Magnetospheric Solving Magnetospheric Accelera

The Fast Plasma

T E Moore[1], J L Burch[2], M R Collier[1], D J Chornay[3], M L Adrian[1], A J Coates[4], D Linder[4], T Mukai[5], Y Saito[5], 1. NASA GSFC, 2. SwRI, 3. UMCP, 4. UCL/MSSL

Abstract

MMS-SMART

A clear picture of short-scale reconnection structures and their rapid motions will require observations from closely spaced platforms at a 30ms measurement cadence. The Fast Plasma Instrument (FPI) for the MMS mission exceeds this demanding requirement by acquiring full sky, high-resolution (11°) electron plasma velocity distributions every 25 ms. FPI also delivers four full sky, medium-resolution (45°) distributions every 6 ms, for unprecedented access to electron scale dynamics within the reconnection diffusion region. Data compression and burst memory management provide up to 16 minutes of high time resolution data during each orbit of the four MMS spacecraft. Each spacecraft will intelligently downlink the data sequences that contain the greatest amount of temporal structure. For both electrons and ions, FPI will realize these specifications by means of eight half-top-hat energy analyzers. Each analyzer has a 180-deg x 6deg fan-shaped field of view (FOV) aligned with the s/c spin axis, and is fitted with lateral FOV deflection electrodes. The analyzers are packaged as four Dual Electron Spectrometers and four Dual Ion Spectrometers on each spacecraft. When distributed properly around the spacecraft, these packages provide an instantaneous full-sky view that is independent of spacecraft spin rate. This approach makes available a very large instantaneous aperture for plasma measurements at the high sensitivity required for fast exposures. FPI is based on flight heritage from Cluster/PEACE, Geotail/LEP, Polar/Hydra, and Rosetta/IES.

Hardware Overview with FOVs

Science Requirements and Specifications

Question 3: FPI Requirements Derivation

Science Objectives	Resolve the diffusion region features on the electron and ion inertial scales, respectively.		
Payload Measurement Requirements	Analyze the full sky distribution and energy range from cold plasma (1 eV) to 30 keV (e-) or 40 keV (i+) in 25 ms Observe with 10-12° angular resolution and coarse energy resolution (10-30%) Avoid spacecraft sheath screening or distortions. Achieve 5% moments error: \geq 400 counts per 0.25 msec per 128 pixels of 8 detectors = 16 kHz per angular pixel		
Instrument Capabilities	8 ea 180° x 10° apertures, viewing radially Electrostatic deflection by \pm 17° and \pm 6° for each aperture for 32 Az, 16 Polar pixels. Energy resolution 17% (elec), 10% (ion), with 64 steps Fast energy scan 6 ms sweep, 25ms deflection cadence Sensitivity (GdE/E) 1 x 10 ⁻³ (i+), 3x 10 ⁻⁴ (e-) cm ² sr eV/eV		

FPI will observe plasma microphysics with unprecedented time resolution.

		suol	Energy Range	lons: 1 eV - 40 keV Electrons: 1 eV - 30 keV
FPI		Distribution Function of Plasma and Electrons	Pixel Geometric Factor	lons: 1 x 10 ⁻³ cm ² sr eV/eV Electrons: 3 x 10 ⁻⁴ cm ² sr eV/eV
	lasma		Time Resolution	lons: 150 ms Electrons: 25 ms
	Hot F		Energy Resolution	lons: 10% Electrons: 17%
			Field of View	All Sky
			Angle Resolution	lons: 5 x 11 deg. Electrons: 6 x 11 deg.

board, n) terminals

Dual Ion/Electron Spectrometer Optics (DIS, DES)

GSFC/M. Collier, J Lobell, M Adrian MSFC/M Chandler, V Coffey

Cluster MSSL/PEACE Sensor approach except deflection Nozomi JAXA/PSA-ISA Sensor approach except deflection Rosetta SwRI/IES Sensor with deflection Triange CSEC/Discorder Sensor approach with deflection	
Nozomi JAXA/PSA-ISA Sensor approach except deflection Rosetta SwRI/IES Sensor with deflection MSSL/AJ Coates	
Rosetta SwRI/IES Sensor with deflection MSSL/AJ Coates	
Triana CEEC/Diagman Concer approach with deflection	
Thana GSFC/Plasmag Sensor approach with dellection	
Polar GSFC/Hydra Hot plasma electrons, ions, 14 sensors	
Selene JAXA/SIS Deflection of FOV	
Cassini MSSL/ELS Sensor approach except deflection	
Polar MSFC/TIDE Ionospheric ions, coordinated sweeps MSSL/D R Linder	
DS-1 SwRI/PEPE Ion composition with deflection	
Plasmag PEACE PSA IES DDEIS PPA TIDE	
JAXAT Mukai	
JAXAY Saito	

FPI is derived from the most successful plasma analyzers ever developed.

MCPs/Imaging Anode: Design and Progress

- MCP assembly designed
- MCP procurement specification
 - 60:1 channel L/d
 - 80mm nominal diameter
 - Ordered 5 Aug
- Supports evaluating Z and V stack configurations as trade

FPI will resolve electron and ion scale dynamics in the reconnection diffusion

Multiscale Mission tion, Reconnection and Turbulence

Instrument for MMS

M O Chandler[6], V N Coffey[6], J V Lobell[1], A J Ericssonl[1], T Bialas[1], M Buenfill[1], M A Johnsonl[1], M D Shappiriol[1], P-S Yehl[1] 5. JAXA/ISAS, 6. NASA MSFC NSSTC

Data Products

- + FPI General Information Fast Plasma Instrument + Viewing FPI Data News Items + Documentation 16 August 2005 -- A Clean, Well-Lighted Place: GSFC's Heliospheric Physics Branch Gets SPIFfy + Technical Informatio Studies Area After many years of planning, preparation and anticipation, the Heliospheric FPI Team Physics Branch's new Building 21 Space Physics Instrument Facility (SPIF) has + Miscellaneous opened for business. The state-of-the art facility includes a class 1000 clean room for flight instrument assembly, two large vacuum systems for instrument testing, a + News Archives beam facility, supplies and testing equipment, and a staff eager to advance space physics particle instrumentation well beyond where it stands today ... FIRSTGOV + NASA Privacy, Security, Notices Curator: Evelyn Ho NASA Official: Dr. Thomas E. Last Updated: August 16, 2005
- Clear resolution of offdiagonal pressure tensor elements
- Clear depiction of beams and heat fluxes
- 6 ms (8 az bins) or 25 ms (32 az bins) cadence, depending on required completeness of angular

	Evergy Flux $[e^{-cm^2}]$	10 ² 10 ³ Energy	1 Count Re 1 Count Re 10 ⁴ [eV]	² 10 ³ 00 lexie	Evergy Flux [eV cm^{2} $10^{6} Vcm^{2}$ $10^{7} In^{1}$	10 ² 10 ³ Energy	[eV]
	Region	Density [cm ⁻³]	Bulk Velocity [km ∙ s ⁻¹]	T, [eV]	Region	Density [cm ⁻²]	Bu Ve [ki
	 Magnetosheath 	16.00	100.0	350.0	Magnetosheath	16.00	
	 Dense Magnetosheath 	160.00	100.0	350.0	• Dense Magnetosheath	160.00	
	 Magnetopause 	8.00	400.0	300.0	Magnetopause	8.00	
	 Dense Magnetopause 	80.00	400.0	300.0	Oense Magnetopause	80.00	
	• Outer Magnetosphere	0.10	20.0	4000.0	Outer Magnetosphere	0.10	
	 Plasma Sheet 	1.00	20.0	4000.0	Plasma Sheet	1.00	
J	 Cold, Dense Plasma Sheet 	3.00	20.0	1000.0	Cold, Dense Plasma Sheet	3.00	
							1

450.0

15.0

10⁴ 告

	4: +16.875° 3: + 5.625° 2: - 5.625° 1: -16.875°	 LLBL O⁺ Solar W Protons
Measurements and	d Modes	G _o

)ES				DIS			
D	ual Electron Spectrome	eter (DES) Survey Moc	les	Dual Ion Spectrometer (DIS) Survey Modes			
	Slow Survey	Fast Survey	Burst		Slow Survey	Fast Survey	Burst
me/day in mode	14.4 hours (60%)	9.6 hours (40%)	173 seconds (0.2%)	time/day in mode	14.4 hours (60%)	9.6 hours (40%)	173 seconds (0.2%)
ngular resolution	22.5 deg x 11.3 deg	11.3 deg x 11.3 deg	11.3 deg x 11.3 deg	angular resolution (spacecraft)	22.5 deg x 11.3 deg	11.3 deg x 11.3 deg	11.3 deg x 11.3 deg
ctive heads	1	4	4	active heads	1	4	4
tal angular pixels	256	512	512	total angular pixels	256	512	512
ost-polar angle ollapse pixels	128	256	256	post-polar angle collapse pixels	128	256	256
nergies	32	32	32	energies	32	32	32
ements	4,096	8,192	8,192	total transmitted elements	4,096	8,192	8,192
adence (s)	64.0	4.0	0.025	cadence (s)	64.0	4.0	0.250
ampling period (s)	64.0	0.025	0.025	sampling period (s)	64.0	0.250	0.250
ord length (bits)	8	8	4 (see note below)	word length (bits)	8	8	4 (see note below)
ata rate to s/c if ncompressed	8 bits/elem*4,096 elem/64s =	8 bits/elem*8,192 elem/4.0s =	4 bits/elem*8,192 elem/0.025s =	data rate to s/c if uncompressed	8 bits/elem*4,096 elem/64s =	8 bits/elem*8,192 elem/4.0s =	8 bits/elem*8,192 elem/0.250s =

Solar Wind Protons

10.00

 $G_0 = 1.0 \times 10^{-3} \text{ cm}^2 \cdot \text{sr} \cdot \text{eV} \cdot \text{eV}^{-1}$

sampling

10

T_e [eV]

350.0

350.0

300.0

300.0

1000.0

2000.0

2000.0

1000.0

0.32

10.00

 $G_0 = 3.0 \times 10^{-4} \text{ cm}^2 \cdot \text{sr} \cdot \text{eV} \cdot \text{eV}^{-1}$

LLBL Electrons

Solar Wind Electrons

Bulk Velocity [km • s^{−1}]

100.0

100.0

400.0

400.0

20.0

20.0

20.0

18 755.0

450.0

 Capability to map subtle features of the diffusion region

Science Closure

Diffusion Region Pressure Tensor

Simulated data values in Vy-Vz plane on left color bar, Background map of Pyz values per right color bar PSD Vx-Vz plane distributions are ~ circular

aneompressea	0.0111 0 10	erenn noo	0.0.0.0.0.0				
	0.512 kbits/s	16.4 kbits/s	1311 kbits/s	1.0	0.512 kbits/s	16.4 kbits/s	262 kbits/s
telemetry allocation	0.128 kbits/s	4.10 kbits/s	700 kbits/s	telemetry allocation	0.128 kbits/s	4.10 kbits/s	100 kbits/s
compression factor	4.0	4.0	1.9	compression factor	4.0	4.0	2.6
ASPOC cadence (s)	1.0	0.063	0.008				

Data Compression and Burst Quality

JPEG 2000 WT Compression on Flight Data Moments vs Compressed/Decompressed

The FPI Team provides:

- "Fastest full sky plasma analyzer ever developed..."
- Fully resolves the reconnection diffusion region
- Instantaneous all-sky plasma sampling
- Strong heritage from experienced partners
- Prototype-proven optimizations
- Recent production environment experience
- Meets or exceeds Level 1 Science Requirements

region using multiple distributed sensor apertures and fast energy/angle sweeping.

Spectrograms: Raw vs Compressed 20x