

This paper is one of a series issued by the Geographer, Bureau of Intelligence and Research of the Department of State. The aim of the series is to set forth the basis for national arrangements for the measurement of the territorial sea or the division of the continental shelf of maritime nations.

Intended for background use only, this research document does not represent an official acceptance of the United States Government of the line or lines represented on the charts or, necessarily, of the specific principles involved, if any, in the original drafting of the lines. Additional copies may be requested by mail from The Geographer, Department of State, Washington, D. C. 20520, or by telephone (Area Code 202, 632-2021 or 632-2022).

LIMITS IN THE SEAS

No. 76

STRAIGHT BASELINES:
CUBA

October 28, 1977

The Geographer
Office of the Geographer
Bureau of Intelligence and Research

On February 24, 1977, the Republic of Cuba issued Decree-Law 1, which extended its territorial sea limit to 12 nautical miles and established a straight baselines system around its coast. The Decree entered into force on the date of its publication in the Official Gazette, February 26, 1977. The text of Decree-Law 1 is as follows:

Decree-Law 1 of February 24, 1977, published in the Official Gazette on Saturday, February 26, 1977.

Article 1

The territorial sea of the Republic of Cuba has a breadth of 12 nautical miles, measured from the baseline set forth herein. Its outer limit is constituted by a line each of whose points is located at distance equal to 12 nautical miles from the closest point of baseline.

Article 2

The baseline from which the breadth of the territorial sea of the Republic of Cuba is measured is constituted by the straight lines joining the outermost points of the coast, islands, islets, keys and emerged reefs surrounding it and determined by the following geographic coordinates.

LATITUDE	LONGITUDE
DEGREES/	DEGREES/
MINUTES	MINUTES

1. $\quad 21^{\circ} 52.0^{\prime} \mathrm{N}$
2. $\quad 21^{\circ} 52.4^{\prime} \mathrm{N}$
3. $\quad 21^{\circ} 53.9^{\prime} \mathrm{N}$
4. $\quad 21^{\circ} 54.1^{\prime} \mathrm{N}$
5. $\quad 22^{\circ} 09.6^{\prime} \mathrm{N}$
6. $\quad 22^{\circ} 16.5^{\prime} \mathrm{N}$
7. $\quad 22^{\circ} 18.3^{\prime} \mathrm{N}$
8. $22^{\circ} 20.0^{\prime} \mathrm{N}$
9. $\quad 22^{\circ} 25.1^{\prime} \mathrm{N}$
10. $22^{\circ} 28.4^{\prime} \mathrm{N}$
11. $22^{\circ} 31.0^{\prime} \mathrm{N}$
12. $22^{\circ} 35.1^{\prime} \mathrm{N}$
13. $22^{\circ} 38.4^{\prime} \mathrm{N}$
14. $22^{\circ} 40.3^{\prime} \mathrm{N}$
15. $22^{\circ} 42.9^{\prime} \mathrm{N}$
16. $22^{\circ} 53.9^{\prime} \mathrm{N}$
17. $22^{\circ} 59.6^{\prime} \mathrm{N}$
18. $23^{\circ} 08.7^{\prime} \mathrm{N}$
19. $23^{\circ} 09.0^{\prime} \mathrm{N}$
$84^{\circ} 57.2^{\prime} \mathrm{W}$
$84^{\circ} 56.6^{\prime} \mathrm{W}$
$84^{\circ} 55.7^{\prime} \mathrm{W}$
$84^{\circ} 55.3^{\prime} \mathrm{W}$
$84^{\circ} 45.0^{\prime} \mathrm{W}$
84ํ.41.9'W
$84^{\circ} 40.0^{\prime} \mathrm{W}$
$84^{\circ} 38.4^{\prime} \mathrm{W}$
$84^{\circ} 33.1^{\prime} \mathrm{W}$
84ํ28.4'W
$84^{\circ} 24.5^{\prime} \mathrm{W}$
$84^{\circ} 16.1^{\prime} \mathrm{W}$
84ํ11.3'W
$84^{\circ} 08.5^{\prime} \mathrm{W}$
$84^{\circ} 01.4^{\prime} \mathrm{W}$
83³6.6'W
83¹2.9'W PUNTA GOBERNADORA
82²3.6'W PUNTA BRAVA
82²1.4'W PUNTA BARLOVENTO

CABO SAN ANTONIO

PUNTA CAJON
BANCO SANCHO PARDO

CAYO JUTIAS

20.	$23^{\circ} 09.1{ }^{\prime} \mathrm{N}$	82²0.9'W	
21.	$23^{\circ} 10.0$ N	82¹9.5'W	
22.	$23^{\circ} 10.2^{\prime} \mathrm{N}$	$82^{\circ} 18.2^{\prime} \mathrm{W}$	PUNTA CAMPANILLA
23.	$23^{\circ} 10.5{ }^{\prime} \mathrm{N}$	82^16.2'W	PUNTA GUAYACANES
24.	$23^{\circ} 10.8^{\prime} \mathrm{N}$	82^14.8'W	
25.	$23^{\circ} 10.8^{\prime} \mathrm{N}$	$82^{\circ} 12.6$ W	
26.	$23^{\circ} 11.2^{\prime} \mathrm{N}$	8201.6'W	
27.	$23^{\circ} 11.0^{\prime} \mathrm{N}$	$82^{\circ} 00.0^{\prime W}$	PUNTA TIJERAS
28.	$23^{\circ} 16.0^{\prime} \mathrm{N}$	$81^{\circ} 05.2^{\prime} \mathrm{W}$	CAYO MONO
29.	$23^{\circ} 16.9^{\prime} \mathrm{N}$	8054.9'W	FARO CRUZ DEL PADRE
30.	$23^{\circ} 13.6$ N	80¹9.6'W	
31.	$22^{\circ} 56.8^{\prime} \mathrm{N}$	$79^{\circ} 45.4{ }^{\prime} \mathrm{W}$	CAYO LA VELA
32.	$22^{\circ} 41.4{ }^{\prime} \mathrm{N}$	7853.4'W	
33.	$22^{\circ} 37.6^{\prime} \mathrm{N}$	$78{ }^{\circ} 38.8^{\prime} \mathrm{W}$	CAYOS GUILLERMITOS
34.	$22^{\circ} 32.9$ N	78²2.8'W	
35.	$22^{\circ} 28.9^{\prime} \mathrm{N}$	78¹0.0'W	CAYO PAREDON GRANDE
36.	$22^{\circ} 21.1^{\prime} \mathrm{N}$	$77^{\circ} 51.7^{\prime} \mathrm{W}$	BAJO TRIBUTARIOS DE MINERVA
37.	$22^{\circ} 11.5$ N	77º39.8'W	CAYO CONFITES
38.	$21^{\circ} 39.8$ N	$77^{\circ} 08.4{ }^{\prime} \mathrm{W}$	PUNTA MATERNILLOS
39.	$21^{\circ} 16.1^{\prime} \mathrm{N}$	76²1.4'W	
40.	$21^{\circ} 07.6^{\prime} \mathrm{N}$	7543.0'W	
41.	$21^{\circ} 06.9^{\prime} \mathrm{N}$	75²1.7 ${ }^{\text {W W }}$	
42.	$21^{\circ} 04.3$ N	75³7.2'W	PUNTA LUCRECIA
43.	$20^{\circ} 41.9^{\prime} \mathrm{N}$		CAYO MOA
44.	$20^{\circ} 37.1^{\prime} \mathrm{N}$	$74{ }^{\circ} 43.8{ }^{\text {W }}$ W	PUNTA GUARICO
45.	20¹9.0'N	$74^{\circ} 13.8{ }^{\prime} \mathrm{W}$	PUNTA FRAILE
46.	$20^{\circ} 18.1$ ' N	$74^{\circ} 11.8^{\prime} \mathrm{W}$	PUNTA AZULES
47.	$20^{\circ} 15.5^{\prime} \mathrm{N}$	74*09.0'W	QUEBRADO DEL MANGLE
48.	$20^{\circ} 15.2^{\prime} \mathrm{N}$	74*08.7 ${ }^{\text {W W }}$	
49.	20¹4.8'N	7408.5'W	PUNTA MAISI
50.	$20^{\circ} 13.6$ N	$74{ }^{\circ} 08.1^{\prime} \mathrm{W}$	
51.	20¹3.1'N	7407.9'W	
52.	20¹2.7'N	$74^{\circ} 07.8^{\prime} \mathrm{W}$	PUNTA QUEMADO
53.	$20^{\circ} 11.9^{\prime} \mathrm{N}$	$74{ }^{\circ} 08.1^{\prime} \mathrm{W}$	
54.	$20^{\circ} 10.9$ N	7408.6'W	
55.	$20^{\circ} 04.8^{\prime} \mathrm{N}$	$74^{\circ} 14.6$ W	
56.	$20^{\circ} 04.4{ }^{\prime} \mathrm{N}$	$74^{\circ} 15.4{ }^{\prime} \mathrm{W}$	
57.	$20^{\circ} 04.1^{\prime} \mathrm{N}$	74*16.2'W	
58.	$20^{\circ} 04.6^{\prime} \mathrm{N}$	74*17.8'W	PUNTA CALETA
59.	$19^{\circ} 55.0^{\prime} \mathrm{N}$	74*59.0'W	
60.	$19^{\circ} 54.3^{\prime} \mathrm{N}$	75º1.3'W	
61.	$19^{\circ} 53.9^{\prime} \mathrm{N}$	7504.9'W	
62.	$19^{\circ} 53.4{ }^{\prime} \mathrm{N}$	7509.4'W	
63.	$19^{\circ} 52.9^{\prime} \mathrm{N}$	75¹8.2'W	
64.	$19^{\circ} 52.6^{\prime} \mathrm{M}$	75²1.4'W	

65.	$19^{\circ} 52.9^{\prime} \mathrm{N}$	75²9.6'W	
66.	$19^{\circ} 52.9^{\prime} \mathrm{N}$	$75^{\circ} 32.3$ W	
67.	$19^{\circ} 53.4$ ' N	75³5.2'W	
68.	$19^{\circ} 53.6^{\prime} \mathrm{N}$	$75^{\circ} 36.4$ W	
69.	$19^{\circ} 57.8^{\prime} \mathrm{N}$	7552.6'W	PUNTA MORILLO
70.	$19^{\circ} 57.3^{\prime} \mathrm{N}$	7557.9'W	PUNTA CABRERA
71.	$19^{\circ} 57.3^{\prime} \mathrm{N}$	$76^{\circ} 00.4{ }^{\text {W W }}$	
72.	$19^{\circ} 57.7^{\prime} \mathrm{N}$	$76^{\circ} 04.3^{\prime} \mathrm{W}$	
73.	$19^{\circ} 57.9^{\prime} \mathrm{N}$	7605.9'W	
74.	$19^{\circ} 58.8^{\prime} \mathrm{N}$	$76^{\circ} 11.1{ }^{\prime} \mathrm{W}$	
75.	$19^{\circ} 58.0^{\prime} \mathrm{N}$	76¹9.2'W	
76.	$19^{\circ} 57.3^{\prime} \mathrm{N}$	76²1.3'W	PUNTA TABACAL
77.	$19^{\circ} 56.9^{\prime} \mathrm{N}$	$76{ }^{\circ} 31.2^{\prime} \mathrm{W}$	PUNTA BAYANITA
78.	$19^{\circ} 36.8^{\prime} \mathrm{N}$	76³4.8'W	
79.	$19^{\circ} 56.8^{\prime} \mathrm{N}$	76042.6'W	
80.	$19^{\circ} 56.0^{\prime} \mathrm{N}$	7647.2'W	PUNTA TURQUINO
81.	$19^{\circ} 53.3$ N	7658.7'W	
82.	$19^{\circ} 53.2^{\prime} \mathrm{N}$	7659.4'W	
83.	$19^{\circ} 53.2$ N	$77^{\circ} 00.8^{\prime} \mathrm{W}$	
84.	$19^{\circ} 53.2^{\prime} \mathrm{N}$	$77^{\circ} 04.4{ }^{\prime} \mathrm{W}$	
85.	$19^{\circ} 53.6^{\prime} \mathrm{N}$	$77^{\circ} 07.8^{\prime} \mathrm{W}$	
86.	$19^{\circ} 51.2^{\prime} \mathrm{N}$	$77^{\circ} 21.0^{\prime} \mathrm{W}$	
87.	$19^{\circ} 50.8^{\prime} \mathrm{N}$	$77^{\circ} 23.8$ W	
88.	$19^{\circ} 50.8^{\prime} \mathrm{N}$	$77^{\circ} 25.2^{\prime} \mathrm{W}$	PUNTA MONJE
89.	$19^{\circ} 50.6$ N	$77^{\circ} 30.2^{\prime} \mathrm{W}$	PUNTA ESCALERETA
90.	$19^{\circ} 50.6$ N	$77^{\circ} 32.2^{\prime} \mathrm{W}$	PUNTA PESQUERO DE LA ALEGRIA
91.	$19^{\circ} 49.6^{\prime} \mathrm{N}$	$77^{\circ} 40.4{ }^{\prime} \mathrm{W}$	
92.	$19^{\circ} 50.2^{\prime} \mathrm{N}$	$77^{\circ} 44.9^{\prime} \mathrm{W}$	
93.	$20^{\circ} 31.1$ 'N	78¹9.8'W	PUNTA CABEZA DEL ESTE
94.	$20^{\circ} 32.2^{\prime} \mathrm{N}$	78²3.0'W	PUNTA MACAO
95.	$20^{\circ} 47.6^{\prime} \mathrm{N}$	7856.7'W	CAYO ANCLITAS
96.	2052.2'N	$79^{\circ} 03.3$ W	PUNTA ESCONDIDO
97.	$21^{\circ} 03.2 \mathrm{~N}$	79²0.4'W	CAYO CINCO BALAS
98.	$21^{\circ} 06.4{ }^{\prime} \mathrm{N}$	$79^{\circ} 26.6^{\prime} \mathrm{W}$	CAYO BRETON
99.	$21^{\circ} 10.5 \mathrm{~N}$	$79^{\circ} 31.0^{\prime} \mathrm{W}$	
100.	$21^{\circ} 13.1$ '	$79^{\circ} 33.3$ W	
101.	$21^{\circ} 35.6^{\prime} \mathrm{N}$	$79^{\circ} 50.5$ W	CAYO PUGA
102.	$21^{\circ} 37.7$ N	$81^{\circ} 04.8$ W	CAYO TRABUCO
103.	$21^{\circ} 35.6$ N	$81^{\circ} 30.7{ }^{\text {W W }}$	
104.	$21^{\circ} 34.7$ 'N	$81^{\circ} 38.3^{\prime} \mathrm{W}$	
105.	$21^{\circ} 33.6$ N	$81^{\circ} 45.8^{\prime} \mathrm{W}$	CABEZO DE LA ESTOPA
106.	$21^{\circ} 28.4$ N	82¹2.8'W	CABEZO SAMBO
107.	$21^{\circ} 26.5{ }^{\prime} \mathrm{N}$	8250.3'W	
108.	$21^{\circ} 26.2^{\prime} \mathrm{N}$	$82^{\circ} 53.0$ W	
109.	$21^{\circ} 26.3$ N	8253.8'W	CALETA DE AGUSTIN JOL

110. $21^{\circ} 28.0^{\prime} \mathrm{N}$
111. $21^{\circ} 54.4^{\prime} \mathrm{N}$
112. $21^{\circ} 45.9^{\prime} \mathrm{N}$
113. $21^{\circ} 45.8^{\prime} \mathrm{N}$
114. $21^{\circ} 45.2^{\prime} \mathrm{N}$
115. $21^{\circ} 45.1^{\prime} \mathrm{N}$
116. $21^{\circ} 48.6^{\prime} \mathrm{N}$
117. $21^{\circ} 48.6^{\prime} \mathrm{N}$
118. $21^{\circ} 49.6^{\prime} \mathrm{N}$
119. $21^{\circ} 49.7^{\prime} \mathrm{N}$
120. $21^{\circ} 50.1^{\prime} \mathrm{N}$
121. $21^{\circ} 50.2^{\prime} \mathrm{N}$
122. $21^{\circ} 50.6^{\prime} \mathrm{N}$
123. $21^{\circ} 51.4^{\prime} \mathrm{N}$
124. $21^{\circ} 51.7^{\prime} \mathrm{N}$
8304.2'W CABO PEPE
8402.2'W CABO FRANCES
$84^{\circ} 26.7^{\prime \prime} \mathrm{W}$
$84^{\circ} 27.3^{\prime} \mathrm{W}$
$84^{\circ} 30.2^{\prime} \mathrm{W}$
$84^{\circ} 30.6^{\prime} \mathrm{W}$
$84^{\circ} 48.1^{1} \mathrm{~W}$
$84^{\circ} 48.6^{\prime} \mathrm{W}$
$84^{\circ} 55.0^{\prime} \mathrm{W}$
$84^{\circ} 55.2^{\prime} \mathrm{W}$
$84^{\circ} 55.9^{\prime} \mathrm{W}$
$84^{\circ} 56.1^{\prime} \mathrm{W}$
$84^{\circ} 56.6^{\prime} \mathrm{W}$
$84^{\circ} 57.1^{1} \mathrm{~W}$
$84^{\circ} 57.2^{\prime} \mathrm{W}$

PUNTA LEONES

PUNTA DEL HOLANDES

PUNTA PERPETUA

ANALYSIS

A coastal State's right, under international law, to establish straight baselines is defined by the 1958 Geneva Convention on the Territorial Sea and the Contiguous Zone, the International Court of Justice's Anglo-Norwegian Fisheries Case, and the principles of customary international law as evidenced by State practice. Article 4 of the 1958 Geneva Convention states:

Article 4

1. In localities where the coastline is deeply indented and cut into, or if there is a fringe of islands along the coast in its immediate vicinity, the method of straight baselines joining appropriate points may be employed in drawing the baseline from which the breadth of the territorial sea is measured.
2. The drawing of such baselines must not depart to any appreciable extent from the general direction of the coast, and the sea areas lying within the lines must be sufficiently closely linked to the land domain to be subject to the regime of internal waters.
3. Baselines shall not be drawn to and from low-tide elevations, unless lighthouses or similar installations which are permanently above sea level have been built on them.
4. Where the method of straight baselines is applicable under the provisions of paragraph 1, account may be taken, in determining particular baselines, of economic interests peculiar to the region concerned, the reality and the importance of which are clearly evidenced by a long usage.
5. The system of straight baselines may not be applied by a State in such a manner as to cut off from the high seas the territorial sea of another State.
6. The coastal State must clearly indicate straight baselines on charts, to which due publicity must be given.

To employ straight baselines, a State must have a coast that, where the baselines are employed, contains specific geographic characteristics: a) "deeply indented or cut into" coasts and/or b) coasts "fringed with islands." The straight baselines within the system must not depart to any appreciable extent from the "general direction of the coast," and the sea areas encompassed by the straight baselines must be "closely linked to the land domain to be subject to the regime of internal waters." Straight baselines generally are not to be drawn from low-tide elevations. Particular straight baselines may, however, take into account "economic interests peculiar to the region concerned," as evidenced by long usage. Finally, the straight baselines must be issued on charts to which due publicity is given.

By passing Decree-Law 1, Cuba joins approximately 55 other countries in creating straight baselines. The Cuban straight baselines listed in Article 2 of Decree-Law 1 are depicted on DMA/HC N.O. chart 27000. ${ }^{1}$ The 1977 law creates a system of straight baselines which completely envelopes Cuba and its offshore islands as well as the U.S.-leased Guantanamo Naval Station. The system's total length measures $1,380.65$ nautical miles and has 124 turning points for an average segment length of 11.14 nautical miles. Point 1 is situated on the southwestern point of Cuba, and the basepoints numerically extend clockwise about the island to No. 124 (and by implication to No. 1).

Table 1 classifies the baseline segments according to distance. The length of the various segments varies from 0.21 nautical miles (118-119) to 69.24 nautical miles (101-102). Approximately one-half of the baselines (66 of 123) are between 1.0 and 9.9 nautical miles in length. The system contains five segments (27-28, 31-32, 92-93, 101-102, and 110111) longer than 50 nautical miles.

[^0]Table 1

DISTANCE BETWEEN

CUBAN STRAIGHT BASELINE SEGMENTS
Distance between
Basepoints
(Nautical Miles)
0.1-0.9 21
1.0-9.9 66
10.0-19.9 12
20.0-29.9 8
30.0-39.9 6
40.0-49.9 5

50 or longer 5

Number of
Baseline
Segments
21
66

6

Points 1-10 of the Cuban straight baseline system define the general limits of the historic bay of Guanahacabibes.

Between points 10-17 it appears (according to U.S. charts) that low-tide elevations on the Cuban fringing reefs have been utilized as basepoints for the system. From point 17 (Punta Gobunadora, west of Bahia Honda) through point 28, the Cuban coastline is neither indented nor fringed with islands. Beginning at about $81^{\circ} 10^{\prime}$ West (near point 28) to approximately $77^{\circ} 40^{\prime}$ West (between 37 and 38), the coastline is "fringed" with islands. From $77^{\circ} 40^{\prime}$ West to No. 92, the southern entrance to the Gulf of Guacanayabo, the Cuban coastline again is not deeply indented or fringed with islands.

From point No. 92 to No. 93, the baseline extends north-westward across the mouth of the bay to connect with a line of cays that are oriented in the same general direction. A more northward-trending line to follow the entire string of cays, rather than this particular line of cays,
would more aptly define the natural closing points of the geographic bay and hence the general direction of the coast.

The continuation along the line of cays from 93 through 100 generally conforms with State practice and the Convention. The extension of the system from 100 to 101 projects northwestward, seaward of a "thin" line of cays. From 101-102 the straight baseline continues nearly due west to Cayo Trabuco, an eastern cay of the Canary Archipelago, across an area that contains no islands for over 69 nautical miles. Moreover, the Cuban coast north of point 101 westward to Pta. Aristizabal is basically without indentation.

From 102 to 107, the straight baselines extend seaward of the Canary Archipelago cays to the Isle of Pines. Shorter straight baselines would follow more closely the general direction of the coast.

Lines 107-110 follow the southern coast of the Isle of Pines, which is neither indented nor fringed with islands.

West of the Isle of Pines, the straight baselines again depart from the actual general direction of the Cayos de San Felipe and extend seaward directly to Cape Frances. The departure advances the baseline approximately 25 nautical miles seaward. The next segment, 111-114, encloses a smooth coast; lines 114-115 close a juridical bay (Corrientes). The remainder of the system follows the relatively smooth coast of southwestern Cuba.

[^0]: ${ }^{1}$ It should be noted that U.S. charts were used for analysis in this study. There may be some slight discrepancies in calculation between U.S. and Cuban charts owing to the dates of hydrographic surveys. To date, the Cuban Government has not published official charts depicting its claimed baselines.

