
1. Introduction

Measurements of spectral irradiance, spectral
responsivity or spectral reflectance are often made for a
limited set of wavelengths and then used to calculate
weighted spectral sums for photometry, colorimetry or
filter radiometry. It is often necessary to interpolate the
spectral data to a finer grid to avoid errors arising from
the discrete approximation used to estimate the integral
where the weighting function varies strongly between
the wavelengths at which the measurements were made
[1]. Interpolated values are then correlated to the origi-
nal data and to nearby interpolated points; unless these
correlations are taken into account, uncertainty calcula-
tions will give misleading results, generally under-
estimating errors in the spectral sums by significant
amounts.

Interpolation may also be required when reference
standards are provided for a limited set of wavelengths.
Many of the primary reference standards in the nation-
al metrology institutes are derived in a functional form,
and can be calculated on as fine a wavelength grid as
required, along with all the necessary correlations [2].
However, calibrations of client lamps or detectors
involve a transfer, by comparison, to artifacts that do

not necessarily show a spectral variation that is easily
modeled, and in the interests of reducing costs may be
provided on a limited number of wavelengths. The
reference data at different wavelengths may also be
correlated. While the primary reference standards are
often strongly correlated between wavelengths, the
transfer process itself adds uncertainty that is generally
random and often reduces the correlations to negligible
levels [2]

Where data are available at sufficient wavelengths to
avoid errors due to the sum approximation to the inte-
gral, it is preferable to interpolate reference tables, such
as the photometric response function Vλ and the colori-
metric tristumulus response functions [3] to the wave-
lengths at which measurements are taken, because
those tables contain no uncertainty. However, inter-
polation of measurement data is often applied. One
reason is that software for a calculation may require
data at a particular interval, another is that instrument
measurement programs may provide limited sets of
data.

Following a brief description of uncertainty propaga-
tion, this paper is divided into two sections. The first
covers Lagrangian interpolation, the second cubic
spline interpolation; these are the two most commonly
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used interpolation methods. In each section, interpola-
tion from a data set which is itself correlated is consid-
ered. Various simplifications for practical applications
are made, and examples are presented. A conclusion is
that in practical terms, uncertainty can be accurately
derived from the original data set without a complex
calculation of correlations.

2. Propagation of Uncertainty

Uncertainty propagation is described in detail in the
ISO Guide to the Expression of Uncertainty in
Measurement [4]. The uncertainty in a quantity y
formed by combining measured quantities xi through
the relationship y = f (x1, x2, ..xN) is given by 

(1)

where u(xi) is the uncertainty in xi and u(xi, xj) is the
covariance between xi and xj. For uncorrelated input
quantities, the covariance between pairs of variables is
zero and Eq. (1) reduces to the "sum of squares" com-
monly applied. The derivatives ∂f / ∂xi are sensitivity
coefficients for the dependence of y on the various
measured quantities. Given that u2 (xi) ≡ u(xi, xi),
Eq. (1) can be expressed as

(2)

where

(3)

is a column vector of sensitivity coefficients ( T indi-
cates the transpose) and

(4)

is the N× N uncertainty matrix.
Interpolation of spectral data is generally performed

to produce a set of values (pk , xk ) from set (yi , xi )
where xi is the independent variable (generally wave-
length in radiometry). Quantities in the set (pk , xk ) that
depend on the same (yi , xi ) are correlated through this
common dependence. The covariance between two
values pk and pm (and, when k = m, the square of the
uncertainty) is given by

(5)

In matrix form, this is simply expressed as

(6)

It is sometimes convenient to use correlation coeffi-
cients rather than covariances, defined as

(7)

A matrix of correlation coefficients is square, symmet-
ric about the diagonal and has value 1 in the diagonal
elements.

3. Lagrangian Interpolation

We have a tabulated function yi at values xi:

(8)

For x in the range xm to xm+n , the formula for
Lagrangian interpolation is [5]

(9)

Equation (9) represents an (n–1)th order polynomial fit-
ted through the n original values. Interpolated data are
formed as a linear combination of nearby existing data.
Sensitivity coefficients for the dependence of the inter-
polated data on the input data are simply the weights wj

in Eq. (9). Covariances between the output values, that
is, the original input values plus the interpolated values,
take several forms. Correlations present in the original
values remain. The values newly formed by interpola-
tion are correlated to both the input values forming
them (and through them to the remaining input values
if correlations are present in the original set) and to any
new values formed from common input values. All of
these covariances, including the uncertainty of the
interpolated values, can be calculated through Eq. (6).

In many instances, the input data yi are present at
regular values of xi and further, the output data are also
required at regular intervals. Interpolation is usually
then performed by running Eq. (9) through the data and
forming a new value or values in the center of the
range. The multipliers convolving the data are deter-
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mined by the interval spacings only and can be calcu-
lated prior to the interpolation. This was clearly demon-
strated by Savitsky and Golay [6] in the development of
their algorithms for smoothing and differentiation of
spectral data where polynomial expressions of various
order are fitted to regularly-spaced data; in those cases,
the coefficients are determined as fixed linear combina-
tions of the input dependent data. The arguments pre-
sented here for Lagrangian interpolation can easily be
extended to cover smoothing of data using the
Savitsky-Golay routines. Two-point Lagrangian inter-
polation forming a new value in the center of the exist-
ing values has weights (w1, w2)=( ½, ½), equivalent to a
linear interpolation.

Propagation of uncertainty through two common
examples of Lagrangian interpolation used in photo-
metry are now discussed. In both of these we consider
the calculation of illuminance response to CIE illumi-
nant D65, a tabulated distribution carrying no uncer-
tainty, for a photometer whose spectral response is a
close approximation to Vλ , measured at different
spectral intervals and where the measured response
values are uncorrelated. These distributions are shown
in Fig. 1 for a wavelength interval of 5 nm. As the
response function tapers to zero at each end, the
luminance response is given as

(10)

where Ri is the photometer response and ED65,i is the
illuminant value at the ith wavelength, respectively, and
∆λ is the 5 nm wavelength separation between the
values.

For uncorrelated spectral response values, the uncer-
tainty in Rv is given by

(11)

For values as tabulated by CIE [3], the value of Rv is
10567.41, with an uncertainty 19.60 (relative uncer-
tainty 0.1855 %) if the responsivity values have a rela-
tive uncertainty of 1 % and are uncorrelated. (Note that
extra significant figures for the uncertainty are present-
ed above those of normal practice for the purpose of
comparison.)

3.1 Photometer Measured at 10 nm 
Intervals, Interpolated to 5 nm

The spectral integral Eq. (10) for input values on a
10 nm grid evaluates to 10568.18, a small change com-
pared to the 5 nm data due to the discrete approxima-
tion to the integral; the relative uncertainty for uncorre-
lated spectral response values with a relative uncertain-
ty of 1 % becomes 0.2623 %, or the expected
increase compared to the response measured at 5 nm
intervals. We wish to interpolate the photometer
response with a four point Lagrangian function to data
on a 5 nm interval. The weights for Eq. (9) are then

(12)

and, as the input data are uncorrelated, the uncertainty
for an interpolated value is given by

(13)

In any given interval spanning four input values, the
uncertainty value u (yi) is approximately constant, and
the interpolated values have an uncertainty approx. 80
% of the original values in that range. If we ignore the
correlations that have been introduced, the relative
uncertainty of the integral evaluates as 0.17 %, low
compared to the original value and clearly incorrect as
it would imply that it could be reduced to zero by
repeated interpolation.

A full correlation matrix for the output values is
formed as follows. First the interpolation is performed
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Fig. 1. Distributions CIE Vλ and D65 used for interpolation examples.
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(using linear interpolation in the first and last intervals 
of the input values). From N original values, we now
have (2N–1) values

(14)

Uncertainties for these values are known for the origi-
nal data and for the interpolated data from Eq. (13) and
these are used to populate the diagonal elements of the
uncertainty matrix Uy. We then have to populate the
elements to the right of the diagonal only before filling
to the left of the diagonal by symmetry. As the original
input values (now at i odd) are uncorrelated, we have
for all i, from Eq. (5),

(15)

For i even (interpolated values),

(16)

and from Eq. (5) we have

(17)

For completeness, similar expressions were applied for
the values formed by linear interpolation in the first and
last intervals. Uncertainty calculated for the integral
including all these correlations was then exactly that
calculated with the original data for the 10 nm grid.

One further simplification can be made for uncorre-
lated input values. In practical terms, nearby values
have the same uncertainty. Hence the sets of Eqs. (14)
to (17) can be reduced to a matrix of correlation coeffi-
cients determined purely from the weights,

, (18)

where the first row corresponds to an interpolated
value. Uncertainty for the integral using the interpolat-
ed data set is then found by modifying the sensitivity
column vector to include the uncertainty at each value,

(19)

and then performing the matrix multiplication Eq. (2).
A negligible change relative to the true values is due to
averaging through regions where the response is chang-
ing rapidly; while the relative uncertainty in these
regions is constant, the absolute value is not.

Table 1 shows uncertainties calculated for all the
options discussed in this section. It can be seen that
proper accounting for the correlations introduced by the
interpolation reproduces the uncertainty calculated for
the input values alone, and that using the correlation
coefficients provides a practical calculation of the
uncertainty matrix.

3.2 Photometer Measured at 5 nm 
Intervals, Interpolated to 1 nm

After re-arranging the N input values to their new
positions, we add four values between input values yi

and yi+5 that can be represented as

. (20)

Fig. 2 shows the relative uncertainty of the central data
set where a photometer with a Vλ response is interpolat-
ed from 5 nm to 1 nm and the input values are assumed
uncorrelated with a relative uncertainty of 1 %. 
Uncertainties of the interpolated values are lower than
those of the input values. If we ignore the correlations
introduced by the interpolation, the relative uncertainty
of the integral with the D65 illuminant (interpolated to
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Table 1. Integral value and relative uncertainty for various calcula-
tion options; four point Lagrange interpolation adding one value in
each range. Input values uncorrelated, 1 % relative uncertainty.

Method Integral Relative uncertainty

Original data on 5 nm grid 10567.4 0.185
Original data on 10 nm grid 10568.2 0.262
Interpolated data; ignore 10567.5 0.168
correlations
Interpolated data; with 10567.5 0.262
correlations
Interpolated data; use 10567.5 0.266
correlation coefficients

1 5
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a 1 nm grid with a cubic-spine routine), reduces to
0.074 %, a value too low by the order of    . The
integral itself has the same value as that shown in
Table 1 for the 5 nm grid.

For a four point Lagrange interpolation adding four
values between each of the input values, correlations in
the output set extend over the 19 values following an
input value. The matrix of correlation coefficients is
shown as the transpose relative to Eq. (18) in the inter-
ests of printing; that is, it is equivalent to filling to the
lower left of the diagonal of the correlation matrix prior
to filling the upper right by symmetry. Beginning at a
column corresponding to an input value, the matrix of
correlation coefficients is

. (21)
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Fig. 2. Relative uncertainties for the interpolated Vλ data set.
Original values assumed uncorrelated, with a relative uncertainty of
1 %.
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A number of these, for the values furthest from the
input set, are negligible. The relative uncertainty of the
integral for the interpolated data set calculated with
these correlation coefficients is 0.197 %, equivalent in
practical terms to that calculated using the original
5 nm data set and shown in Table 1.

4. Cubic-Spline Uncertainty Propagation

For our set of data Eq. (8), cubic-spline interpolation
[7] calculates a value y at x in the interval xi to xi+1 as 

(22)
where

(23)

(24)

(25)

(26)

The first two terms of Eq. (22) represent simple linear
interpolation. Including the second derivatives y"
yields a function that has first and second derivatives
continuous at the boundaries between intervals.

The second-derivatives are unknown. The relation
between them is given by

(27)

which is a system of N–2 equations in the N unknowns
. The natural cubic-spline, which is commonly used,

sets

(28)

and solves for the remaining terms [7]. We are interest-
ed in using the cubic-spline interpolation on spectral
data of known uncertainties, including the possibility of
correlations, where the interpolated data may then be
combined in various ways, so that not only the uncer-
tainties in the interpolated data but also the correlations
present are important in propagating uncertainties in
the combinations.

The (N–2) values of depend on each of the
input values, i.e., are correlated to each input value.

Then even for uncorrelated input data, the output data
are correlated over the whole set of interpolated values.
We wish to calculate the covariance u (yn, ym) between
two interpolated values

, (29)

where the yn and ym values may be in the same or differ-
ent intervals denoted by i, j. The uncertainty in yn is
given by 

(30)

The covariance between (and uncertainty of) the input
values is known, carried in the matrix

(31)

To propagate uncertainties through Eq. (29) we need
the covariance between the second-derivative values
and the input values, and between the second-deriva-
tives themselves. These in turn require the sensitivity
coefficients for the dependence of the second-deriva-
tive on the input values, .

The set of N–2 equations Eq. (27) can be written in
matrix form

(32)

where

(33)

is a tri-diagonal matrix with remaining terms zero.
Multiplying both sides of Eq. (32) on the left by 
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derivatives. By selecting the ith row of this multiplica-
tion we have the relationship

(34)

which when rearranged to

(35

yields

(36

These are augmented by

(37)

If the input yi values are uncorrelated, the required
covariances are given by

(38)

and

where

(39)

Note that the N × N matrix represented by Eq. (39) is
not symmetric. For correlated inputs, the sums required
are the matrix products

, (40)

where

(41)

is a column-vector of sensitivity coefficients of the
second-derivatives vs the input values and g j is a
column vector of length N with 1 in the jth row,
0 elsewhere.

Covariances and uncertainties for the interpolated
values are then found by recognizing that the values of
ym and yn in Eq. (29) are represented by

(42)

where

(43)

are sensitivity vectors for ym and yn against the eight
variables in the vectors shown in Eq. (42). Covariances
between the interpolated values are then given by

(44)

(45)
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with the lower half symmetric about the diagonal. Only
half of this matrix is required. The two right quadrants
can be separately multiplied on the right by the column
vector (Aj Bj Cj Dj)T and the two results combined
into a single eight-element column vector for the final
multiplication.

4.1 Cubic-Spline Interpolation Examples

Consider again the photometer response curve of
Fig.1, to be integrated over the wavelength range from
360 nm to 830 nm (effectively the photometric
response to an equal-energy source). The function was
interpolated over the same input range (one less value)
but shifted by 2.5 nm and the integral recalculated.
Similarly, the function was interpolated to 1 nm inter-
vals and the integral recalculated. Table 2 shows the
results for these interpolations, where the uncertainty in
the integral was calculated based on 1 % uncertainty in
the input values, uncorrelated between values. The con-
sequence of ignoring the correlation between the inter-
polated values is also shown. Correlations between dis-
tant points, introduced through the dependence of the
second-derivatives, were negligible (largely because
the response curve is relatively smooth), but strong cor-
relations were found between near-neighbours.

Figure 3 shows propagated uncertainties for the inter-
polation shifting the input by 2.5 nm; for an interpola-
tion to the mid-point, we would expect the 
interpolated value for a smooth function to be near the
mean of the two interval boundaries with a propagated
uncertainty of the input (but of course
correlated to adjacent values).

Figure 4 shows the variation in uncertainty for values
interpolated at different positions within the 5 nm inter-
val. This is a practical concern where a wavelength off-
set may be present in measurements, although in gener-
al it is a better practice to retain the wavelength values
of the measured points and interpolate weighting func-
tions such as the illuminant or the colorimetric response

functions as these carry no uncertainty. At the input
points, uncertainties equal that of the input; at the mid-
points they fall to of the input points. Again this
is expected as the input data are smooth, and cubic-
spline results are not much different from linear inter-
polation. The cubic-spline reproduces the input ordi-
nate values for abscissa values equal to an input value;
for these points, we expect the propagated uncertainty
to be that of the input and correlations between similar
such values to match that of the input matrix Uy. These
conditions can be used to test the coding.

Figure 5 shows Vλ interpolated from a 20 nm grid to
2 nm. Where the input curve is changing rapidly rela-

tive to the magnitude of the data, linear interpolation
would be discontinuous and for these regions, the rela-
tive uncertainty of the interpolated values rises above
that of the 1 % assumed for the input values. This is
shown more strongly in Fig. 6 for input data spaced at
40 nm, interpolated to 5 nm. Here the interpolation
does not provide a good representation of Vλ (as shown
in Fig. 7); where the interpolation is poor, the uncer-
tainties for the interpolated values rise above those of
the input.
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Table 2. Integral of Vλ and its uncertainty for input values on a 5 nm
grid and 1 % relative uncertainty, uncorrelated

Integral Uncertainty Uncertainty
ignoring

correlations

Original data 106.8561 0.19647

Shift 2.5 nm 106.8559 0.19647 0.1459

Interpolate to 1 nm 106.8559 0.19647 0.0746

1/ 2 0.71=

1/ 2

Fig. 3. Propagated uncertainty of Vλ for values shifted 2.5 nm;
relative uncertainty of the input values is 1 %.

Fig. 4. Relative uncertainty of interpolated values for Vλ vs posi-
tion in the interval. Input values with a relative uncertainty of 1 %
are separated by 5 nm.



5. Conclusion

Interpolation of spectral data is a common occur-
rence in radiometric and photometric measurements.
Those data are often then combined in forming integral
values such as photometric or colorimetric responses or
filter radiometer responses. Interpolation is particularly
important when a relatively smooth curve available
only on a wide spectral spacing may need to be con-
volved with a more-rapidly changing curve and then
integrated. Uncertainties in the interpolated values will
generally be smaller than those of the input data,
although this is not always true in the case of cubic-

spline interpolation. Uncertainties in combinations
calculated using the interpolated data set then must
include correlations introduced by the interpolation .
Ignoring the correlation will lead to significant under-
estimation of uncertainties. The calculations in this
paper for both Lagrange interpolation and for cubic-
spline interpolation show that the uncertainty can be
reliably estimated, in practical terms, by propagating
the uncertainty through the combination using only the
original set of data.
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Fig. 5. Relative uncertainty for Vλ interpolated from a 20 nm grid
to 2 nm. Relative uncertainty of the input values set to 1 %.

Fig. 6. Relative uncertainty for Vλ interpolated from a 40 nm grid
to 5 nm. Relative uncertainty of the input values set to 1 %.

Fig. 7. Ratio of Vλ interpolated from a 40 nm grid to the actual value on a 5 nm grid. The inset
shows the central region on an expanded scale.
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