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Abstract

We recently developed a general analysis for an az-
imuthally asymmetric rectangular slot in the inner conduc-
tor of a coaxial liner, which allowed us to investigate the
coupling impedance numerically. In the present paper we
obtain analytic expressions for a small hole of arbitrary
shape. Specifically, we go beyond the quasi-static (Bethe)
approximation to explore and understand the structure of
the impedance in the frequency region near the cutoffs of
the inner beam pipe and outer coaxial structure. Finally,
we extend our analytic analysis to a hole in a wall of finite
thickness.

1 INTRODUCTION

In an earlier work, Gluckstern and Neri [1] analyzed the
impedance of a small azimuthally symmetric pill-box in a
beam pipe at frequencies of the same order as the cutoffs
of the TM0n modes in the pipe. They found that the ad-
mittance could be written as the sum of a term depending
primarily on the pill-box width and thickness, and a term
depending primarily on the pipe radius. In fact, the broad
resonance used frequently by others to describe the behav-
ior near cutoffs, was shown to be due to a change of sign of
the imaginary part of the admittance.

We recently constructed a variational form for the
impedance of a rectangular hole in the wall of a coaxial
liner [2]. Our analysis allowed us to study numerically
the frequency dependence of the coupling impedance of a
transverse rectangular slot, small square hole [2] and a lon-
gitudinal rectangular slot, including the resonances due to
the slot length [3]. However, it is possible to obtain an ap-
proximate analytic expressions, analogous to that obtained
in [1], for a small hole of arbitrary shape which would al-
low us to understand the structure of the impedance in the
frequency region near the cutoff of the beam pipe. In the
case of a narrow pill-box the dominant contribution comes
from the magnetic portion of the problem; therefore, in [1],
only the magnetic part was considered. In the present paper
we extend the analysis to the azimuthally asymmetric prob-
lem of a hole in the wall of a coaxial liner. We also consider
both the electric and magnetic portions of the problem. Fi-
nally we extend our analysis to a hole in a wall of finite
thickness.
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2 THE LONGITUDINAL COUPLING
IMPEDANCE

The source fields in the frequency domain generated by the
driving current

Jz(x; y; z; k) = I0�(x)�(y)e
�jkz (1)

are the following:

E(s)
r (r; z; k) = Z0H

(s)

� (r; z; k) =
Z0I0

2�r
e�jkz ; (2)

E(s)
z (r; z; k) = 0; (3)

whereZ0 = 120� [
], k = !=c. The definition of the
frequency dependent longitudinal coupling impedance of
any obstacle can be taken to be

Zk =
�1

I0

Z 1

�1

dzejkzEz(0; �; z; k); (4)

whereEz(r; �; z; k) is the axial electric field in the fre-
quency domain, with frequency dependenceexp(j!t),
where! = kc. This expression can be rewritten as

Zk(k)

Z0

= �
1

2�aZ0I0

Z
dSEz(a; �; z; k)e

jkz ; (5)

where the surface integral is only over the hole, sinceEz

vanishes on the liner wall. Since the driving current on axis
is proportional toexp(�jkz), the problem is simplified by
obtaining results for an even driving currentcos kz and an
odd driving current�j sin kz separately [2]. We use the
superscript (e) for the even problem and the superscript (o)
for the odd problem. The field matching is performed at
the radius of the inner conductor (liner) in the opening. We
call the region inside the inner conductorr � a the “pipe
region” and the region outside the inner conductora � r �

b the “coaxial region”.

3 THIN WALL ANALYSIS

3.1 Odd Part

We now assume that the hole dimensions are small com-
pared to the wavelength, and we can use the quasi-static so-
lutions for the field components in the vicinity of the hole.
For the odd part of the impedance we obtain

Z
(o)

k

Z0

= �
jk

8�2a2
�
h
1 +

�

8�2
W

i
; (6)
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with W being defined as

W =
X
n

�Z
dq[q2Pn(q)�

n2k2

�2a2
Qn(q)]

�
; (7)

where�, defined by�2 = k2 � q2, is the radial propa-
gation constant,� is the electric polarizability of a hole,
and symboln stands for the azimuthal index of the modes.
FunctionsPn andQn contain Bessel functions and their
derivatives and can be found in [2]. For a small hole, the
term proportional to�W will be small compared to1 and
we can write an expression for the admittance as

Z0Y
(o)

k =
j8�2a2

k�
�

ja2

k
W: (8)

3.2 Even Part

Similarly to the odd part we obtain

Z(e)

Z0

=
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8�2a2
 �

h
1�

 �

8�2
V
i
; (9)

where � is the transverse magnetic susceptibility of a hole,
andV is defined as

V =
X
n

�Z
dq[k2Pn(q)�

n2q2

�2a2
Qn(q)]

�
: (10)

As before, for �V � 1 we can write

Z0Y
(e)
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j8�2a2

k �

�

ja2

k
V : (11)

We can also combine Eqs. (6) and (9) to obtain the expres-
sion for the total impedance

Zk

Z0

=
jka

8�2a3

�
 � ��

1

8�2
( 2V + �2W )

�
: (12)

The structure obtained in Eq. (12) is similar to the one
presented in [4], but we now have additional contribution
from the modes in the coaxial region.

3.3 Discussion

We now examine our results in Eqs. (8) and (11). One sees
that each admittance separates into a part which includes
the geometry of the hole (parameters and�), and the term
involving the pipe and the coaxial region. In the present
case the real part includes dependence on parametersb and
a (whereb is the radius of the outer pipe), and is present
even below all possible cutoffs because of the existence of
the TEM mode in the coaxial region. Additional energy is
lost when other outgoing propagating modes are generated
in the “coaxial” and the “pipe” region. In fact, experience
with [1] suggests that these expressions are valid in the re-
gion of the mode cutoffs whereka andk(b� a) are of the
order of1. This speculation is confirmed by the numerical
studies [5].

3.4 Numerical Implementation

It is clear from Eq. (12) that the departure from the usual
small hole (Bethe) approximation is contained in the quan-
titiesW andV defined in Eqs. (7) and (10). The real parts
ofW , V contribute to the imaginary part of the impedance.
From numerical studies [5] we find that for low frequencies
Vr ;Wr � k2, and that below all possible cutoffs imaginary
part ofV;W = �=[ln(b=a)], with additional energy being
lost when other outgoing propagating modes are generated.

To compare the frequency behavior of the admittance of
a small hole with the one presented for a pill-box [1], we
perform numerical calculations for the square hole with the
following parametersb=a = 1:3125, w=a = 0:25. Results
are shown in Figs. 1 and 2 for the imaginary and real part
of the admittance, respectively. Figure 2 clearly shows the
steps which occur aska passes the cutoffs corresponding
to the TM amd TE modes. For the odd part one sees the
cutoffs corresponding to the TE(coax:)11 , TE(coax:)

21 , TE(pipe)
11 ,

TE(coax:)
31 modes, while for the even part one sees the cut-

off corresponding to the TM(pipe)01 mode. This leads to the
conclusion that, for a small hole, the odd (electric) part pri-
marily couples to the TE modes, while the even (magnetic)
part primarily couples to the TM modes near the cutoffs.
This behavior can be also shown analytically (see for exam-
ple [6]). We also confirmed numerically that this behavior
holds for slots withl=a < 1 andkl < 1, in agreement with
[6]. If one goes to very high frequency (kl � �), the imag-
inary part of the admittance in Fig. 1 eventually crosses the
zero axis and changes sign. This behavior corresponds to a
resonance due to the hole length. Note that the resonances
occur at different frequencies for the odd and even parts.

4 THICK WALL ANALYSIS

When the field is incident on a hole in a wall of finite thick-
ness the usual approach is to split it into two components:
one with an asymmetric potential and one with a symmetric
potential about the midpoint of the wall [7]. The parame-
ters and� come from both the symmetric and antisym-
metric problems. We then define the magnetic susceptibil-
ity and electric polarizability seen within the liner as

 in =  s
+  a; �in = �s + �a; (13)

while the susceptibility and polarizability outside the liner
are defined by

 out =  s
�  a; �out = �s � �a: (14)

4.1 Even Part

For the even part of the impedance we obtain [5]:
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Figure 1: Imaginary part of the admittance near the cutoff
frequencies.
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4.2 Odd Part

For the odd part of the impedance we obtain [5]:
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~W =
X
n

Z
dq

h
q2
� J 0

n
(�a)

�aJn(�a)
�

�2
out

�2
in

F 0

n
(�a)

�aFn(�a)

�

�

k2n2

�2a2

� Jn(�a)

�aJ 0

n
(�a)

�

�2
out

�2
in

Gn(�a)

�aG0

n
(�a)

�i
: (18)

Expressions for~V and ~W include the parameters and
�; and, therefore, for the case of a wall of finite thickness,
the admittance doesnot separate into a part which includes
only the geometry of a hole and a term which includes the
geometry of a pipe. But this separationis still valid for a
thin wall (�out = �in,  out =  in) and for a very thick
wall (�out =  out = 0).

5 SUMMARY

We obtained analytic expressions for the impedance of a
small hole which includes effects of energy propagation
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Figure 2: Real part of the admittance near the cutoff fre-
quencies.

along the inner beam pipe and/or outer coaxial pipe. This
allow us to understand the structure of the impedance in the
frequency region near the cutoffs of the inner beam pipe
and outer coaxial structure. We then extended our analytic
treatment to a wall of finite thickness and discussed the
resulting expressions, and concluded that the admittance
could no longer be separated into a part depending only on
the pipe geometry and a part depending primarily on the
hole geometry.
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