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On the Validity of Coupling Impedance Bench Measurements 
H. Hahn  

Brookhaven National Laboratory, Upton, NY 11973-5000 
 

In this paper the validity of coupling impedance bench measurements is theoretically 
demonstrated for the standard model of a uniformly extended wall impedance. Integral 
equations expressing the magnetic field at the wall are found for the two cases where the 
device is excited either by a beam or a central wire. The integral equations are solved by a 
perturbation method with the coupling impedance as a expansion parameter, leading to 
expressions for the coupling impedance of the beam and the forward scattering coefficient 
in the bench measurement. Conditions for the validity of bench measurements are indicated 
and the interpretation of wire measurements via the scattering coefficient by the 
conventional formulae are discussed. 

PACS Codes: 29.27.-a, 41.20.-q 

I. INTRODUCTION 

The electromagnetic interaction of a charged particle beam with its surroundings in 
the accelerator or collider is conveniently described by the coupling impedances of its 
components. The concept of coupling impedance apparently was originated by Vaccaro1 and 
applied by Sessler and Vaccaro2 to the analysis of the longitudinal, negative mass instability.  
Coupling impedance is basically an engineering concept, since it is defined as the ratio of 
voltage divided by current, and as such amenable to established circuit theory. Ignoring the 
space charge term in the case of ultra-relativistic beams, the impedance is visualized either as 
a lumped element in a perfectly conducting  beam tube or a beam tube section of finite 
length with a uniformly distributed wall impedance. The impedance can be frequency 
dependent but is usually assumed to be linear.  

The general procedure to measure the longitudinal coupling impedance was 
developed for the LBL-ERA study by Faltens et al. by means of an analog in which the beam 
is replaced with a conductor.3 Underlying this approach is the fact that the fields of an ultra-
relativistic beam on the beam tube wall can be simulated by the propagation of a time-
harmonic TEM mode in the transmission line so formed. An alternate method, not 
addressed in this paper, was suggested by Sands and Rees, according to which a short Adelta@ 
pulse is send through the analog structure.4 The coupling impedance is then obtained from 
the induced wake function by appropriate Fourier transform. Practical aspects of coupling 
impedance bench measurements and further references can be found in  Caspers= review 
papers.56 

Assessing the validity of coupling impedance bench measurements requires answers 
to two questions: first, what is the correct model and mathematical formula for the 
interpretation of the experimental results and then, to what degree does this impedance 
value approximates the actual interaction with the beam. In spite of the experimental and 
theoretical work by many researchers, no definite conclusion has been reached.  This paper 
attempts to answer these questions for the limited case of nonresonant impedances, which 
are small compared to the impedance of free space. However it is believed that the present 
results remain a good approximation for the more general cases.  
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In the typical bench measurement, the forward scattering coefficient, )(21 DUTS , for 
the ADevice Under Test@ is obtained in the frequency domain and compared to that for a 
reference section of equal length. In order to simplify the notation in this paper, the forward 
scattering coefficient of the reference line is assumed to be calibrated out, i.e. 1)(21 =refS . 
The normalized ratio, here simply taken as 21S , has been interpreted via standard 
transmission line circuit theory. The result for a lumped device, i.e. short compared to the 
wave length, was given by Hahn and Pedersen as7 

21

211
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SZZ chp

−
=                                                                                                    (1) 

with cZ  the characteristic impedance of the reference line. In addition, their paper pointed 
out that the formula is also applicable to two or more separate lumped impedances, provided 
that they are small compared to the characteristic impedance. By extrapolation, the formula 
was suggested as a first approximation to a distributed impedance structure.  

In the course of measuring distributed structures such as kickers, it was noticed that 
the HP-formula can yield unphysical negative resistances. Using Falten=s model for 
distributed wall impedances, Walling et al, introduced the log-formula for use in structures 
which are longer than the beam tube diameter,8 

21log ln2 SZZ c−=                                                                                                   (2) 

The log-formula is easy to use and represents a good approximation for a distributed 
impedance. Several so-called improved log-formulae have been suggested but are of 
questionable value, whereas the recent one by Jensen gives, under certain conditions, better 
results and deserves to be compared to the standard formulae.9 

The justification for the bench measurement of the beam coupling impedance rests 
on the plausibility argument, that the electromagnetic field of an ultra-relativistic beam is 
very similar to that produced by the coax in the limit of an infinitely thin wire.  This 
reasoning was, to some extent, confirmed by Gluckstern's analysis of the effects of a wire on   
a resonant cavity.10  In Gluckstern=s paper, integral expressions for the beam impedance and 
the scattering coefficient due to the cavity impedance are given, based on which equality of 
the impedances in the thin wire limit is suggested but without giving details, thereby pointing 
to the need for further studies. In the present paper, Gluckstern=s procedure is applied to the 
model of a distributed wall impedance, resulting in integral equations for the two cases of 
beam and wire. The integral equations are solved by a perturbation method with the 
coupling impedance as expansion parameter, leading to explicit results for a comparison of 
beam and bench impedance and an improved interpretation of the bench measurements. 
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II. INTEGRAL EQUATION 

The coupling impedance, R, is assumed to be caused by a wall impedance, sqR , 
uniformly distributed over a length, g, in an infinitely long beam pipe of radius b , 

sqR
b

gR
π2

=                                                                                                             (3) 

An ultra-relativistic beam,  or a central conductor in the case of bench measurements, 
generates the azimuthal component of the magnetic field at the wall,  which is given by11     

(in natural units c =1, 10 =µ , and 100 == µcZ ) 

∫ ′′+= − g
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with )(uK p the kernel appropriate for the pipe region, either empty or with central 
conductor, and  

zzu ′−= . 

This represents the integral-equation for the problem studied and explicitly takes into 
account  the fact that the wall current, associated with an azimuthal magnetic field, produces 
a longitudinal electric field, 

),(),( zbHRzbE sqz ϕ−= .                                                                                       (5) 

The integral equation can be solved by a perturbation method, where R  is taken as 
the perturbation parameter. The magnetic field is expanded as 

...)()()(),( 2
2

10 +++= zFRzFRzFzbHϕ  

with jkze
b

IF −=
π20                                                                                                             (6) 

and the higher order terms obtained by iteration according to 

∫ ′−=+
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1 )()(                                                                             (7) 

II. ANALYSIS for the BEAM 

 The solution of the integral equation in the case of a beam is obtained via the kernel 
for the pipe region. The full expression for the pipe kernel assumes loss-less boundaries 
whereas in real cases fields above the tube cut-off are damped and can be ignored. Thus for 
the purpose of the present study, the kernel is limited to the terms below cut-off, 
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and nj0  the zeros  of the Bessel function 0)( 00 =njJ .                                                           

 The coupling impedance seen by the beam is defined as  
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After lengthy, but straightforward integrations, one finds the coupling impedance to 2nd 
order in R  (or 0/ ZR  in MKS units) 
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with the electrical length of the  impedance kg=Θ . 

Low-frequency Approximation 

Of particular interest is the low-frequency limit, 1≤kb , where bj nn /0≈Λ  and 
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This result suggests that the beam sees the wall impedance, R, with the addition of end 
effects, the latter depending on the strength of the perturbation, sqR  

Lumped Impedance 

One approximation further, by taking the limit 0→g , one finds the expression for a 
lumped impedance 






 +≈ ∑

n njkbRjRZ
0

121 π                                                                                 (13) 

Note that the end effects in the case of the lumped impedance depend on the coupling 
impedance itself rather than sqR , which here is only a mathematical tool. 
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III. ANALYSIS for the WIRE MEASUREMENT 

Bench measurements are performed in order to experimentally determine the 
forward scattering coefficient by inserting a wire into the device, thus transforming it into a 
coaxial transmission line with outer and inner radii, b and a, respectively.  The analysis 
objective in the case of a wire measurement is now to find a theoretical expression for this 
coefficient, which is defined as  

jkze
b

IbHS −+∞=
πϕ 2

),(21 .                                                                                 (14) 

The solution of the integral equation for the magnetic field is obtained in full analogy to that 
for the beam, but now with the kernel given by 
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where the characteristic impedance of the coaxial structure is ( in natural units) 

a
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2
1
π
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and the other kernel quantities are given by 
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with ni0 being the zero solutions of  

)()/()()/( 00000000 nnnn iJbaiYiYbaiJ = . 

 The theoretical expression for the forward scattering coefficient now follows after 
some manipulations as 
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Low-frequency Approximation 

Bench measurements, and certainly the present paper, implicitly assume that the validity of 
the results is limited to the frequency range below cut-off where kb << 1 , even though the 
electrical length Θ =kg can be finite. The scattering coefficient in low-frequency limit simply 
follows from eq. (19) by taking bi nn /0≈λ , resulting in 
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Thin Wire Approximation 

It is well known that wire measurements require the use of the thinnest wire permitted by 
mechanical constraints in order to obtain meaningful coupling impedance results. In the thin 
wire limit one finds  
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with γ being Euler's constant. It follows that  

2
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2
1 )(1 εα nn jJ+≈  

It should be noted that in the thin wire approximation the relative contribution from the end 
effects is identical in the expression for the beam impedance and the forward scattering 
coefficient.  This fact justifies combining the straight tube impedance, R, with the end effects 
into a total impedance value, Z. This also suggests that bench measurements should be 
performed on devices with beam tubes attached as part of the unit. For the sake of 
simplicity, the sequel of this paper will assume the thin wire approximation.  The simplified 
expression for the forward scattering coefficient now takes the form 
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Lumped Impedance 

Correspondingly, the scattering coefficient for a lumped impedance follows as 
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III. TRANSMISSION LINE ANALYSIS 

 The standard formulae used to interpret coupling impedance bench measurements 
were all derived in the framework of transmission line theory.  The field configuration on an 
ideal transmission line is a TEM wave with purely transverse components. A finite wall 
conductivity changes the field into a mode with an axial component of the electric field. The 
assumption in the transmission line theory is, however, that the analysis can be performed 
with ideal walls and the real situation is handled by appropriately modifying the characteristic 
impedance and propagation constant. Terminal effects, i.e. the local appearance of 
evanescent modes, for example at the junction of two different transmission lines is also 
considered to be negligibly small.12  Notwithstanding its limitations, transmission line analysis 
represents a powerful tool and its results must be compared with the field analysis in the 
present paper.  

Distributed Impedance 

The transmission line analysis of a distributed impedance can be based on Faltens model in 
which the characteristic impedance and propagation constant of the DUT is defined as 3  

c
c

cDUT Z
Z
ZjZZ η=

Θ
−= 1                                                                               (23) 

and k
Z
Zjkk

c
DUT η=

Θ
−= 1                                                                                         (24) 

Representing the amplitude of the forward and reflected wave by a and b respectively, 
one can apply field matching (i.e. voltage and current matching in the transmission line) 
which leads to the conditions13 

- at the input port 

DUTDUTinin baba +=+  
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- at the output port 
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With the scattering coefficient defined as 
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one finds after simple manipulations 
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Taylor expansion with regard to the coupling impedance, Z, leads to  
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A first order approximation to Eq.(26) leads to Walling's log-formula 8 , 

21log ln2 SZZ c−=                                                                                                 (27) 

Recently, Jensen proposed an improved log-formula  for a distributed impedance
9
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Lumped Impedance 

In the limit of 0→Θ , the distributed impedance turns into a lumped impedance with 
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which  to 2nd order is in agreement with the expression found in standard text books  
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Note that the second order difference between transmission line and field analysis for the 
lumped impedance is 
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ZSS which is a consequence of neglecting evanescent modes in 

the transmission line analysis. 
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IV. INTERPRETATION of BENCH MEASUREMENTS 

The field analysis results presented in this paper are claimed to represent a more 
accurate description of the coupling impedance bench measurements than that obtained 
from the standard transmission line treatment. However, the formulae are complex and do 
not lead to explicit expressions for the coupling impedance. On the other hand, they can 
serve to estimate the error made by using the standard formulae.  

Applying the appropriate theoretical scattering coefficient, Eqs. (21) and (22), to the 
standard impedance formulae yields the following expressions for the systematic error in the  

- Hahn-Pedersen lumped impedance formula, Eq. (1) 
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- Walling et al.  log formula, Eqs. (2) and (27)  
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- the log-formula in the limit of 0→Θ  

cZ
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- Jensen improved Log formula, Eq. (28)  
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The error analysis confirms the improvement in Jensen's log- formula. However, the 
improved log-formula is restricted to long structures with 1≥Θ , whereas the regular log-
formula could be used for lumped impedances, albeit with reduced accuracy. 

In summary, it can be stated that the present analysis in all cases confirms the validity 
of coupling impedance bench measurements well below cut-off, provided that the wire size 
is made sufficiently small and the measurement is performed with attached beam tubes of 
sufficient length in order to avoid the effects due to evanescent modes.  
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