e f f e c t  i s  assumed t o   b e  dominant;  inboard  of t h i s   d i s t ance   t he   f l ow and 
the  loading i s  e s s e n t i a l l y  two-dimensional.  Both t h e   t i p  and t h e  normal t o  
the  gust wave f r o n t s   a r e   p a r a l l e l   t o   t h e   f r e e s t r e a m  due t o   r e s t r a i n t s  imposed 
by the  par t icular   vers ion  of   the  doublet- la t t ice  method se lec ted ,  The wing 
i s  assumed i n f i n i t e l y   t h i n  so that   th ickness   can  be  neglected,   but   the   effects  
of camber and angle   of   a t tack  are   included  in   the  analysis .  It i s  f u r t h e r  
assumed t h a t  all disturbances  are  small enough t h a t   l i n e a r i z a t i o n  i s  permitted.  
The d i s tu rbance   ve loc i ty   po ten t i a l  i s  thus  defined by the  s tandard  l inear ized 
acoustic  equation  for  subsonic  compressible  flow. 

A unique  solut ion  to   the  equat ion i s  obtained  by  applying  the  necessary bound- 
ary  conditions (Ref. 5 ) .  The l inea r i zed   p re s su re   f i e ld  i s  then  obtained from 

The necessary  boundary  conditions  can  be  stated as follows: 

P= 0 x=c-ytanQ, y>O, x 2 = 0  (Kutta Condition) (3b) 

E = o  x ~ - y t a n ~ ,  xsc-y tane,  x2=o, y>o-  ( 3 c )  
Dt 

( Flow Tangency) 

N R- ' I2 R " o D  (Radiation Conditlon) (3d 1 

Note t h a t   t h e  boundary  condition 3a rea l ly   expresses   p ressure   cont inui ty   in  
t h e  wake as wel l  as no  disturbance  ahead  of  the wing i n   t h e  wing plane so 
t h a t  
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and 

Inspection of both  the  flow  tangency  condition and the l inear i ty   propert ies '  
of the  veloci ty   potent ia l   permits  f'urther  simplific,ation of the problem. Let 
the  equation of the surface be  given  by 

Then 

where a(p/aX2 is the  X*-velocity  induced  by the  wing  and w i s  an imposed 
normal gust  velocity. If the wing performs no unsteady rnofions, then  the 
disturbance  velocity  potential  must satisfy 

Since  the  veloci ty   potent ia l  i s  a linear  function,  superposition  applies and 
a steady and unsteady component can  be defined. 

Thus the boundary condition  can  also  be  separated  into  steady  and  unsteady 
relationships.  

This  allows  treatment of camber  and angle  of  attack as separate   solut ions  to  
the  steady  flow  problem,while  the  response  of  the wing t o  an unsteady gust i s  
obtained as simply the  response  of a f la t  p l a t e   t o   t he   gus t .  

9 



Since  the  unsteadiness i s  represented by a gust harmonic i n  time,  both 
the   d i s tu rbance   ve loc i ty .po ten t i a l  and airload  should be harmonic i n  time 

This  boundary  value  problem  can  be  converted t o  a s ingu la r   i n t eg ra l  equa- 
t i o n  which relates the local   f low  angle  at the sur face   to   the   loading   of   the  
su r face   i n  a manner t h a t  expresses  the  f low  tangency  condition  explicit ly  with 
the  remaining  conditions  implied 

- 
where p( x* = 0+)- P( x2= 4) z p= 

- I Po u 2  2 

and lim Ep 4 Epw which i s  the r e s u l t   f o r  an i n f i n i t e  wing in   t he   s inuso ida l  
W m  

gust ' l f ie ld .  A pressure  coefficient  increment due t o   t h e   p r e s e n c e  of a f i n i t e  
t i p  can be defined by 

which satisfies 
lim 
I-co Kcpc-o 

and which permits Eq. (10) t o  be r e w r i t t e n   i n   t h e  form 

Eq. (13) fo r   po in t s   (x ,y )  on the wing can   then   be   rewr i t ten   in  the following 
f o m  

10 



Now t h e  upwasn 
given  by 

and the upwash 
extending from 

induced  by  an i n f i n i t e  wing in   t he   s inuso ida l  gust f i e l d  i s  

induced on the  semi- inf ini te  wing 
t h e   t i p   t o  'll = -00 i s  given  by  the 

by another  semi-infinite wing 
term 

The two  wings summed would make an i n f i n i t e  wing. Hence the  integral   equat ion 
can  be  expressed as 

Y LO 
This  equation  expresses the physical phenomenon tha t  the  presence  of a f i n i t e  
t i p  induces an upwash increment  over  the wing s u r f a c e   t o  account f o r   t h e  
removal  of t h a t  one half  .of an i n f i n i t e  wing  which extends t o  -00. The pre- 
vious result i s  a general   resul t ,   applying  equal ly   to   s teady  or   unsteady 
motions as wel l  as f l a t  p l a t e s  and cambered p l a t e s ,  and was also  noted  by 
Chu and Widnall (Ref. 8) .  

Solution For The Pressure  Field A t  The Tip O f  The Semi-Infinite Wing 

The s o l u t i o n   t o   t h e  problem of determining  the  loading on the  semi- 
i n f i n i t e  wing makes use  of   the   s implif icat ion  afforded by the   l inear iza t ion   of  
t he  problem. The angle  of  at tack and camber contr ibut ions  to   the  loading  can 
by computed s e p a r a t e l y   u t i l i z i n g   s t e a d y   s t a t e  aerodynamic and then superimposed 
onto  the  unsteady results of a f la t  p la te   responding   to  a s inusoidal   gust .  

Equation 15 represents   the   bas ic   equa t ion   to   be   so lved   for   the   f in i te  
t ip   p ressure   coef f ic ien t   increment  ACp,. The kernel   funct ion,  K, has  been 
calculated in a form suitable for  numerical  computation  in Ref. 7 while 5 r e p r e s e n t s   t h e   s o l u t i o n   t o   t h e   i n f i n i t e  wing responding t o   t h e   s i n u s o i d a l  
g u s t   f i e l d  and can be obtained from other  sources  (e.g. ,  Refs. 5 and 6).  

- 



One approach t o  a so lu t ion  i s  a combination of ana ly t ic  and numerical 
techniques  in which t h e  known ACW i s  used t o  compute t h e  upwash on a 
selected  set   of   control   points  on the  wing numerically.  This is  the   r i gh t  
hand s ide  of Eq. 15. Then the  unknown ACpc i s  computed at load’ poin ts  on the  
wing by  assuming a ser ies   representa t ion  made up of chordwise and spanwise 
loading  functions which s a t i s f y   t h e  edge  behavior  of  the  semi-infinite wing 
using 

- 
- 

- 
ACp - x - - ytan8  (leading  edge) 

Kcp -A x- C - ytan8 (trailing edge) 

(where 6 i s  %he  distance t o   t h e  edge of the  wing), and a s e t  of unknown 
weighting  functions. The weighting  functions  are  determined  by  satisfying 
Eq. 15 at the  selected  load  points   for  which t h e   r i g h t  hand s ide  was calcu- 
la ted.   This  i s  e s s e n t i a l l y   t h e  method proposed i n  Ref. 8 and i s  qu i t e  satis- 
f ac to ry   fo r  small values of kM. As kM values   increase,  however, the  chord- 
wise  distribution  of which defines  the  chordwise  loading  .function,  does 
not  maintain as simple a form. 

F- 

The present  solution  begins by cas t ing  Eq. 15 i n t o  a numerical form 

Thus, an infinite  set   of  simultaneous  equations,   having a i n f i n i t e  number of 
unknowns can,   in   pr inciple ,   be   solved  by  s tandard  matr ix   techniques  for  AC . 
However, this  equation  can  be  rewrit ten as 

- 
PC 

where M represents  a p r a c t i c a l  limit on the  spanwise  posit ion at which two- 
dimensional  flow i s  a t ta ined ,   a l though  idea l ly   th i s  i s  not   sa t i s f ied   except  
i n   t h e  limit 

lim ACpcnm - 0 
M- 00 

- 
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Thus, f o r  x3 2 I, - m 2 M, A X m  5 ACwm and m. 1 5  can be  wri t ten 

where now t h e  whole l e f t  hand s ide   represents   the  upwash suppl ied  external ly  
and t h e  second term on the   r igh t   represents  the .effect of  the  two-dimensional 
inboard  loading on the   t i p   r eg ion .  The ent i re  reg ion   of   the   t ip   e f fec t  i s  
bounded spanwise  by m = o and m = M. Then Eq. (18) may be   r ewr i t t en   i n   t he  
f oinl 

which gives a s e t  of N by M simultaneous  equations which  can be  solved  direct ly  
for the   t ip   loading   by   s tandard  methods. 

Now, the  remaining  term on t h e   l e f t  hand s ide  of Eq. (19) may be  wri t ten 
as 

The term Aklm i s  the  kernel  function  of  subsonic aerodynaniics  (Ref. 7 ) .  
Normally the  complexi ty   of   this   funct ion  precludes  analyt ic   t reatment ,   but  
f o r  load p o i n t s   t h a t   a r e  far removed from t h e  downwash poin ts ,  the kernel  func- 
t ion   can   be   s impl i f ied  so that  some integration  can  be  performed. Hence, i n  
an t i c ipa t ion  of   these  s implif icat ions,   the  last  term  of 'Eq. (20) may be 
r e w r i t t e n   i n   i n t e g r a l  form 

and EQ. ( 2 0 ) ,  r ewr i t t en   i n   t he  form  of Eq. (21), can  be  determined  partly  by 
numerical and p a r t l y  by ana ly t i c  means. 

The formulat ion  of   the problem i n  this manner, wi th   the   ex te rna l   spec i f i -  
ca t ion  of the   l ength ,  I,, i s  a key  development and permits a p r a c t i c a l  



g e n e r a l i z a t i o n   t o   t h e  problem. Al te r ing   th i s   l ength   can  alter t h e  spanwise 
gradient in  the   t ip   reg ion ,   a l though as t h i s   l eng th   i nc reases ,   t he   e f f ec t  on 
t h e   t i p   l o a d i n g  will decrease. The choice of L fo r   t he   p re sen t   ana lys i s  is 
based on t h e  results of  Ref. 8, and was t aken   t o   be  4 chordlengths   for   the 
ca l cu la t ions  performed  herein. 

The Pressure  Loadings On An I n f i n i t e  Wing  Yawed To A Compressible 
Stream  Containing An Imbedded Sinusoidal Gust 

The s o l u t i o n   t o  an i n f i n i t e  f la t  p l a t e  wing yawed t o  a compressible  free 
stream  containing an imbedded s inusoidal   gust  has been  developed by Adamczyk 
(Refs. 5 ,  6) .  This   solut ion  represents  an   exac t   so lu t ion   to   the  problem and 
was developed  by  casting  the  acoustic  equation as a modified  Mathieu  equati'on 
and express ing   the   resu l t ,  as determined  by  the  boundary  conditions, i n  an 
i n f i n i t e   s e r i e s  of  Mathieu  functions  (Ref. 5 ) .  The ana ly t i c  form of these 
f u n c t i o n s   i s . s u f f i c i e n t l y  complex t h a t  fu r the r   ana lys i s   w i th   t hen   i s   d i f f i cu l t ,  
but  they  are  well   suited  to  numerical   computation. For ease   i n   i n t e rp re t ing  
the  equations .of Ref. 6 t h e  gust encounter  geometry  of  Ref. 6 is  given  in  
Fig. 4. 

The response   o f   the   in f in i te  wing t o  a s inusoidal   gust  i s  characterized 
i n  Ref. 6 as a two-parameter  solution. 

- 
P =  k b  cos Q 

I - M2COSz 8 

The quant i ty ,  B ,  i s  simply  the  chordwise  reduced  frequency component and has 
i t s  d i r ec t   coun te rpa r t   i n  unswept i n f i n i t e  wing theory. The parameter, y, 
determines  the  behavior  of  solutions  at   large  distances from t h e   a i r f o i l  and 
i s  defined as the  cutoff  parameter  in  Ref.  6. It en te r s   t he  probiem  formula- 
t ion  through a scaling  procedure which reduces  the  acoustic  equation  to  the 
following form (see  Ref. 6 ) .  

@ x , x , + Q x 2 x 2  + Y 2 @ = o  

The fundamental   solut ion  to   this   equat ion i s  a source  with an asymptotic limit 
given  by 
14 



Form i ts  d e f i n i t i o n   i n  Eq. (22b), 3 i s  e i ther   .pos i t ive   def in i te   o r   nega t ive  
de f in i t e ,  and hence y w i l l  e i ther   be  a pure   rea l   o r  a pure  imaginary  quantity. 
Now, if y is  imaginary  the  solution  decays  exponentially  while if y is  r e a l  
the  solution  approaches  the  asymptotic form of a cy l indr ica l   acous t ica l  wave 
propagating  outward  from  the  origin. A key  parameter  ,here i s  M*, the  phase’ 
Mach number of the  disturbance  along  the  span  relative  to  the  freestream 
flow  (see  Fig.  5a). Whether or  not  the  cut-off  parameter, y, i s  r e a l   o r  
imaginary  depends on whether  or  not M* i s  grea te r  or l ess   than  one. 

The e f f ec t  of the  re la t ive  phase  veloci ty ,  M*, i s  to   introduce a  spanwise 
ve loc i ty  for which the  f low  appears  stationary  in am axis  system a l so  moving 
a t   t h e  spanwise veloci ty .  The nodal   l ines   o f   the   gus t   in   th i s  moving axis 
system  are  also  stationary.  The problem i s  thereby  transformed from t h e  non- 
s ta t ionary  problem of a gust encounter  at some a n g l e   r e l a t i v e   t o   t h e  wing, t o  
a problem  involving  a   s ta t ionary  gust   f ront   paral le l  t o  M* and lying  across 
a wing which moves spanwise a t  a ve loc i ty  M* cosa. 

Adamczyk (Ref. 6)  has  successfully  simplified  the  exact  solutions f o r  
disturbance  pressure f o r  l imit ing  cases  of this   compressibi l i ty   cut-off  param- 
e t e r .  From Ref. 6, the  disturbance  pressure can  be  wri t ten  in   several   d i f fer-  
ent  forms  for  various  values  of  the  cut-off  paramter, Y. When y2 i s  a small 
posi t ive  quant i ty ,  

with 

When y2 i s  negative,  

15 



where 

f i x )  = CONJUGATE E(x) 

The corresponding  pressure  loading on t h e  yawed i n f i n i t e  f l a t  p l a t e  wing 
responding to   the  s inusoidal   gust   can  be  obtained from 

AC,,= CONJ[- - 2ps exp i Uk cos (8- a) t] 
- Po u 1 2  
2 

- 

The complex conjugate i s  taken  since Adamczyk solved  the  conjugate problem t o  
the  formulation  described  herein.  

In   the  present   analysis  Eq. ( 2 5 ) ,  ( 2 6 ) ,  or  (27) w i l l  be  used,  depending 
on the   va lue  of 9. If y2 does  not f a l l  within  the  prescribed  ranges,   the 
exact so lu t ion  w i l l  be  used (cf . ,  Ref. 6 ) .  

The steady  f low  contribution from a f l a t  p l a t e  at an angle  of  at tack i s  
obtained as a l imiting  case  of  the  unsteady  analysis at zero  reduced  frequency. 
The effect   of   the   s teady  f low camber problem  can  be  treated  by  obtaining a 
po ten t i a l   f l ow  so lu t ion   fo r  an i n f i n i t e  wing and then  accounting  for compress- 
i b i l i t y   b y  way of  the Karman-Tsien r e l a t i o n  (Ref. 9 ) .  A su i t ab le   po ten t i a l  
f low result for an arbitrary mean l i n e  i s  given  by  the Munk i n t e g r a l  (Ref. 3 ) .  

16 



where = c o d  3 . Instead of using  the  Prandt l -Glauert   correct ion  factor  
t o  account for compressibility  effects, t h e  Karman-Tsien re la t ionship ,  which 
is  more accurate at high subsonic Mach numbers, i s  used.  This  relation i s  
given by 

where C i s  the   p ressure   coef f ic ien t  a t  t h e  Mach number M, and C i s  the  
incompr%sible  pressure  coefficient at t h e  same l o c a t i o n   i n   t h e  f%!)w. 

A t  th is   point   a t tent ion  can  be  turned  momentar i ly   to   the problem  of 
de te rmining   the   p ressure   in   the   f low  f ie ld   near   the  wing but   off   the   surface.  
The leading  edge pressure   s ingular i ty ,  which i s  inherent  in  the  theories  of 
i n f i n i t e l y   t h i n  wings and which generally  causes no  problems  in,computing the 
aerodynamics  of  these  wings, must now be t r ea t ed .  If the  loading on the  wing 
i s  represented by pressure  dipoles ,   the   dis turbance  pressures  a t  any p o i n t   i n  
the   f low may be  directly  determined by 

Unfor tuna te ly ,   the   in f in i te   s t rength   d ipole  a t  the   l ead ing  edge w i l l  then 
present   in f in i te   p ressures   th roughout   the   f lu id ,  an  obvious  physical  unreality. 
Hence, t he   l oad ings   i n   t he   v i c in i ty   o f   t he   l ead ing  edge must be  modified t o  
e l i m i n a t e   t h i s   s i n g u l a r i t y .  

L i g h t h i l l  (Ref. 10) has  successfully  modified  incompressible two-dimen- 
s iona l   t h in   a i r f low  theo ry   t o   e l imina te   t he   l ead ing  edge  singularity.  It i s  
required  that   the   f low  near  a smooth leading edge  be  the  flow  over a parabola,  
while at po in t s  away from the   l ead ing  edge the flow i s  adequately  predicted 
b y   t h i n   a i r f o i l   t h e o r y .   T h i s  moves t h e   s i n g u l a r i t y   i n s i d e   t h e   a i r f o i l   c o n t o u r  
and provides a smooth f low  ex te r io r   t o  the t h i n  wing. As a r e su l t   t he   p re s -  
sure   loading on a t h i n  wing can  be  given, t o  a f irst  approximation,  by  the 
following  equation, 

ACP - , X 

AcpT. A .  
X+P,/2 (32 1 

where x is the   d i s t ance  from the  leading  edge, AC i s  the   ac tua l   p ressure  
loading   across   the  wing, ACpT:A. i s  t h e   t h i n   a i r f o i l   t h e o r y   r e s u l t  at the  
corresponding  chordwide  positlon and p i s  t h e   a i r f o i l   l e a d i n g  edge radius  of 
curvature. Since AC varies as ( x y - 1 / 2  near   the   l ead ing  edge it is  easily 

P 

pT.A. 

17 



. _. . . . .. .. 

seen t h a t  kp approaches  zero  continuously as the   l ead ing  edge i s  neared. As 
x approaches unity, &C approaches i ts  t h i n  a i r foi l  value. Without d i r e c t  
proof, it is assumed tge same results will hold for subsonic  compressible 
flow; t h i s  i s  based on t h e  fact that the behavior  of  the  leading  edge  singular- 
i t y  is t h e  same regardless   of   compressibi l i ty   or   unsteadiness .   That  is ,  f o r  
unsteady compressible flow ACp varies as [ x ] - ~ / ~  near  the  leading  edge. 

The s o l u t i o n   t o   t h e  problem  of p red ic t ing   t he   p re s su re   f i e ld   i n   t he  . 

v i c i n i t y   o f  a swept,  semi-infinite wing cons is t s   o f  a numer ica l   so lu t ion   to  
Eq.. (lg), u t i l i z i n g   t h e   p r o p e r   v d u e  of AC . The necessary   double t - la t t ice  
inf luence   coef f ic ien ts  were  developed  by  &sing, e t  al (Ref. 7) and the  
underlying  assumptions i n t h e i r   d e r i v a t i o n  res t r ic t  the   so lu t ion  t,o the  case  of 
t i p  chord p a r a l l e l   t o   t h e   f l o w .  Once t h e   t h i n  wing r e su l t s   fo r   t he   l oad ing  
are determined,  the  leading  edge  singularity i s  removed by Eq. ( 3 2 )  and the  
pressures  i n  t h e  near f ie ld   are   determined from the   d ipo le   d i s t r ibu t ion ,  Eq. 

- 

(31) 

An Aiymptotic  Solution  For The Upwash Induced A t  The Tip By 
Portions  of The  Wing Far Removed  From The Tip 

Equation (21) which i s  repeated  below  for  convenience,  describes  the 
upwash on t h e   t i p  due t o   t h a t   p o r t i o n  of  the wing  which experiences two-dimen- 
s ional   f low.  

Here kmn represents  a numerical form of  the  unsteady  subsonic  flow  kernel 
f'unction, K(xl-tl, -5 ) , both  of which a re   g iven   i n  Ref. 7. The continuous 
form, K, of t he   ke rzz l  hu1 c t i o n  i s  more amenable to   ana ly t i c   t r ea tmen t .  The 
fo l lowing   re la t ions ,  from 
E¶. (21). 

Ref. 7, are r equ i r ed   t o   pe r fo rm  the   i n t eg ra t ion   i n  

The i n t e g r a l  I1 i s  given  exact ly   by 
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OD e-ikpb 

'I= (l+u2)3/2 
"I 

and approximately  by 

where 

(34) 

was developed  by  Laschka  (Ref. 11) and i s  reproduced i n  Ref. 7. The Laschka 
coefficients  necessary  for t h i s  approximation are %, n, and c.  

a general  the spanwise var ia t ion   in  &2 i s  osci l la tory due t o   t h e  SPM- 
- 

wise component of the gust. From the  form o!?Eqs. (251, (261,  or  (27) it Can 
be  seen tha t  

Thus the term i n  integral  form on the  r ight  hand s ide of EQ. (21) can  be 
writ ten as 

Defhing qr = x3-C3 t h i s  can  be restated as 

Define the  distance  along  the  span between the  point at which the upwash i s  
desired and the load is applied t o  be qr, If th i s   quant i ty  is  large  cer ta in  
approximations i n  the   ke rne l   Wct ion ,  K1/$ can  be made. In  par t icular ,  

r2 = y,' 3 r2COS2 e 
r R ~ q f 2 C o s 2 @ ( t a n 2 ( - . ~  + E )  +p2)1/2 

M(tan2(-8+c)+p - tan(-8+6) 
2 1/2 

UI p 
B2 



Combining these  approximate forms, the   kerna l   func t ion  has the  following 
approximate form 

The angle, c ,  i s  the  angle  between the  load  point  on the  wing  and the  
po in t  at which flow  tangency i s  s a t i s f i e d ,  measured  from a spanwise l i n e  
through  the load point   (see  Fig.  9). Note t h a t   t h i s   a n g l e  i s  a function  of 
chord,  but  for  large  spanwise  distances  between  the  loadpoint and the  f low 
tangency   po in t   th i s   var ia t ion   can   be   neglec ted .  The i n t e g r a l  

can be  evaluated by f irst  def in ing  a parameter 

usin8 + wcos8 [ M( tan2( -8+E)+p - tan(-o+c) 2 1/2 
D = i ( s i n a  + - U U P 2  3 

Use of this   parameter   then  permits   evaluat ion of the  fol lowing  integral  forms: 

The in t eg ra t ions  are performed i n  the complex plane and the  following  simple 
form i s  obtained 

This   calculat ion  represents  a small, r e a l  componept t o   t h e  upwash due t o  
port ions  of   the  wing far removed from t h e   t i p   r e g i o n .  
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NUMERICAL RFSULTS FOR INVISCID PRESSURE FIELD 

The computational  procedure t o  determine  the  t ip   loading  consis ts  of 
represent ing   the   t ip   reg ion  (0 < x < L) by   the   double t - la t t ice  model des- 
cr ibed i n  Ref. 7. Use o f   t h i s  model p r e s e n t l y   r e s t r i c t s   t h e   t i p  chord l i n e  
t o  be p a r a l l e l   t o   t h e   f r e e s t r e a m .  The length,  L, at which the t i p   i n f l u e n c e  
substantially disappears i s  adequately  given  by 4 chord  lengths. The inbcard 
reagion of t h e  wing i s  described  by a combination  of analytical and numerical 
forms, u t i l i z i n g   t h e   i n f i n i t e  wing r e s u l t s  of Ref.’ 6, t he  numeric’al kernel  
function  of  Ref. 7 ,  and EQ. (39). Camber e f f e c t s  due t o  an i n f i n i t e  wing i n  
steady subsonic  flow are t reated  by combining the. incompressible   solut ion 
of Eq. (29)  with  the Karman-Tsien equation (Eq. 30) t o  account f o r  compres- 
s i b i l i t y .  Equation (19) i s  then  solved  numerically  for  the unknown pressure 
loads on the t i p ,  ACpnm. The f i n a l   l o a d s  on the   t i p   r eg ion   a r e   ob ta ined   by  
removing the  leading edge s i n g u l a r i t y  from the  ACpnm v i a  Eq. ( 3 2 ) .  

3 

Before  applying  the  approximate  pressure  fields  described  by Eqs.  (25), 
(26) ,  and (27)   to   the   so lu t ion   for   the   semi- inf in i te  wing, it i s  d e s i r a b l e   t o  
e s t ab l i sh  some limits of  accuracy  for these analytic  forms. The quant i ty   of  
pr imary   in te res t  is, of course,   the   pressure.  However, t h e  l i f t  t r a n s f e r  
funct ion TL (which i s  a normalized l i f t  coe f f i c i en t  that  inc ludes   the   e f fec ts  
of compressibi l i ty  and the  wake) i s  a l so  of i n t e r e s t  and has been examined 
i n  t h e  f igu res  which follow. Adamczyk (Ref. 6 )  has  developed  these  transfer 
funct ions  for   the  fol lowing  tentat ive  values   of   the   cut-off   parameter .  

ibk cos= [ Jo@) - ~ Z J I @ )  
TL= e I + z  ][ Jo ( M 2 P  cos28)+iJI(M2pCoS2e)] 



where Z and H (y,P) are de f ined   i n  E9s. (25) and (26). Note these  transfer 
func t ions   a re   re fe r red   to   the   gus t   ampl i tude  at the   l ead ing  edge ra ther   than  
mid-chord. 

In  Fig. 6 the  "exact"   solut ion  for  TL i s  compared with  the  approximate 
forms fo r   pos i t i ve  $ i n  Eqs. (40) and (42) .  (The exact   calculat ions were 
obtained  by a direct   numerical   in tegrat ion  of  Eq. 21  of  Ref. 6. ) The upper 
panel  contains  the  comparison  for M = 0.3 and the lower  panel  for M = 0.6, 
both  over the. range  of  reduced  frequencies  0.05 S Eb 5 6.0. In  both  cases 'it 
is  seen  that  J3q. (40) which i s  t h e  low  frequency  approximation, compares 
favorably  with  the  exact   solut ion up t o  kb = 0.2. Beyond t h i s   v a l u e  Eq. (40) 
diverges from the  exact   solut ion,   wi th a greater  divergence a t  M = 0.6 than at 
M = 0.3.  I n   c o n t r a s t   t o   t h i s ,  Eq. - (42),  which i s  the  high  frequency  approxi- 
mation, i s  i n  poor  agreement f o r  - kb < 0 .5 ,  but  improves i n  i t s  a b i l i t y   t o  
represent   the  exact   solut ion as kb increases  beyond th is   va lue .   This  i s  a l so  
i l l u s t r a t e d  i n  Fig.  7 i n  which t h e  magnitude and phase  angle  of T a re   p lo t ted  
versus  the  cut-offparameter Y. Based  on the   r e su l t s   o f   t hese  two f igures ,  it 
appears   that  Eq. (40)  can  be  used  for y 2 0.3 while Eq. (42)  can  be  used  for 

L 

Y >" 0.3. 

Figure 8 shows the  chordwise  pressure  distribution on an i n f i n i t e  wing 
at a Mach number of 0.3 f o r  a reduced  frequency  of 0.1 i n   p a r t  a (and shows 
the  variation  with  reduced  frequency at x/c = 0.2 i n   p a r t   b ) .  Comparison 
o f   t hese   r e su l t s   i nd ica t e   t ha t  Es. (25)   yields   acceptable   pressure  dis t r ibu-  
t i o n s   f o r  y 0.2 while Eq. (27) i s  more than  adequate  for Y >" 0.2.  Figure 9 
shows 8 similar se t   o f  comparisons f o r  a Mach number of 0.6. For t h i s  s e t  of 
conditions,  Eq. (25)   represents  an adequate  solution up t o  kb = 0.1 and i s  
poss ib ly   ex tendable   to  kb E 0.2. Equation  (27), however, appears t o  compare 
qu i t e   we l l   w i th   t he   exac t   r e su l t s  beyond  kb  0.2.  This  implies  that Eq. (27) 
s t i l l  gives  an adequate  descritpion of t he   p re s su res   fo r  y >" 0.2  while Eq. (25) 
i s  v a l i d  f o r  Y 7 0.2. 

- 
- 

It should  be  noted  that   the   foregoing  comparisons  re la te   to   condi t ions 
fo r  $ > 0, i n  which acoustic  propagation i s  present .  The condi t ions   for  
y2 < 0 have not  been  investigated  herein and remain a f i e ld   fo r   fu r the r   s tudy .  

Deviat ions  begin  to   appear   in   both  the lift t ransfer   func t ion  and the  
pressure   d i s t r ibu t ions  at high  values  of  reduced  frequency at both Mach numbers 
considered  with  the  deviations becoming more pronounced as Mach number 
increases.   This i s  a resu l t   be l ieved  due t o   t h e   t r u n c a t i o n  of t h e   i n f i n i t e  
s e r i e s  of  Mathieu  function  which  describes  the  exact  solution.  Equation  (27) 
i s  a solution  comprised  of  the f i rs t  two terms of an i n f i n i t e   s e r i e s   i n  reduced 
frequency i n  which the  dis turbance due t o   t h e   p l a t e  i s  modeled by acous t ica l  
waves emanating  from the   l ead ing  and t ra i l ing   edges .   This   so lu t ion   inherent ly  
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increases i n  accuracy as the  reduced  frequency  increases (at a given Mach 
number # 0) and so it i s  expected  the results of Eq. (27) a re  more accurate 
than  the  t runcated  representat ion  of   the  exact   solut ion at high  values  of kb. 

Pressure Loadings on The Semi-Infinite Wing 

Figures 10 and 11 describe  the  spanwise  variation  in  chordwise  pressure 
d is t r ibu t ions   o f   the   semi- inf in i te  wing at various sweep angles. The wing i s  
an uncambered f l a t  p l a t e  at an angle of a t t ack  of  0.25 rad in  incompressible 
flow. Generally,   the  chordwise  distributions  are  of similar form, and the  
spanwise variation  decreases  smoothly  to  zero a t  t h e   t i p s .  The e f fec t   o f  sweep 
is  t o  lower the ove ra l l  magnitudes. 

Figure 12 represents  the  steady  response of a cambered (NACA 4415 p r o f i l e )  
unswept semi- inf ini te  wing a t  an angle of a t tack  of 0.25 rad.. A comparison of 
t h i s   f i g u r e  with Fig. 10 shows that t h e   e f f e c t  of camber i s  to   i nc rease   t he  
- chordwise  load  distribution. For  completeness, the  unsteady  dis t r ibut ion  for  
kb = 0.1 i s  included  in  Fig.  13. A s  s t a t ed   ea r l i e r   i n   t he   t ex t ,   t he '  complete 
so lu t ion  is  the   l inear   superpos i t ion  of the  steady and unsteady components  of 
the  response which a re   i l l u s t r a t ed   i n   F igs .  1 2  and 13. 

Pressure  Distr ibut ion  In  The Vic in i ty  of Tip  of  Semi-Infinite Wing 

Figure 14 shows t h e  pressures   in  a region  surrounding  the  t ip  of a semi- 
i n f i n i t e  unswept  wing in  steady  subsonic  f low at a Mach number of 0.2. The 
angle  of  at tack i s  t aken   t o   be  0.1 rad and camber i s  zero.  In  each  panel  the 
pressure   coef f ic ien t  i s  p lo t ted   hor izonta l ly   versus   the  normal d i s t a n c e   t o   t h e  
plane  of  the wing. The l e f t  column of  panels a t  y/c = 2 . 0  i s  the   d i s t r ibu t ion  
two  chordlengths  inboard  of  the wing t i p ,  and t h e   r i g h t  column of  panels at 
y/c = -2.0 i s  the d i s t r i b u t i o n  two chordlengths  outboard  of the t i p .  The 
f i rs t  hor izonta l  row at  x/c = 0.15 i s  the   d i s t r ibu t ion  at po in t s   t ha t   a r e  15 
percent chord aft  of the   l ead ing  edge locus,  the  second row f o r  x/c = 0.95 
(consisting  of a s ingle   pane l )  i s  at a poin t  that i s  95 percent  chord a f t  of 
the   l ead ing  edge locus,  and the  t h i r d  row at x/c = 1.45 i s  f o r  po in ts  that 
are 45 percent  chord af t  of t h e   t r a i l i n g  edge locus.  The r i g h t  hand column 
can be dismissed  immediately as represent ing  typical   var ia t ions  of   pressure 
i n   t h e   v i c i n i t y   o f  , bu t   ex t e rna l   t o ,  a l i f t i n g  surface and i t s  wake. The top  
p a n e l   o f   t h e   l e f t  hand column f o r  a poin t   near   the  wing leading edge contains 
t h e   c h a r a c t e r i s t i c  jump due to   the  dipole   loading.   Negat ive  pressures  (Cp 0) 
are observed f o r  x2 > 0 while posi t ive  pressures   are   observed  for  x2 0. The 
bottom  panel of t h e  l e f t  hand column f o r  a poin t  in t h e  wing wake shows the  
far f i e ld   d ipo le   i n f luence  at po in t s  far removed from the  wake  1x21>>0. 
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However, as t h e  wake is  approached a reversa l   o f   th i s   t rend  i s  observed and 
t h e  boundary  condition of zero  pressure  difference i n  the  wake is s a t i s f i e d .  
Final ly ,   the   center   panel  of t h e   l e f t  hand  column represents  a point  neaz  the 
wing t r a i l i n g  edge.  Here the   p ressure   var ia t ion  i s  t r a n s i t i o n a l  between t h e  
d ipole  jump  on t h e  Tjing and the  continuous  pressure  in  the wake. As the  wing 
i s  approached the  pressure magnitude i n i t i a l l y   i n c r e a s e s .  A t  a small but 
f i n i t e   d i s t a n c e  from the  surface of the  wing, the   t rend  is  reversed and t h e  
pressures  tend  toward  zero,  but  terminate  in a discontinuous  dipole jump on 
the  surface.  This  combination  of  form,  near a poin t  where the  boundary  conili- 
t i o n s  change abruptly,  i s  c h a r a c t e r i s t i c  of t h e   e l l i p t i c   e q u a t i o n s  which 
describe  subsonic  steady  flow. 
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VISCOUS FLOW CONSIDERATIONS 

General 

Although  an accurate   solut ion  of   the  potent ia l   f low  equat ions  can  give 
a qualitative p ic ture   o f   the   f low  in   the   reg ion   of  an a i r f o i l   t i p ,   t h e   f l o w  
f i e l d   i n   t h i s   r e g i o n  i s  affected  s ignif icant ly   by  three-dimensional   viscous 
phenomena a r i s i n g  from  boundary l aye r s  on both  the  upper and lower wing sur- 
face as well as on the  wing t i p  i tsel f .  Viscous  effects  could  be modeled 
p a r t i a l l y   i n  a potent ia l   f low  solut ion  through  use of i so l a t ed  and d i s c r e t e  
vortex  f i laments.  The f i laments  would r e p r e s e n t   t h e   v o r t i c i t y   o r i g i n a l l y  
generated  in  the  viscous  boundary  layers which break away from t h e   a i r f o i z  
t o  form t h e  wake. However, a complete po ten t i a l   f l ow  so lu t ion  which includes 
d i s c r e t e   v o r t i c e s  would requi re  a ca lcu la t ion   of   the   in te rac t ion   of   the  
vo r t i ce s  w i t h  each  other as well  as t h e i r  combined e f f e c t  upon the  wing. 
.However, even  such a complete poten t ia l   so lu t ion   could   no t   sa t i s fy   the   sur -  
face  no-slip  boundary  condition. Although f a i l u r e   t o   s a t i s f y   t h e   n o - s l i p  
boundary  condition m a y  not   be  ser ious  in   determining  the  pressure  f ie ld ,  it 
may l ead   to   inaccura te   p red ic t ions   o f   secondary   f lows   in   the   v ic in i ty   o f   the  
wing  even in   reg ions  which  have l i t t l e   d i r e c t   v i s c o u s   e f f e c t s .   I n   a d d i t i o n ,  
a vortex.f i lament   solut ion would require  assumptions on the   vor tex   core   s ize  
and upon the   pos i t i on  and angle a t  which the  f i laments   leave  the wing as both 
of  these  items  are  dependent upon viscous  effects .  

Since a complete in te rac t ing   vor tex   f i l ament -poten t ia l   f low  so lu t ion  
would not   be  able   to  model e i t h e r   t h e   a i r f o i l  boundary l a y e r  or the   viscous 
core   cor rec t ly   bu t  would s t i l l  present  a formidable  computational  problem, 
it i s  appropr ia te   to   cons ider   v i scous   so lu t ions   o f   the   t ip   T low’f ie ld .  One 
possible   viscous  solut ion would a t t ack  the f u l l  three-dimensional  Navier- 
Stokes  equations.  Solutions  of  the fu l l  Navier-Stokes  equations  can now be 
considered  possible  (e.g. ,   see  Briley and McDonald(Ref. 12)), however, t h e i r  
r e l a t ive ly   l ong  computer run t imes   d i c t a t e   t ha t   t he  full three-dimensional , 

Navier-Stokes  equations  be  solved  only when no   su i tab le   a l te rna t ive  i s  avail- 
able. 

Although  f low  s i tuat ions  exis t   for  which a three-dimensional  Navier-Stokes 
so lu t ion  is  appropriate  and necessary,  t he  wing t i p  problem  does  contain sim- 
p l i f y i n g   f e a t u r e s   t h a t  may a l l e v i a t e   t h e  need f o r  a full three-dimensional 
Navier-Stokes  solution.  In  particular,   the  t ip  f low  region  contains a primary 
f low  direct ion  which,   for   the  zero camber case considered  in the present  
e f f o r t ,  is  i n  the plane  of  the oncoming flow and at only a small angle   re la-  
t i v e   t o   t h e  wing  chord.  Furthermore, the ve loc i ty  component i n   t h e  streamwise 
d i r ec t ion  i s  considerably  greater   than  veloci ty  components  normal t o  t h i s  
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streamwise  direction  and  derivatives i n  the  streamwise  direction  are  expected 
to   be   cons ide rab ly   l e s s   t han   de r iva t ives  normal t o   t h i s  streamwise  direction. 
In th i s   s ense ,   t he  problem  appears t o  be similar t o   t h e   c l a s s i c a l   t h r e e -  : 
dimensional  boundary  layer  problem. However, the   c lass ica l   th ree-d imens iona l  
boundary  layer  approach imposes two additional  assumptions which are   not  
v a l i d   i n   t h e   a i r f o i l   t i p   r e g i o n .  Under the  first of   these   addi t iona l  assump- 
t i o n s   t h e   s t a t i c   p r e s s u r e  i s  assumed t o   b e   i n v a r i a n t   i n  a plane normal t o   t h e  
streamwise  direction;  obviously,  such an assumption upon t h e   s t a t i c   p r e s s u r e  
c l e a r l y  makes classical   three-dimensional  boundary  layer  theory  invalid  for  the 
a i r f o i l   t i p  problem.  Secondly,  three-dimensional  boundary  layer  theory assumes 
tha t   s ign i f i can t   g rad ien t s   ex i s t   i n  one d i r ec t ion   on ly ,   i . e . ,   t ha t  a t h i n  
r e l a t i v e l y  f l a t  boundary sheet   exis ts   wherein  viscous  effects   resul t ing from 
the  mean flow g rad ien t s   a r e   s ign i f i can t   on ly  as a r e su l t   o f   t he   ve loc i ty  
change across   the  sheet  and  not  along  the  sheet.  Obviously  the  assumption 
of a t h i n   r e l a t i v e l y  f l a t  boundary  sheet i s  inappropr ia te   in   the   reg ion   of  
a wing t i p .  

The need to   deve lop  a three-dimensional  forward  marching  viscous  calcula- 
t ion  procedure.which i s  more general   than  three-dimensional boundary l aye r  
theory  has  been  motivated  by a va r i e ty   o f   f l u id  mechanics  problems  such as 
three-dimensional  duct flow  problems, three  dimensional  jet   problems, and the  
a i r f o i l   t i p  problem.  Therefore,  considerable  recent  effort  has  been expended 
upon development of  computational  procedures  for  three-dimensional  viscous 
flows  with a dominant  streamwise d i r ec t ion .  These  procedures would not  be 
l imited by the  c lass ical   three-dimensional  boundary layer  assumption  of con- 
s t a n t   s t a t i c   p r e s s u r e   i n   p l a n e s  normal t o   t h e  approximate  flow d i rec t ion   bu t  
would s t i l l  allow  treatment of the  flow f i e ld   i n   ques t ion  as an i n i t i a l   v a l u e  
problem. Such three-dimensional  viscous  forward  marching  solutions  have  been 
developed  by  Patankar  and  Spalding  (Ref. 13), Caret to ,  C u r r  and Spalding 
(Ref. 14) and Briley  (Ref.  15) a l l  of whom developed  numerical  solutions  for 
laminar  incompressible  f lows  in  straight  ducts  with  rectangular  cross  sections.  
The governing  equations  were  solved by i n t e g r a t i n g   i n  a primary  flow  coordin- 
a te   d i rec t ion   whi le   re ta in ing   v i scous   s t resses   in   bo th   t ransverse   coord ina te  
d i r ec t ions  as opposed t o   o n l y  one direct ion  for   three-dimensional  boundary 
layer   theory.   In   addi t ion,   cer ta in   assumptions were made about  the  behavior 
of pressure  gradient  terms  for  incompressible flow t o  permit  solution by 
forward  marching  integration.  Subsequently,  this  general  approach  has  been 
used t o  compute laminar  incompressible  flow i n   h e l i c a l   t u b e s   b y  Patankar, 
Pratap  and  Spalding  (Ref. 16). 

- 

Recent ly   in  companion s tud ie s ,   Br i l ey  and McDonald (Refs. 12, 17) have 
developed a s t ab le  and eff ic ient   noni terat ive  implici t   numerical   technique 
for application  to  systems  of  coupled  nonlinear  multidimensional  parabolic 
and/or  hyperbolic  equations.  These  general  techniques  were  applied  in 
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Ref. (17) t o   t h e  computation  by  forward  marching  integration  of  laminar 
supersonic flow i n  rec tangular   j e t s .   F ina l ly ,   the   t echnique  was extended 
i n  Ref. (18) to   the  predict ion  of   subsonic   turbulent   compressible  flow i n  
curved   duc ts .   In   the   p resent   e f for t   th i s  same basic  viscous,  three-dimen- 
s iona l  forward  marching  technique i s  a p p l i e d   t o   t h e   a i r f o i l   t i p  problem,  and 
a preliminary  assessment  of i t s  p o t e n t i a l   f o r   c a l c u l a t i n g   t h e   t i p  flow f i e l d  
i s  made. 

The Governing  Equations 

Cen t ra l   t o   t he   p re sen t   ana lys i s  i s  the  formulation  of  approximate 
governing  equations which  can  be  solved  by  forward  marching  integration i n  
the   d i rec t ion  of a "primary  flow". The e n t i r e  flow f ie ld   then  can  be 
obtained by a sequence of e s s e n t i a l l y  two-dimensional  calculations, and t h i s  
fea ture   o f   the  method r e s u l t s   i n  ,a substant ia l   saving  of  computer  time  and 
storage compared t o   t h a t  which  would be  required  for   solut ion  of   the f u l l  
( e l l i p t i c )  Navier-Stokes  equations.  Although  the  present  effort  utilizes a 
Cartesian  coordinate   system  to   represent   the  a i r foi l   t ip   f low  f ie ld ,   the  
equations  have  been  derived and  coded i n  a more general  orthogonal  system. 
The r educ t ion   t o  a Cartesian  system i s  straightforward and is  indicated 
during  the  discussion.  

The equat ions   a re   der ived   in  a curvi l inear   or thogonal   coordimte  system 
which i s  al igned  with  the flow  geometry  such t h a t  one coordinate   direct ion can 
be  ident i f ied as the  primary  flow  direction  while  the  remaining two coordinate 
directions  determine  the  secondary flow plane.  The t ransverse  plane i s  
assumed t o  be   perpendicular   to   the   a i r fo i l .  Only t h e   t i p   r e g i o n  of  the a i r -  
foi l   wi thin  one-half   chord  of   the edge i s  considered. The a i r f o i l   t i p  i s  
assumed t o   l i e   i n   t h e   p l a n e  z = 0 between 0 5 x 5 c and  -h/2 5 y S h/2  where 
h i s  t h e   a i r f o i l   t h i c k n e s s .  The leading and t r a i l i n g  edges  of t h e   a i r f o i l   a r e  
assumed t o   l i e   i n   t h e   p l a n e s  x = 0 and x = c ,   respec t ive ly .  A sketch  of  the 
a i r f o i l   t i p   c o o r d i n a t e  system  used in   t he   v i scous   ana lys i s  i s  presented   in  
Fig. 15. 

In   the   genera l   case  x, y, and z represent  the  approximate  streamwise 
(primary  flow)  and two t ransverse  coordirates   in   an  or thogonal   coordinate  
system,  respectively.   Since  the  analysis  consideres a general   orthogonal  sys- 
tem, met r ic   coef f ic ien ts  hl, and h are  defined  such  that   an  incremental  3 
distance ( 6 ~ ) ~  = (h16x)2 + (h2 + (h36z)2; f o r  a Cartesian  system hl = h2 = 
h3 = 1. The governing  equations  are  derived  from  the  Navier-Stokes  equations 
describing  the  compressible flow of a viscous,  k a t  conducting,  perfect   gas.  
In vector  form, these  equat ions  are   given by 
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where U i s  the   ve loc i ty   vec tor ,  p i s  dens i ty ,  t i s  time, p i s  pressure,  F i s  a 
vector   represent ing  the  viscous  force  act ing  on  the  surface  of  a f l u i d  element 
and v i s  the  gradient   operator .  The t o t a l   e n t h a l p y  E may be specified  through 
an   enera   conserva t ion   equat ion   (Ref .  18); however, i n  the   p re sen t   e f fo r t   t he  
assumption i s  made tha t   the   to ta l   t empera ture  i s  constant'  throughout  the  flow 
f i e l d .  The equat ion  of   s ta te  i s  p = pRT, where R i s  the   gas   cons t an t .   Wres -  
s ions  def ining F i n  an  orthogonal  coordinate  system are given by Pai  (Ref.  19) 
and may be found i n  Ref. 18. 

In   the   p resent   ana lys i s   the   reasaning   fo l lowed  to   es t imate   the   o rder   o f  
magnitude  of viscous  terms  and  turbulence  quantities i s  the  same as i s  of ten  
employed to derive  three-dimensional  boundary  layer  equations. The r a t iona le  
i s  d i s c u s s e d   i n   d e t a i l   i n  Ref. 18, and f o r  convenience th i s   d i scuss ion  i s  now 
repea ted   i n  a condemed  form. As  d i scussed   i n  Ref. 18, it i s  assumed t h a t ,  
v i scous   e f fec ts   a re   negl ig ib le   except   in   th in   l ayers   near   so l id   boundar ies ,  
and thus boundary layer  concepts  can  be employed t o  examine t h e   r e l a t i v e  
importance of viscous  terms  in  the  governing  equations.  Consequently,  vis- 
cous  terms which are  considered  important fo r  boundary layer  flow on s o l i d  
surfaces   a l igned with e i t h e r  of the two coordinate  planes which a r e   p a r a l l e l  
t o   t h e  primary  flow  coordinate  are  retained.  throughout  the  entire  region  of 
the  viscous  f low  calculation;  other  viscous  terms  are  neglected.   In  the 
context of the   p resent   inves t iga t ion   the  lower  and  upper surfaces  of  the wing 
r ep resen t   so l id   su r f aces   a l igned   i n   t he   ' y l -d i r ec t ion  and t h e   t i p   r e p r e s e n t s  
a so l id   su r f ace   a l igaed   i n   t he   ' z ' - d i r ec t ion .  Both of these   so l id   sur faces  
a re   pa ra l l e l   t o   t he   p r imary   f l ow  d i r ec t ion ,  'xt. If the  flow i s  turbulen t ,  
the  governing  equations  are  t ime-averaged  in  the  usual manner fo r   t u rbu len t  
flows  (e.g.,  Hinze,  Ref. 20 ) .  The dependent  variables  are  represented as the 
suni of a time-averaged  quantity  denoted by an  overbar (-) and  an  instanta- 
neous f luctuat ing  quant i ty   denoted by a prime ( I ) .  This  process  of  averaging 
produces  turbulenk  correlations which are  conventionally  termed  Reynolds 
s t r e s s e s .  The order of  magnitude  of  viscous  terms,  including  the  turbulent 
Reynolds s t r e s s e s ,  i s  examined under. two s e t s  of circumstances, namely, those 
appropr ia te   for  boundary layer   f low  near   e i ther  of two types  of wall, one f o r  
which y is  constant (a y- wall) and one f o r  which z i s  constant  (a z- wal l ) .  
Near a y-wall, ( v / U m ~ )  and3 ( )/a ( y / k ~ ~ )  a re  assumed t o  be of order 6 and 1/6 
respect ively;   near  a z-wall, (W/UREF) and a (  ) / a ( z / L m ~ )  a r e  of order 6 and 
1/6. Here, 6 i s  the  shear   layer   thickness .  If the  viscous terms a r e   t o  be 



of the  same order of magnitude  as  the  remaining  terms,  then  the  dimensionless 
molecular  viscosity ( p / p m ~  v ~ F L R F ~ )  must  be of the  order &i2. Similar ly ,  it 
i s  assumed that  dimensionless  turbulent doubJe correlat ions  are   of   order  6 
( i . e .  , turbulent   f luctuat ions  are   of   order  62) and t h a t   t r i p l e   c o r r e l a t i o n s  
a re   negl ig ib le .  All other  dependent  variables  and  derivatives  are assumed 
t o  be of order  unity.  Retaining  only  those  terms  which  are of order  unity 
i n   e i t h e r  of the two types of shear  layers  described  above,  the  viscous  terms 
are   g rea t ly   s impl i f ied ,  and the  time-averaged  governing  equations can  be 
w r i t t e n   i n   t h e  following form: 

[-$- + 21 (h,h,PLiQ) + 2 ( h , h p P  W)+ [ & + " ( h ,  h i p  E )  
3 dZ h 3  dY 
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For  ent i re ly   supersonic  flows, Eqs.  (&a-d)  together  with  boundary  and 
i n i t i a l  conditions  can be solved  without  further  approximation by forward 
marching i n t e g r a t i o n   i n   t h e  x d i rec t ion  as was demonstrated  by McDonald and 
Briley  (Ref. 17) for  laminar  f low i n  rec tangular   j e t s .  For subsonic  flow, 
however, the  inviscid  f low  region i s  known t o  be governed  by  equations which 
a r e   e l l i p t i c ;   t h a t  is ,  by equations w h i c h  requi re  downstream  boundary  condi- 
t ions   for   so lu t ion .   Therefore ,   in   the   subsonic   case ,  i f  the   p ressure  i s  
required  to  emerge from  the  solution it i s  by no means c l e a r   t h a t  a s t a b l e  
numerical  solution  could  be  obtained  from a forward  marching  calculation  and 
even if  a stable  numerical   solution  could be obtained,   solut ion by  forward 
marching in t eg ra t ion  i s  not   phys ica l ly   appropr ia te ,  a t  leas t   no t   wi thout  some 
s o r t  of i t e r a t i v e   p r o c e d u r e   t o   s a t i s f y   t h e  downstream  boundary conditions.  
Therefore, it appears   that   in   the  subsonic   case some approximation must  be 
made in   r ega rd   t o   t he   p re s su re   f i e ld .  The p r e s e n t   a i r f o i l   t i p   a n a l y s i s   f o l l o w s  
the  approach of Ref. 18 and  assumes the   p ressure   f ie ld   appropr ia te   for   inv is -  
c id   f low  represents  a given  reasonable f i r s t  approximation  to   the  actual   pres-  
sure   f ie ld .  . Thus, the  inviscid  streamwise  pressure  gradient computed with 
appropriate  downstream  boundary conditions i s  "imposed" upon the  flow, as a 
known sowce  term  in   the  s t reamwise momentum equation much as i n   c m v e n t i m a l  
boundary  layer  theory, so as to   pe rmi t   so lu t ion  by forward  marching  integra- 
t i o n  of the  viscous  f low  equations  for  subsonic  f lows.  This  choice  of  the 
pressure  approximation i s  not  the  only  possible  choice  and  the manner i n  which 
the  necessary  pressure  approximation i s  made i s  s t i l l  a subject  of cur ren t  
inves t iga t ion .   In  any case  the  imposit ion of inviscid  pressure  gradients  
incorporates  a p r i o r i   t h e   e l l i p t i c   e f f e c t s   a s s o c i a t e d   w i t h  a subsonic  pres- 
sure   f ie ld   wi thout   the   necess i ty   o f   so lv ing   e l l ip t ic   equa t ions   o ther   than   for  
an   inv isc id   f low.   In   the   p resent   appl ica t ion ,   the   inv isc id   p ressure   d i s t r i -  
but ion was obtained via the  inviscid  analysis   descr ibed  in   the  previous 
sec t ions .  

Method of  Solution 

The governing  equations  can  be  solved  (after  modeling  the  Reynolds 
stresses  in  the  case  of  turbulent  f low)  following  the  general   approach 
developed  by McDonald and Briley  (Ref.  17) for  laminar  supersonic  f low  in 
r e c t a n g u l a r   j e t s .  A detai led  discussion  of   the  calculat ion  procedure i s  not 
included  here,  as  such a discussion would be  lengthy,  and  discussions  of  the 
general  approach  are  available  elsewhere  (Refs. 12 ,  17, 18). The method used 
i s  based on an  impl ic i t  scheme which is  po ten t i a l ly   s t ab le   fo r   l a rge   s t ep  
s i z e s .  Thus, as a p r a c t i c a l   m a t t e r ,   s t a b i l i t y   r e s t r i c t i o n s  which limit the  
s t reamwise   s tep   s ize   re la t ive   to   the   t ransverse  mesh spacing  and  whieh become 

p roh ib i t i ve   fo r  even loca l ly   r e f ined  meshes (e .g., i n  laminar sublayers )   a re  
not a f a c t o r   i n  making the   ca lcu la t ions .  The general  approach is  t o  employ 
an  implicit   difference  formulation and to   l i nea r i ze   t he   imp l i c i t   equa t ions  by 



expansion  about  the  solution a t  the  most recent  streamwise  location. Terms 
i n  the  difference  equat ions  are   then  grouped by coord ina te .d i rec t ion  and  one 
of the   ava i lab le   a l te rna t ing-d i rec t ion   impl ic i t  (ADI) o r   sp l i t t i ng   t echn iques  
is  used t o  reduce  the  multidimensional  difference  equations  to a sequence  of 
one-dimensional  equations.  These  linear  one-dimensional  difference  equations 
can   be   wr i t ten   in   b lock- t r id iagonal   o r  a c lose ly   re la ted  matrix form  and 
so lved   e f f ic ien t ly  and wi thout   i t e ra t ion  by  standard  block  elimination 
techniques. The general   solut ion  procedure i s  q u i t e   f l e x i b l e  i n  mat ters   of  
d e t a i l  such as the  type and order   of   accuracy  of   the  difference approximat'ion's 
and t h e   p a r t i c u l a r  scheme for   spl i t t ing  mult idimensional   dif ference  approxi-  
mations. Based on previous  experience, however, it i s  bel ieved  that   the  con- 
s i s t e n t  use  of a formal  l inearization  procedure,  which inc identa l ly   requi res  
the  solut ion  of   coupled  difference  equat ions  in  most instances,  i s  a major 
f a c t o r   i n   r e a l i z i n g   t h e   p o t e n t i a l   f a v o r a b l e   s t a b i l i t y   p r o p e r t i e s   g e n e r a l l y  
a t t r i bu ted   t o   imp l i c i t   d i f f e rence  schemes. 

A s  indicated above the   de ta f l s   o f   the  method of   so lu t ion   a re   qu i te  
lengthy and  have  been  discussed in  elsewhere.  Rather  than  repeat  the  discus- 
s i o n   i n   d e t a i l   w i t h i n   t h e  body of   the  present   report ,   the   specif ic   numerical  
method i s  described  in  Ref.  (18) and g iven   b r i e f ly   i n  Appendix A. The top ics  
i n   t h i s  appendix  include  the  difference  operators,   the  l inearization,  process,  
the  difference  equat ions and the  matrix  inversion  procedure. 

In   br ief ,   the   numerical   technique  represents  f i rs t  and  second  derivatives 
by e i t h e r  f i r s t  or second order   difference  formulas .  However, a simple 
d i rec t   subs t i tu t ion   o f   the   d i f fe rence   representa t ions   in to   the   d i f fe ren t ia l  
equations would l e a d   t o  a nonl inear   set   of   a lgebraic   difference  equat ions.  
Therefore, a l inear izat ion  procedure is  required.  The l inear izat ion  procedure 
is  based upon previous work by  Briley and Mcl>onald (Refs. 12 and 17) which 
assume the   so lu t ion   to   the   equat ions  i s  Taylor  expandable  and,  therefore, 
approximates  the  solution a t  streamwise  station n + 1 through a Taylor  expan- 
s ion  of   the known so lu t ion  a t  s t a t ion   n .  The r e s u l t  is  a s e t  of l i n e a r  
d i f fe rence   equat ions   represent ing   the   nonl inear   d i f fe ren t ia l   equa t ions  a t  
s t a t i o n  n + 1. The f i n i t e   d i f f e r e n c e   s o l u t i o n   i t s e l f  is  an  AD1 so lu t ion  
based upon the  spl i t t ing  technique  of  Yanenko (Ref. 21) which r e s u l t s   i n  a 
two step  procedure  in  advancing  the  solution from s t a t i o n  n t o   s t a t i o n  n + 1. 
Each s tep   requi res   the   invers ion   of  a block  diagonal  matrix which i s  accom- 
plished  through a standard  block  elimination  technique  (e.g. ,   Ref.  22) .  
Further details of these  procedures are found  in.Appendix A. 
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Grid  Transformation,  Difference  Representation 
and  Boundary Conditions 

The minimizat ion  of   the  computat ional   effor t   necessary  to  compute a 
so lu t ion   r equ i r e s   t ha t  a nonuniform grid  spacing  be  used  to   ensure  that   gr id  
poin ts  are closely  spaced  in  regions where the   so lu t ion   va r i e s   r ap id ly  and 
widely  spaced  elsewhere.   In  the  present  calculations,   steep  gradients  occur 
i n   t h e  boundary l aye r s  on t h e   a i r f o i l   s u r f a c e   a n d  i n  t he   v i c in i ty   o f   t he  
a i r f o i l   t i p  and it i s  in   these   reg ions   tha t   c lose ly   spaced   gr id   po in ts   a re  
required.   In  the  present  procedure  grid  point  packing is  obtained  using a 
transformation  originally  devised  by  Roberts  (Ref.  23 ) .  For the  purpose  of 
demonstrating  the  Robert 's  transformation  suppose  that N g r i d   p o i n t s   a r e   t o  
be  used i n  the  range y1 5 y y2 and a boundary layer  o r  sublayer  of  thick- 
ness c ( y  -y ) i s  present  near yl, then  Roberts '   t ransformation  7(y)  i s  given 
by 

2 1  

(45 

where a = y -y  b2 = a / ( l - e ) ,  and c = y2. The use  of  equally  spaced  points 
in   the  ' t ransformed  coordinate  'f'l ensures-an  adequate   resolut ion  of   both  the 
overa l l   reg ion  between y1 and y and the  boundary layer   region between y1 and 
y + e (y  -yl).  Derivatives wigh respec t   to   the   phys ica l   coord ina te  y a r e  
oktained %om the  following  formulae: 

2 
2 1' 

The use  of   threeipoint   d i f ference  operators   for  11 d e r i v a t i v e s   i n  Eqs. (46) 
produces similar operators   for  y der iva t ives .  These y-der ivat ive  operators  
can  be computed a t  the  s ta r t  of   the   ca lcu la t ion  and stored,  along  with  the y 
loca t ions   o f   g r id   po in ts .  

In   the  present   calculat ions  the  gr id  was resolved  in   the  y-direct ion 
along  both  the upper and lower   sur faces   o f   the   a i r fo i l  and in   the   z -d i rec t ion  
i n   t h e   v i c i n i t y   o f   t h e   a i r f o i l   t i p .   I n   t h e   y - d i r e c t i o n   t h e  limits of   the  
computational  region  were  taken  between - .5  S y/c 5 .5 and transformations 
were  performed both above  and  below y = 0 ( t h e  wing centerplane) .  For the  
transformation above the  wing centerplane , y2 was taken as 0.52, y1 was taken 
as 0.0 and c was taken as .04; below the  wing cen te r l ine  y was taken as - 0 . 5 ~ ~  
y was taken as 0.0 and c was taken  as  .04. S imi la r ly ,   in   the   z -d i rec t ion  
transformations were  performed  both  inboard  and  outboard  of  the  wing t i p   p l a n e .  
In   t hese   t r ans fo rma t ions   y lwas   s e t   t o   ze ro ,  6 t o  0.04  and y2 was s e t   t o  +0.4 
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Results 

Inviscid  Calculat ion - Although the  present   sect ion is concerned 
pr imari ly   with results of  the  viscous  calculation  procedure,   the  viscous 
procedure  requires as input .   an  inviscid  approximation  to   the  pressure  f ie ld .  
S ince   t h i s   i nv i sc id   p re s su re   f i e ld  is  used as an imposed source  term  in   the 
streamise momentum equat ion ,   the   inv isc id   p ressure   d i s t r ibu t ion   p lays  a 
s ignif icant   role   in   determining  the  viscous  resul ts .   Therefore ,   before  
examining t h e   r e s u l t s  of the  viscous  procedure, it is appropr i a t e   t o  review 
br ie f ly   the   inv isc id   ca lcu la t ion   procedure  and t o  examine the   inv isc id   p re-  
d ic t ions  i n  t h e   a i r f o i l   t i p   r e g i o n .  

Under the   p re sen t   e f fo r t ,   t he   i nv i sc id  flow f i e l d  was determined  by a 
doub le t   l a t t i ce  method (see  previous  sect ions  of   the   present   report) ,  For 
s teady  f lows  the  doublet   la t t ice  method reduces to   the   model ing .of   the  wing 
by a group  of  horseshoe  vortices. The wing i s  divided  into N rectangular  
sec t ions  and the  bound filament  of a horseshoe  vortex i s  placed  in  each  seg- 
ment. In   addi t ion,  one co l loca t ion   po in t  is  placed  in  each  rectangular  seg- 
ment.  Generally,  the bound fi lament is  placed  a long  the  local   quar ter  chord 
l i n e   o f  each  rectangular  element  and  the  collocation  point a t  t h e  3/4 chord 
point  midway between the  t ips   of   the   e lement .  The s t rength  of  each bound 
vortex is  chosen so t h a t   t h e   t o t a l  normal wash due t o   t h e  oncoming free  stream 
flow  and t o  a l l  horseshoe  vortex  elements i s  zero a t  a l l  col locat ion  points .  
Therefore ,   in   the   double t   l a t t i ce  method the  zero normal wash condition need 
be s a t i s f i e d  a t  only N d i sc re t e   po in t s  on the wing;  normal wash may be  present 
a t  a l l  other   points  on the  wing. 

The doub le t   l a t t i ce  method does represent   an   e f f ic ien t   and   versa t i le  
method of   solving  the  inviscid flow  about a wing of  general  planform and may 
be  capable  of  giving  accurate  predictions  of l i f t  and moment coe f f i c i en t s .  
However, unless  an  extremely  large number of   rectangular   sect ions and col loca-  
t i o n   p i n t s   a r e  used,  the  procedure  suffers from  obvious  deficiencies  in i t s  
ab i l i t y   t o   de t e rmine   t he  flow f i e l d   i n   t h e  immediate v id in i ty   o f   t he  wing. 
The de f i c i ency   r e su l t s  from the  zero normal wash boundary condition  being 
sa t i s f i ed   on ly  a t  i so l a t ed   po in t s  (one per   sect ion)   and,   therefore ,  a t  a l l  
o ther   po in ts   the   cor rec t   phys ica l  boundary condition is not   being  sat isf ied.  
In   t he   p re sen t   i nv i sc id   ca l cu la t ion  which’was  used t o   o b t a i n   t h e   i n v i s c i d  
pressure   f ie ld   requi red  by the  viscous  procedure  only a moderately  dense  grid 
was used  and,  consequently,  the  zero normalwash condi t ion   in   the  immediate 
v i c i n i t y   o f   t h e  wing t i p  was not   wel l   sa t i s f ied .  A t y p i c a l  spanwise d i s t r i b u -  
t i on   o f   t he  normalwash ve loc i ty  is presented i n  Table I. The d i s t r i b u t i o n  
was ca lcu la ted  by summing the   cont r ibu t ions  from  each horseshoe  vortex  and 
t h e  oncoming free  stream  flow. The d i s t r i b u t i o n  is  taken a t  x/c = 0.325  and 
y/c = 0.02;   the  veloci ty  i s  normalized  by  the oncoming free  s t ream  veloci ty .  
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and - 0 . 4 ~  for  the  outboard  and  inboard  transformations,   respectively.  It 
should  be  noted  that   the  y-grid i s  symmetric  about  the wing centerplane and 
the  z-gr id  i s  symmetric  about t he  wing t i p .  The loca t ions   o f   the   g r id   po in ts  
versus  point number a re   p resented   in   F ig .  16. 

I n  r ega rd   t o   t he   f i n i t e   d i f f e rence   r ep resen ta t ion ,   i n   t he   p re sen t   e f fo r t  
second  derivatives  are  represented by th ree   po in t   cen t r a l   d i f f e rence   ope ra to r s .  
F i r s t   de r iva t ives   a r e   r ep resen ted   by  two d i f fe ren t   d i f fe rence   opera tors .   In  
t h e  spanwise d i r ec t ion  a two poin t  backwards d i f fe rence   opera tor  i s  used. I n  
the   t ransverse  y d i r ec t ion   fo r   po in t s  above the  wing centerplane a two point  
backwards d i f fe rence  i s  used  whereas f o r   p o i n t s  below t h e  wing centerplane a 
two point  forwards  difference i s  used. It should  be  noted  that   with  this 
d i f fe rence  scheme, differencing i s  always  done away from  boundaries which i n  
t r u t h  can  only  be  set  a t  i n f i n i t y .  

The f ina l   i t em  to   t he   spec i f i ed   be fo re   p roceed ing   t o  a discussion  of  
r e s u l t s  i s  the   appl ica t ion   of  boundary condi t ions.  During the   course   o f   the  
present  effo.rt  several  combinations  of  boundary  conditions  were  investigated. 
One possible  choice  along a l l  outer  boundaries  of  the  computational  region i s  
the  specif icat ion  of   the  inviscid  funct ion  values .  However, t h i s   s p e c i f i c a -  
t ion  should  require   the  f low  in   the  outer   port ions of the  computational  region 
t o   b e   f r e e  from both   d i rec t  and indirect   (viscous  displacement)   viscous  effects .  
In   the  present   computat ions,   the   regions  in   the  vicini ty   of   the   upper  and 
lower  (y=  constant)   boundaries  are  not  expected  to  be  free from inner   l ayer  
viscous  displacement  effects  and,  therefore,   along  these  boundaries second 
der iva t ives   o f  u, w ,  and P were set t o   z e r o .  The most s a t i s f a c t o r y  boundary 
condi t ion   for   the   four th   var iab le ,   v ,  was obtained by s e t t i n g   t h e   f i r s t  
der ivat ive,   av/ay,   equal   to   the  inviscid  value.  On t h e   l e f t  hand  z-boundary 
(which cuts  through  the  wing)  the  second  derivatives  of u ,  v and p a r e   s e t  
t o   ze ro  and the  spanwise  velocity, w i s  s e t   e q u a l   t o  i t s  inviscid  value modi- 
f i e d  by a boundary  layer  profile,   f(y/6) , i n   t h e   v i c i n i t y   o f   t h e  wind surface.  
F ina l ly ,  on the   r igh t  hand z=constant  boundary,  which  should  be  reasonably 
f r e e  from a l l  viscous  effects ,  p,  u and v a r e   s e t   t o   t h e i r   i n v i s c i d   v a l u e s  
and  a%/a2z i s  se t   equa l  t o  zero.  

Once a calculat ion  has  begun t o  march downstream, the  cont inui ty   equat ion 
and the   t h ree  momentum equa t ions   a r e   so lved   i n   f i n i t e   d i f f e rence  form. How- 
ever,  a special   procedure i s  required t o  s tar t  the   ca l cu la t ions .   In   t h i s  
spec ia1   s ta r t ing   p rocedure   dur ing   the   y - impl ic i t  sweeps of  the AD1 procedure, 
t h e  y-momentum equation is  replaced by the   cond i t ion   t ha t   t he   p re s su re   equa l  
t he   i nv i sc id   p re s su re .  Likewise  during  the  z-implicit sweeps the  z-momentum 
equation is replaced  by  the  inviscid  pressure  condi t ion.   This   special   s tar t ing 
procedure on ly  i s  required  on  the f irst  s tep   o f   the   ca lcu la t ion  and s e r v e s   t o  
generate a viscous  f low  field  compatible  with  the  inviscid  pressure 
d i s t r i b u t i o n .  
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Table I - Calculated  Inviscid Normalwash Velocity 

z/c - .20 - .15 - .10 - .05 0 

v/u .002 .oog .02 07 -21 

Obviously,  the  zero normalwash condition i s  not   being  held  in   the immediate 
vicini ty   of   the   t ip .   Therefore ,   for   the  purpose  of   the  viscous  calculat ion,  
t h e   t i p  was t aken   t o  be a t  z/c = -.l and the  z- locat ion was then   sh i f ted  by 
4.1 so as t o  put   the  new assumed t i p   l o c a t i o n  back t o  z/c = 0. 

I n   a d d i t i o n   t o   t h e  problem  of  nonsatisfaction  of  the  zero normalwash 
condition (which in   pr inciple   could  be overcome through a dense  calculation 
g r i d ) ,   t h e   d o u b l e t   l a t t i c e  method assumes t h e   t r a i l i n g   v o r t i c e s   t o   l i e   i n  a 
plane which in   the   p resent   inv isc id   ca lcu la t ion   co inc ides   wi th   the   p lane   o f  
t he  wing.   This   res t r ic t ion  fur ther   constrains   the flow s ince   t he   vo r t i ce s  
a r e  not f r e e   t o   i n t e r a c t  one  with  the  other.  Although  such a cons t ra in t  may 
not  represent a s ign i f i can t  problem i n  lift and moment coef f ic ien t   ca lcu la-  
t i ons ,   t he   cons t r a in t  may l e a d   t o   c r i t i c a l   i n a c c u r a c i e s  if the   cor rec t  
de t a i l ed  flow f i e l d   i n   t h e   v i c i n i t y   o f   t h e   a i r f o i l  wing is the   ob jec t   o f   the  
inves t iga t ion .   Therefore ,   in  summary the  inviscid  calculat ion  procedure 
used  has two drawbacks i n  so far  as the  wing t i p  flow f i e l d  i s  concerned: 
( i )   s a t i s f a c t i o n   o f   t h e   z e r o  normalwash condition  only a t  spec i f i c   po in t s  and 
( i i )   c o n s t r a i n t  of t he   vo r t ex   t r a i l i ng   f i l amen t s  t o  a specif ied  plane.  

Predict ions  of   the   inviscid flow f ie ld   ob ta ined   wi th   the   double t   l a t t i ce  
method are   p resented   in   F ig .  17-22.  Figures 17-19 show contour   plots   of   the  
streamwise,  normal and spanwise  (u,  v, and w )  velocitycomponents,   respectively,  
a t  x/c = 0.175. A s  can  be  seen i n  these  f igures   the  s t reamwise  veloci ty  above 
the  wing is  g rea t e r   t han   t ha t  below the  wing  and the  normal  and  spanwise  flow 
ve loc i t i e s  show flow  around the  wing. Flow around t h e  wing can  be deduced 
from the   p red ic t ion   of   pos i t ive  v a t  the  wing t i p   i n   con junc t ion   w i th   pos i -  
t i v e  w below t h e  wing  and negative w above the  wing. In   add i t ion  it should 
be  noted  that a s t rong  posi t ive  v-veloci ty   occurs  j u s t  beyond t h e  wing t i p  
loca t ion   fo r   t he   i nv i sc id  flow calculat ion  (z /c  = 0.1).  This  reaches a maxi- 
mum value  of  approximately v = 0.2.  Far from t h e  wing t h e   r a t i o   o f  v/u 
approaches a value  of  approximately  0.1which is  consis tent   with a 0.1 radian 
incidence  angle.  It should  be  noted  that   the   inviscid  solut ion shows no ev i -  
dence  of a circular  secondary flow pa t t e rn   i n   t he   y -z   p l ane .  Above t h e  wing 
t h e  spanwise  velocity w i s  consis tent ly   negat ive  while  below the  wing it is 
cons is ten t ly   pos i t ive .  The normal ve loc i ty  is  always pos i t i ve .  The lack  of 
any   c i r cu la r   i nv i sc id   f l ow  pa t t e rn   i n   t he  y-z  plane i s  a r e s u l t  found a t  a l l  
s t a t i o n s  examined and may be due t o   c o n s t r a i n i n g   t h e   t r a i l i n g   v o r t i c e s   i n  a 
planar  wake. Figures 20-22 show the   t h ree   i nv i sc id   ve loc i ty  
plane  x/c = 0.375; the  flow p a t t e r n  i s  similar t o   t h a t  found 
flow  plane. 

components a t  the 
i n   t h e  upstream 
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Viscous  Solution - The inviscid  f low  f ie ld   obtained  f rom  the  doublet  
l a t t i ce  procedure is  used as input   for   the  viscous  calculat ion.  The inv isc id  
p re s su re   f i e ld  is  imposed  unchanged upon t h e  streamwise momentum equation  and 
the   i nv i sc id   ve loc i ty   f i e ld  is  used to   ob ta in   bo th   ups t ream  in i t ia l   condi t ions  
and some boundary  conditions.  Although  the t i p  flow f i e l d   i n   g e n e r a l  will be 
tu rbu len t ,   t he -p resen t   ca l cu la t ions  were run as laminar at a chord  Reynolds 
number of  approximately 2000. It i s  expec ted   tha t   the   t ip  flow f i e ld   r eg ion  
w i l l '  b e   qua l i t a t ive ly  similar in   the   l aminar  and turbulent  cases  and,  there- 
fore ,  a laminar  prediction  should  serve  to  assess  the  three-dimensional 
viscous  f low  field  generated by the  code.  Treatment  of  the  turbulent.  problem 
would  add the  complication  of  hypothesizing a turbulence model and fur ther -  
more would requi re  a simultaneous  assessment  of  the  turbulence model and the  
basic   three  dimensional   calculat ion.  The separat ion of t hese  two items i n  
one ca lcu la t ion  is d i f f i c u l t  a t  best  and,  therefore, it is  proper i n  t h i s  
f i r s t  assessment to   avoid   the   compl ica t ions   o f  a turbulent  flow.  Turbulent 
flow  can  be  considered a t  a l a t e r   d a t e  by  adding  an  appropriate  turbulence 
model to   the   ca lcu la t ion   procedure .  

The ca lcu la t ion  was i n i t i a t e d  a t  t h e   s t a t i o n  x/c = 0.175 by input t ing 
the   i nv i sc id   ve loc i ty   f i e ld  and adding a boundary  layer  correction  in  the 
vicinity  of  the  wing. The computational  grid  used  consisted  of  twenty-one 
po in t s   i n   t he  spanwise d i r ec t ion  and  forty-one  points i n  the   t ransverse  
d i r ec t ion .  I n  t he   p re sen t   ca l cu la t ion  a boundary layer   th ickness ,  6 was 
chosen t o   i n i t i a t e   t h e   c a l c u l a t i o n  and  each  velocity component, u was 
scaled  such  that  j y  

where y i s  the   d i s tance  from the  wing  and f (y /b )  is t h e  Pohlhausen  velocity 
p r o f i l e .  For the  purpose  of  this  preliminary  assessment  of  the  procedure, a 
convenient  boundary  layer  thickness was simply  assumed.  Inboard  of  the  wing 
t i p  ( z  C 0 )  t h e  boundary layer   thickness  was assumed t o   b e  61 = .08 c and 
outboard  of  the wing t i p  ( z > 0 )  h2 was assumed t o   b e  .Ol5 c .  Although t h e  
i n i t i a l   p l a n e  flow f ie ld   ob ta ined  by  superimposing a Pohlhausen  type  profile 
upon an  independently  calculated  inviscid flow  does  give a q u a l i t a t i v e l y  
reasonable   set   of   ini t ia l   p lane  condi t ions,   the   procedure may g ive   p ro f i l e s  
which  change rapidly  during  the f i r s t  few s ta t ions   o f   the   v i scous  flow c a l -  
culation.  This problem i s  l i k e l y   t o  be   par t icu lar ly   acu te   in   the   reg ion   bf  
t h e   a i r f o i l   t i p .  The genera t ion   of   in i t ia l   p lane   condi t ions  which a r e   i n  
concer t   wi th   bo th   the   inv isc id   p ressure   f ie ld  and the  viscous flow  equations 
i s  a major  problem  which m u s t  be  faced i n  the  three-dimensional  viscous flow 
ana lys is .  



The resu l t s   o f   the   v i scous   ca lcu la t ion   a re  shown in   F igs .  23-30.  For . 

the  y-z plane  gr id   used,   the   calculat ion  of  one  streamwise s tep  required 
approximately 30 systeq  seconds  of UNIVAC 1 U O  CAU time. The ve loc i ty   f i e lds  
a t  t h e   f i f t h  streamwise s ta t ion ,   x /c  = 0.19, a re   p resented   in   F igs .  23-25. 
The streamwise  velocity, u ,  presented  in   Fig.  23 c l e a r l y  shows the   ve loc i ty  
boundary l aye r s  on both  the  upper  and  lower wing surfaces  as we l l  as a t  t he  
wing t i p .  A detai led  examinat ion  of   the  calculat ion shows t h e  boundary 
layer   thickness  on the  upper  surface,  bl/c, is approximately 0.08 and the  
boundary layer   thickness  a t  t h e   t i p  i s  approximately 0.035. It should  be 
no ted   t ha t   i n   o rde r   t o   de f ine   t he  boundary layer   reg ion ,   the   sca le   in   F ig .  
23 is cons iderably   l ess   than   tha t   in   F ig .  17. The major  difference between 
the   i nv i sc id  'ut f i e l d  of Fig.  17 and the  viscous 'u' f ie ld   o f   F ig .  23 i s  
the  viscous  requirement  of a no s l i p  boundary condition.  Outside of t h e  
boundary layer  region  the  inviscid  and  viscous  predictions of t h e  ' u '  com- 
ponent  of  velocity  are  very similar. The v and w components o f   ve loc i ty   a r e  
shown in   F igs .  24  and  25.  Again the   sca le   o f   F igs .  24  and  25 a r e ' l e s s   t h a n  
those  of  Fig.  18 and 19. However, a comparison o f   t he   de t a i l ed   ca l cu la t ions  
of   Figs .  18 and  24 show t h a t   t h e   ' v '   d i s t r i b u t i o n  is  modified  significantly 
by  viscous  effects .  Both above  and below the  wing, 'v '  i s  modified  by  bound- 
ary  layer   displacement   effects   whereas   in   the  vicini ty   of   the  wing t i p ,   t h e  
r ap id  changes of   ' v '   wi th   respec t   to  z i n   t he   i nv i sc id   ca l cu la t ion   a r e  con- 
s iderably  sof tened by the  viscous  solut ion.   Final ly ,   the  symmetry i n   t h e  
inv i sc id  v-component f i e l d  above  and below t h e  wing i s  not   present   in   the 
viscous  case.   This  destruction  of symmetry r e s u l t s  from the   bomdary   layer  
above the  wing being  subjected  to  an  adverse  pressure  gradient  whereas 
t h a t  below the  wing be ing   subjec ted   to  a favorable  pressure  gradient.  The 
major  difference  between  viscous and inviscid  solut ions i s  found i n   t h e  
spanwise  w-velocity  calculations.   In  the  inviscid  calculation ' w '  i s  nega- 
t i v e  a t  a l l  po in ts  above the  wing (Fig.  19), however, i n   t h e  -vi.scous ca l -  
cu la t ion  a t h i n   l a y e r   o f   p o s i t i v e  ' w '  appears  immediately  above  the  wing 
(F ig ,   25) .  A t  t h i s   s t a g e   s i n c e   ' v '  i s  pos i t i ve  above the  Wing, no c i r c u l a r  
flow pa t t e rn  can be discern'ed. 

Viscous  calculations a t  x/c = .35 a re   p resented   in   F igs .  26-30. The 
r eg ion   i n   t he  immediate v i c i n i t y   o f   t h e   t i p  is  shown i n   d e t a i l   i n   F i g s .  
26-27. In   pa r t i cu la r ,   F ig .  26 shows the   v -ve loc i ty  component f i e l d  and it 
should  be  noted  that a t  t h i s   s t a t ion   nega t ive   va lues   o f  'v '  have  appeared 
above t h e  wing.  Figure 27 shows tha t   the   reg ion  above t h e  wing also contains 
both   pos i t ive  and negative  values  of 'w '. Therefore, a ' c i r cu la r '   t ype  flow 
pa t t e rn  has appeared  with a center  a t  the   loca t ion  where v = w = 0; t h i s   c e n t e r  
point  has  the  approximate  coordinates  y/c = .025,  z/c = -..04. This   ' c i rcu lar '  
flow p a t t e r n  does  not  contain  the  nearly  circular  streamlines  expected  in a 
t i p   v o r t e x   s i n c e  w >> v; furthermore,   the  vortex i s  r e l a t i v e l y  weak. However, 
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cons ider ing   tha t   the   inv isc id   f low  f ie ld   p red ic t ion  shows no evidence  of a 
vortex  (Figs .  21 and  22) t h i s  emergence of a 'circular'  flow pa t t e rn ,  due' t o  
viscous  effects  and pressure   g rad ien ts   genera ted   by   the   v i scous   so lu t . ion   in  
the  secondary flow p lane ,   does   ind ica te   the   po ten t ia l   capabi l i ty   o f   the  
th ree -d imens iona l   v i scous   f l ow  p rocedure   i n   t r ea t ing   t he   a i r fo i l   t i p  problem. 

The o v e r a l l  flow f i e l d  encompassing more than   the  immediate t i p   r e g i o n  
i s  shown in   F igs .  28-30. When compared against   the   analagous  calculat ions  for  
x/c = .175 (Figs.  23-25), it is  c l e a r   t h a t   t h e  major di f fe rence  i s  t h a t  a t  
t h i s   l a t t e r   s t a t i o n   t h e  boundary l aye r s  now encompass more o f   t he  flow f i e l d .  
In   addi t ion  some spurious  spanwise  velocities  have  appeared a t  the   ou te r  
calculat ion  boundaries   ( ly/cl> .3) which a r e  beyond the   loca t ions  shown i n  
the   f i gu res .  These v e l o c i t i e s   a r e   u n r e a l i s t i c  and ind ica te  more e f f o r t  must 
be  devoted to   t he   t r ea tmen t   o f  boundary  conditions, however, they  are   confined 
t o   t h e   o u t e r   p a r t   o f   t h e  flow calculat ion  region  and,   therefore ,  do  not 
in f luence   the  immediate t i p   r e g i o n  shown in   F igs .   26  and  27. A t ab le   o f  
c a l c u l a t e d   v e l o c i t i e s   i n   t h e   v i c h i t y   o f   t h e  wing t i p  a t  x/c = .354 i s  pre-  
s en ted   i n  Appendix B .  

Summary and  Conclusions  for  Viscous  Procedure 

A three  dimensional  forward  marching,  viscous,  subsonic  flow  calculation 
procedure  has  been  applied t o   t h e   a i r f o i l   t i p  problem. The procedure  inte- 
g ra t e s  a reduced set   of  Navier-Stokes  equations  in which ( i )  streamwise  diffu- 
s ion  i s  neglected  and (ii) t h e   p r e s s u r e   g r a d i e n t   i n   t h e   s t r e m i s e  momentum 
equation i s  obtained from an   ex terna l   source .   In   the   p resent   e f for t   the  
d o u b l e t   l a t t i c e  method was used to   generate   the  s t reamwise  pressure  gradients  
and wi th   the   inv isc id   ca lcu la t ion   gr id   used   th i s  method did  not  properly  define 
the  flow i n   t h e   v i c i n i t y   o f   t h e   t i p .   F u r t h e r m r e ,   t h e   d o u b l e t   l a t t i c e  method 
c o n s t r a i n s   t h e   t r a i l i n g   v o r t i c e s   t o  l i e  i n  a plane.  

These d e f i c i e n c i e s   i n   t h e   i n v i s c i d   p r e s s u r e   f i e l d  make an assessment 
of  the  viscous  procedure somewhat d i f f i c u l t .  However, the  viscous  procedure 
has shown features  expected  in  the  f low  such as the   qua l i t a t ive ly   p rope r  
development of  the  viscous  boundary  layers  both  on  the  upper and  lower s u r -  
f a c e s   o f   t h e   a i r f o i l  as we l l  as on t h e   a i r f o i l   t i p   s u r f a c e .  The viscous  cal-  
cu la t ion   a l so  shows the  generally  expected flaw p a t t e r n  around  the t i p  from 
t h e  lower t o   t h e  upper   surface  of   the  a i r foi l .   Final ly ,   the   viscous  procedure 
does  predict  a ' c i r cu la r '   t ype  flow pa t t e rn   t o   appea r  above t h e   a i r f o i l   s u c t i o n  
s u r f a c e ;   t h i s   f e a t u r e  was completely  lacking  in  the  inviscid  solution.  There- 
fore,   the  procedure i s  promising  in  i t s  a p p l i c a t i o n   t o   t h e   a i r f o i l   t i p  problem, 
however, the   resu l t s   p resented  must be  regarded as preliminary.   Further  inves- 
t . iga t ions  which  would include improvements of   the  viscous as we l l  as the   inv is -  
cid  procedure  used  to  generate  the  required  streamwise  pressure  gradients must 
be made before   the  present   approach  can  be  ful ly   assessed.  
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APPENDIX A 

SOLUTION PROCEDURE 

Numerical  Techniques 

As an ou t l ine  of t h e   p a r t i c u l a r s  of the  numerical  method, the treatment 
of the   cont inui ty   equat ion  i s  considered, as t h i s  i s  the  simplest   equation, 
and yet t h i s  discussion w i l l  cover most aspects  of  the method. The flow  region 
i s  discret ized  by  gr id   points   having  equal   spacings Ax, Ay, and Az. Provisions 
fo r  nonuniform grid  spacing w i l l  be  introduced  subsequently. The subscr ip ts  
i, .j and superscr ip t  n itre g r id   po in t  indices associated  with  y, 2, and x, 
respect ively.  Thus denotes g5 (xn,  yi, z .) where @ can  represent any of 
t h e  dependent  variable&. The subscripts  arefgequently  omitted i f  c l a r i t y  i s  
preserved, so that @ i s  equivalent of q? For  convenience, the following 
shorthand  difference  operator  notation d used   for  derivative difference 
formulas : 

T j’ 

2 
with  analogous  def ini t ions  for  6,, 6z. Here a parameter CY has  been  intro- 
duced ( 0 5 CY 5 1) so as t o  permit  continuous  variation from  backward t o  fo r -  
ward d i f fe rences .  The s tandard  central   d i f ference  formula i s  recovered  for 
CY = 1/2. Throughout the  following  discussion, it i s  assumed that the  solu-  
t i o n  i s  known at  x“ and i s  desired a t  x n + l  

Consider  the  continuity  equation 

d ( h , h 3 p u ) / d x +   d ( h , h 3 p ) / d y +   d ( h , h , p w ) / d ~ = O  ( 5 0 )  

Equation (50) i s  d i f f e r e n c e d   i n   t h e  x o r  marching d i r ec t ion  as follows: 
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Here a parameter B has  been  introduced so as to   pe rmi t  a var iab le   cen ter ing   of  
t h e  scheme i n   t h e  x direction.  Equation (51) produces a backward d i f fe rence  
formulat ion  for  8 = 0 and a Crank-Nicolson  formulation f o r  p = 1. The depen- 
d e n t   v a r i a b l e s   i n  Eq. (51) are linearized  by  expansion  about  the  solution at 
xn (Refs. 12 and 17). Here a f i r s t - o r d e r  accurate l i n e a r i z a t i o n  i s  used f o r  
t h e  x der iva t ive ,  and the  result i s  

A X  

Afte r   e l imina t ing   t he   p re s su re   g rad ien t s   i n  Eqs. (44 b-cl) v ia  the  equation  of 
s ta te ,   the   p rocedure   ou t l ined  above for   the  cont inui ty   equat ion  can  be employed 
to   der ive   l inear   impl ic i t   d i f fe ren t   approximat ions   ana logous   to  Eq. (52) f o r  
t h e   t h r e e  momentum equations. The resul t ing  difference  approximations  can  be 
grouped  by  coordinate  direction and 
matr ix   difference  operator   notat ion 

wr i t t en   i n   t he   fo l lowing  compact l i n e a r  
as 

where i s  a column vector  containing  the  dependent  variables,  p ,  u, v,  w,  and 
A i s  a square (4 x 4 )  matrix. D and Dz a r e  4 x 4 matrices  containing  elements 
which are   themselves   spat ia l   d i f$erence  operators   for   the y and z d i rec t ions ,  
respec t ive ly .  S i s  a column vector   reserved  for  any  source  terms which may be 
present .  The matrices A, D and D, conta in   on ly   quant i t ies  which a re  known 
from a computational  viewpoint.  Equation (53) i s  l i n e a r   i n  G n + l .  

Y' 

The advantage i n  grouping  the  dependent  variables  by  the  direction  of 
d i f fe renc ing  i s  that  nlmerous AD1 or  spli t t ing  techniques  are  immediately 
available  for  reducing  the  multidimensional  implicit   equation (53) t o  a . 

sequence of  one-dimensional  equations  (e.  g.,  Douglas & Gun,  Ref. 24; Yanenko, 
Ref. 21), and th is   permi ts   e f f ic ien t   so lu t ion   whi le   re ta in ing   the   favorable  
s t a b i l i t y   p r o p e r t i e s  of t he   bas i c   imp l i c i t  scheme. In   the   p resent   appl ica t ion ,  
however, the  technique  of   spl i t t ing (Yanenko, Ref. 21) i s  being employed. 
Using the  technique of s p l i t t i n g ,  Eq. (53) can  be m i t t e n  as the  following two- 
s t e p  scheme. 
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I 

where cP* i s  an  intermediate  result  having  computational  sign 
pa r t i cu la r   phys i ca l   s ign i f i cance , '  and  where SI + S2 = S. 

(54a) 

( 54b 1 

i f i cance   bu t  no 

As discussed   in   the  main  body  of the  report ,   for  subsonic  f low, an invis-  
c id   so lu t ion  i s  used as a f i r s t  approximation t o   t h e   p r e s s u r e   f i e l d .   T h i s  i s  
accomplished  by s e t t i n g  p = pI   in  the axial momentum equation, where  pI i s  the  
inviscid  pressure.   In  the a x i a l  momentum equat ion,   the   pressure  gradient  i s  
therefore   replaced  by 

The pressure  gradient   terms  in   the  t ransverse mementum equations are not  
a l t e r ed .  

Solutions  of  the  Split   Difference  Equations 

The coupled s e t  of  l inear   impl ic i t   d i f fe rence   equat ions   a r i s ing   a long  
rows of gr id   points   during  each  s tep  of   the AD1 solution  procedure,   together 
with the  prescribed  boundary  conditions,   can  be  writ ten  in a form having  the 
following 

~ 

; matr ix   s t ruc ture .  

A 0  Bo co 

BN-2 'N-2 

( 5 6 )  

41 



For each  grid  point  index i, Gi is  a column vector  containing  the  dependent 
variables p,  u, 'v, w. Ai, Bi, and C .  are square (4 x 4)  matr ices   containing 
the   imp l i c i t   d i f f e rence   coe f f i c i en t s .  di i s  a column vector   containing  only 
canputat ional ly  known quan t i t i e s .  There are N + 1 grid  points   a long  the row 
under  consideration.  Difference  approximations  for  the  four  governing equa- 
t ions   a re   assoc ia ted   wi th  symbols having  subscripts l through N - l ,  t he  sub- 
scripts 0 and N are  associated  with  the  boundary  conditions,  which may involve 
up to   t h ree   g r id   po in t s .   Equa t ion  (56) represents  4 ( N  + 1) l inear   equa t ion  
i n  4 ( N  + 1) dependent  variables.  Excluding  the  elements Co and %, t he  
matr ix   s t ructure   of  Eq. (56) i s  block  t r idiagonal ,  and d i rec t   so lu t ion   by  
standard  block  elimination  techniques (cf . ,  Isaacson & Keller ,  Ref. 22) i s  
both  s t ra ightforward and e f f i c i e n t .  The p rec i se  scheme used  here  consisted  of 
Gaussiw-  elimination  for a simple  tridiagonal  system  (sometimes  called  the 
Thomas algori thm)  but   with  e lements   of   the   t r idiagonal   matr ix   t reated as 
square submatrices  rather  than as s imple  coeff ic ients .  The required  inverses  
of diagonal  submatrices were obtained  by a Gauss-Jordan reduction. The 
addi t ional   operat ions  necessary  to   include  the  nonblock-tr idiagonal   e lements  
Co and AN are   eas i ly   incorpora ted   p rovided   the   o r ig ina l   b lock   t r id iagonal  
coding i s  carefully  organized. 

1 
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APPENDIX B 

Calculated  Velocities at X/C = 0.354 
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I I I  

y\ z/c= 

0.1047 
0.0833 
0. d656 
0.0510 
0.0390 
0.0293 
0.0214 
0.0151 
0.0100 
0.0059 
0.0026 
0.0000 
-0.0026 
-0.0059 
-0.0100 

-0.0214 
-0.0151 

-0.0293 
-0.0390 
-0.0510 
-0.0656 
-0.0833 
-0.1047 

-0.1042 

1.0319 
1.0131 
0.9610 
0.8451 
0.6844 
0.5150 
0.3632 
0.2382 
0.1384 
0 0593 
0.0000 
0.0000 
0.0000 
0.0736 
0.1656 
0 2737 
0.3981 
0.5357 
0.6773 
0.8042 
0.8913 
0.9280 
0.9426 

-0.0667 

1.0327 
1.0155 
0.9654 
0.8509 
0.6913 

0.3697 
0.5223 

0.2431 
0.1415 
0.0605 
0.0000 
0.0000~ 
0.0000 
0.0736 
0.1657 
0.2742 

0.5375 
0 3991 

0.6802 
0 .8681 
0.8961 
0.9331 
0.9476 

u - VEL 

-0.0408 

I. 0326 
1.0160 
0.9668 
0.8533 
0.6952 
0.5272 
0 3747 
0.2473 
0.1445 
0.0621 
0.0000 
0.0000 
0.0000 
0.0740 
0.1663 
0.2750 
0.4003 
0 5394 
0.6828 
0.8116 
0.9002 
0 9375 
0.9520 

-0.0234 

1.0314 
1.0121 
0.9603 
0.8480 
0.6949 
0 5325 
0.3832 
0.2562 
0.1519 
0.0674 
0.0000 
0.0000 
0.0000 
0.0764 
0.1682 
0.2764 
0.4014 
0.5401 
0.6836 
0.8128 
0.9024 
0.9410 
0 9563 

-0.0121 

1.0340 
1.0091 
0.9560 
0.8588 
0.7263 
0.5768 
0.4291 
0.2960 
0.1822 
0.0879 
0,0000 
0.0000 
0,0000 
0.0889 
0.1804 
0.2874 
0.4102 

0.6873 
0.8146 
0.9046 
0.9462 
0.9639 

0.5465 

-0.0047 

1.0426 
1.0257 
0.9940 
0 9327 

0.6849 
0.5310 

0.2540 
0.1427 
0.0000 
0.0000 
0.0000 
0.1295 
0.2220 
0.3274 
0.4462 

0.7118 

0.8266 

0.3844 

0 5773 

0.8316 
0.9156 
0 9554 
0 9731 
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U - VEL (CONT'D) 

0.1047 
0.0833 
0.0656 
0.0510 
0.0390 
0.0293 
0.0214 
0.0151 
0.0100 
0.0059 
0.0026 
0.0000 

-0.0026 
-0.0059 
-0.0100 

-0.0214 
-0.0151 

-0.0293 
-0.0390 
-0.0510 
-0.0656 
-0.0833 
-0.1047 

0.0000 

1.0362 
1.0288 
1.0161 
0.9818 
0 9035 
0.7834 
0.6416 
0.4990 
0.3670 
0.2496 
0.0000 
0.0000 
0.0000 
0.2190 
0.3066 
0.4038 
0.5132 
0.6341 
0.7563 
0.8615 

0.9611 
0.9311 

0 9735 

0.0047 

1.0228 
1.0206 
1.0208 
1.0117 
0.9698 
0.8872 
0.7766 
0.6591 
0.5501 
0.4551 
0 3363 
0.3210 
0.3186 
0.4002 
0.4594 
0.5314 
0.6195 
0.7206 
0.8204 
0. goo0 
0.9461 
0.9606 
0.9657 

0.0120 

1.0203 
1.0227 

1.0213 
1.0255 

0 9947 

0.8561 

0 6797 
0.6056 

0 9377 

0.7654 

0.5447 
0 5305 
0.5263 
0.5559 
0 - 5991 
0.6532 
0.7209 

0.8734 
0.9281 
0 9555 
0.9606 
0.9602 

0 7992 

0.0234 

1.0282 
1.0320 

1.0398' 
1.0296 
0 - 9998 
0.9518 

0.8369 
0.7862 

0.7381 

1.0372 

0.8942 

0 7503 

0.7321 
0.7421 
0 7675 
0.7988 
0.8385 
0.8851 
0.9268 

0.9654 
0.9656 
0.9642 

0.9542 

0.0408 

1.0292 
1.0341 
1.0420 
1.0507 
1 0533 
1.0446 
1.0241 
0.9954 
0.9644 
0 9356 
0.9131 
0 9033' 
0.8972 

0 9094 
0 9195 
0 9332 
0 9505 

0.9003 

0.9644 
0.9713 
0.9721 
0.9701 
0.9686 



I 

V - VEL 

0.1047 
0.0833 
0.0656 
0.0510 
0.0390 
0.0293 
0.0214 
0.0151 
0.0100 
0.0059 
0.0026 
0,0000 
-0.0026 
-0.0059 
-0.0100 

-0.0214 
-0.0293 

-0.0151 

-0.0390 
-0.0510 
-0.0656 
-0.0833 
-0.1047 

-0.1042 

0.01780 

0.00828 
0.00338 
-0.00017 
-0.00200 
-0.00241 
-0.00198 
-0.00115 
-0.00015 

0.01357 

0.00000 
0.00000 
0.00000 
-0.00024 
0.00010 
-0.00004 
-0.00082 
-0.00239 
-0,00488 
-0.00841 
-0.01275 
-0.01704 
-0.02000 

-0.0667 

0.01341 

0.00535 
0.00988 

0.00118 
-0.00176 
-0.00313 
-0.00318 
-0.00245 
-0.00138 
-0.oOolg 
0.00000 
0.00000 
0.00000 
-0.00022 
0.00020 
0.oOolg 
-0.00042 
-0.00181 
-0.00413 
-0.00753 
-0.01180 
-0.01610 
-0.01918 

-0.0408  -0.0234 

0.01164 

0.00451 
0.00073 
-0.001g1 
-0.00312 

0.00859 

-0.00309 
-0.00235 
-0.00133 
-0.00024 
0.00000 
0.00000 
0.00000 
-0.00018 
0.00015 
0.00014 

- 0.00042 
-0.00174 
-0.00403 
-0.00742 
-0.01172 
-0.01611 
-0.01935 

0.02088 
0.01766 

0.00838 
0.00463 
0.00211 
o.00070 
0.00001 
-0.00034 
-0.00040 
0.00000 
0.00000 
0.00000 
o.00006 
-0.00040 
-0.00106 

. -0.00208 

0.01303 

-0.00376 
-0.00639 
-0.01013 
-0.01478 
-0.01947 
-0.02296 

-0.0121  -0.0047 

0.04760 
0.04413 
0.03814 

0.02304 
0.03065 

0.01621 

0.00580 
0.00176 
-0.00112 
0.00000 
0.00000 
0,00000 
0.0012 5 

0.01053 

-0.00152 
-0.00472 
-0.00784 
-0.01119 
-0.01516 
-0.01ggo 
-0.02 510 
-0.02978 
-0.03263 

0.06144 
0.06093 
0.05716 
0.04983 
0.04033 

0.02045 
0.01124 
0.00279 
-0.00350 
0.00000 
0.00000 
0.00000 

0.03022 

0.00510 
-0.00070 
-0.00773 
-0.01435 
-0.02044 
-0.02631 
-0.03189 

-0.03918 
-0.03655 

-0.03883 
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V - VEL (CONTINUED) 

\z/c = 
Y/C = "\ 

0.1047 
0.0833 
0.0656 
0.0510 
0.0390 
0.0293 
0.0214 
0.0151 
0.0100 
0.0059 
0.0026 
0,0000 

-0.0026 
-0.0059 
-0.0100 
-0.0151 
-0.021L 
-0.0293 
-0.0390 
-0.0510 
-0.0656 
-0.0833 
-0.1047 

0.0000 

0 03993 
0 03995 
0.03864 
0.03495 
0.02852 
0.02049 
0.01206 
0.00389 

-0.00362 
-0.00898 
0.00000 
0.00000 
0.00000 
0.01403 
0.00881 
0.00211 

-0.00414 
-0.00950 
-0.01410 
-0.01771 
-0.01966 
-0.01925 
-0.01641 

0.0047 

-0.01614 
-0.02577 
-0.03358 
-0.03880 
-0.04141 
-0.04126 
-0.03857 
-0 - 03395 
-0.02806 
-0.02081 
-0.00244 
0.00776 

0.03363 
0.01 771 

0.03887 
0.04292 
0.04704 
0.05148 
0.05537 
0.05773 
0.05798 
0.05610 
0.05265 

0.0121 

0.01755 
0.01439 
0.01047 
0.00544 
0.00016 

-0.00424 
-0.00673 
-0.00669 

0.00129 
-0.00402 

0.01307 
0.02039 
0.02773 

0.04590 
0.05205 

0.06282 

0.03836 

0.05762 

0.06706 
0.06993 
0.07122 

0.06922 
0.07091 

0.0234 

0.04487 
0.04417 
0.04.273 
0 - 03999 
0.03617 
0.03206 
0.02873 
0.02704 
0.02734 

0.03429 
0.03772 
0.04123 
0.04613 
0.05146 
0.05595 

0.02966 

0.06011 
0.06401 
0.06720 
0.06955 
0.07106 

0.07166 
0.07174 

0.0408 

0.05134 
0.05171 
0.05183 
0.05120 
0.04969 
0.04771 
0.04594 
0.04504 
0.04528 
0.0466I-c 
0.04821 
0.04964 
0.05113 
0.05328 
0.05627 

0.06152 
0.05894 

0.06403 
0.06614 
0.06780 
0.06908 
0.06999 
0.07052 



w - VEL 

0.1047 
0.0833 
0.0656 
0.0510 
0.0390 
0.0293 
0.0214 
0.0151 
0.0100 
0.0059 
0.0026 
0.0000 
-0.0026 
-0 0059 
-0.0100 

-0.0214 
-0.0151 

-0.0293 
-0 0390 
-0.0510 
-0.0656 
-0.0833 
-0.1047 

-0.1042 -0.0667 

-0.0826 
-0.0871. 
-0.0815 
-0.0633 
-0.0406 
-0.0180 
0.0030 
0.0233 
0.0469 
0.0803 
0.0000 
0.0000 
0.0000 
0.0963 
0.0748 
0.0671 
0.0657 
0.0639 
0.0590 
0.0507 

0.0284 
0.0184 

0 0399 

-0.0927 
-0.0974 
-0.0901 
-0.0685 

-0.0163 
-0.0421 

0.0075 
0.0305 
0.0574 
0.0953 
0.0000 
0.0000 
0.0000 

0.0864 
0.1~9 

0.0762 

0.0695 
0.0623 

0.0387 

0.0730 

0.0517 

0.0254 
0.0141 

-0.0408 -0.0234 

-0.1000 
-0.1048 
-0.0962 
-0.0722 
-0.0435 
-0,0155 
0.0104 
0.0356 
0.0646 
0.1056 
0.0000 
0.0000 
0.0000 
0.1220 
0.0942 
0.0824 
O.Of79 
0. (3730 
0.0644 
0.0521 

0.0230 
0.0375 

0.0107 

-0.1046 

-0 0999 
-0.0745 
-0.0444 

0.0120 
0.0383 
0.0687 
0.1113 
0,0000 
0.0000 
0.0000 
0.1278 
0.0988 
0.0861 
0.0808 

0.0655 

0.0366 

-0.1093 

-0.0151 

0.0751 

0.0521 

0.0213 
0.0084 

-0.0121 

-0.1072 
-0.1115 
-0.1015 
-0.0759 
-0.0461 
-0.0172 
0.0100 
0.0367 
0.0678 
0.1112 
0.0000 
0.0000 
0.0000 
0.1288 
0.1001 
0.0873 
0.0818 
0 * 0759 
0.0658 
0.0520 
0.0360 
0.0201 
0.0069 

-0.0047 

-0.1086 
-0.1130 
-0. no37 
-0.0803 
-0.0526 
.-0.0246 
0.0024 
0.0294 
0.0605 
0.1034 
0,0000 
0.0000 
0.0000 
0.1224 
0 0959 
0.0846 
0.0800 
0.0745 
0.0646 
0.0510 
0.0351 
0.0192 
0.0058 
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W - VEL (CONT'D) 

0.1047 
0.0833 
0.0656 
0.0510 
0.0390 
0.0293 
0.0214 
0.0151 
0.0100 
0.0059 
0.0026 
0.0000 
-0.0026 
-0 0059 
-0.0100 

-0.0214 
-0.0293 
-0.0390 

-0.0151 

-0.0510 
-0.0656 
-0.0833 
-0.1047 

0.0000 

-0.1093 
-0.1144 
-0.1068 
-0.0857 
-0 0597 
-0.0327 
-0.0063 
0.0195 
0.0484 
0.0866 
0.0000 
0.0000 
0.0000 
0.1063 
0.0857 
0.0780 
0.0756 

0.0622 
0.0713 

0.0492 
0 0339 
0.0185 
0.0053 

3.0047 

-0.1102 
-0.1157 
-0.1096 

-0.0670 
-0.0909 

-0.0417 

0.0057 
0.0283 
0.0543 
-0.0001 
0.0002 
0.0005 
0.0750 
0.0676 
0.0676 
0.0692 
0.0670 

-0.0171 

0.0592 
0.0471 
0.0326 
0.0176 
0.0044 

0.0121 

-0.1093 
-0.1158 
-0. uu 
-0 0937 
-0.0698 
-0.0430 
-0,0159 
0.0107 

0.0740 
0.0531 
0.0519 
0.0527 

0.0389 

0.0962 
0.0813 

0.0766 

0.0628 

0.0336 
0.0183 
0.0052 

0.0774 

0.0725 

0.0491 

0.0234 

- 0.1088 
-0.1163 
-0.1136 
-0.0932 
-0.0755 
-0.0483 
-0.0195 
0.0098 

0.0838 
0.0800 

0.0809 
0.1109 
0.0920 
0.0860 
0.0835 

0.06.57 

0.0338 
0.0181 

0.0423 

0.0792 

0.0774 

0.0503 

0.0050 

C ,0408 

-0.1086 

-0.1170 
-0. U74 

-0 1047 
-0.0835 
-0.0566 
-0.0266 
0.0051 
0.0409 
0.0860 
0.0923 
0.0930 
0.0959 
0.1190 
0.0995 

0.0890 
0.0808 
0.0668 

0.0927 

0.0499 
0.0329 
0.0174 
0.0044 
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BOUNDARY  LAYER 

LOWER  SURFACE VORTEX  FORMED  ON  WING 
UPPER SURFACE  DUE  TO 
BOUNDARY  LAYER 
FLOW FROM LOWER 
SURFACE 

FREE STREAM 0 
UPPER SURFACE 
BOUNDARY  LAYER 

I 

LOWER  SURFACE 
BOUNDARYLAYER 

TRAILING  EDGE  VIEW 

\WING 

Figure 1. - Schematic ,of vortex formation  at  tip  of wing with finite thickness. 
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\ 

\ FLAT  PLATE 

LOWER  SURFACE 
BOUNDARY  LAYER 

TRAILING  EDGE  VIEW 

Figure 2. - Schematic of vortex formation at tip of thin flat  plate 
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NEARLY TWO 
DIMENSIONAL 

NORMAL TO 
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Figure 3. - Geometry of encounter of semi-infinite wing with a sinusoidal gust 
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Figure 4. - Geometry of encounter of infinite wing with gust  wave fronts 
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Figure 5. - Geometric definitions 
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Figure 10. Effect of spanwise position on steady  chordwise  pressure distribution 
for an  unswept  semi-infinite  wing 
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Figure 11. - Effect  of spanwise position  on  steady  chordwise  pressure distribution 
for a  swept  semi-infinite  wing 
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Figure 13. - Unsteady response of  flat  plate serni-infinite  wing a t  zero  angle of attack 
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Figure 14. - Pressure distribution in vicinity of tip of semi-infinite wing 
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Figure 15. - Viscous flow coordinate  system. 
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Figure 16. - Grid point locations. 
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Figure 17. Inviscid flow calculation 
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Figire 18. - Inviscid flow calculation. 
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Figure 19. - Inviscid flow calculation. 
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Figure 20. Inviscid flow calculation. 
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Figure 21. - Inviscid flow calculation. 
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Figure 22. - Inviscid flow calculation. 
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Fiaure 23. - Viscous flow calculation. 
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FiQure 24. - Viscous flow  calculation. 
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Figure 25. - Viscous flow calculation. 

4 
4 



V VELOCITY 

XIC = 0.354 

0.050 

0.025 

0 
I 

-0.22 -0.1 1 

SPANWISE DISTANCE, Z/C 

0 

Figure 26. - Viscous flow calculation. 
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Figure 27. - Viscous flow calculation. 
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Figure 28. - Viscous flow calculation. 
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Figure 29. - Viscous flow calculation. 
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Figure 30. - Viscous flow calculation. 


