
A Users guide to BFD

This list is arranged in a semi−serial order. You'll use the earlier commands a few times at first and then the later in a
cyclic manner.

Initialize your shell environment
The BFD installation script should setup a lot of what BFD needs to run. However, the following must be set.
They can be set in your login .rc files:

BFDROOT
This should point at the top level directory where the Icecube and BFD tools where installed at.

Example: >setenv BFDROOT /home/icecube/Icecube_tools/bfd−tools/bfdroot

◊

JAVA_HOME
Ask your Sys−Admin where the most current production release of Java is located on the system.

Example: >setenv JAVA_HOME /usr/local/java2/sdk/java

◊

Initialize the BFD workspace
If you installed BFD from the installation script (See the download page), you do not need to perform this
step. Otherwise, you will need to run this command once. If you happen to run it multiple times, even after
you started to populate your workspace, no damage will occur.

> bfd init <Absolute/Path/to/Icecube_tools/>

If you do not include an absolute path, bfd will attempt to resolve the BFDROOT env. variable. If this fails,
bfd will not initialize.

Before each session with using BFD you will need to source the setup.sh or setup.csh scripts (depending on
the shell you use). This will setup some of the more esoteric paths and environment variables. It is not
recommended that sourcing of this file occurs each time a login shell is launched. It may cause uknown
behaviour with other applications.

Creating a project
Before you start adding code to your project, it is essential that you prepare your project environment to be
used by BFD. This is a one time step, and you will only need to modify the files created here slightly as your
project grows.

While BFD is a big time saver with it's automazation of the build process, it has little to no knowledge of the
underlying tools that do the builds. Hence its power to handle various language code bases. The following
example uses Ant for creating a project space for a Java project. Support is forthcoming for C and C++
projects.

Lets start by having Ant create its framework for the project. The following commands will all be done in the
top level of the Bfd workspace you just created above.

> mkdir foo
> ant −DPROJECT=foo createProject

These two commands are essentialy all you need to create a viable project space that BFD knows how to
build. This would be boring, as there are no files to compile or targets to build to. Lets create some dummy
packages and classes in them.

> ant −DPROJECT=foo −DPACKAGE=foo.bar createPackage
> ant −DPROJECT=foo −DPACKAGE=foo.bar −DCLASS=baz createClass

03/16/04 18:03:04

1/4

If you go into the foo directory, you will see the structure created by ant. As you dig down into the src
directory, you will see the package and class structure that you just created. From here you can get a good idea
on how to create the structure of a real project. There are numerous books out there on Software Design,
Design Patterns, and Refactoring, that will help you make intelligent decisions on how your project is
designed.

Once you have your project framework all in place, you now need to check it into CVS (BFD is designed to
use CVS and is a requirement for use).

> cd foo
> cvs import −m"Some message" foo someVendorName start
> cd ..
> mv foo foo_save # Or some other safe directory/location

Those familiar with CVS should be familiar with this sequence. You are creating a new project and importing
the files. Be sure you have the proper permission for the CVS realm you are using.

Checking out a project
Once you have your bfd workspace initialized and created your projects, you can start checking out projects to
build.

> bfd co|checkout [−a cvs root] [−r release tag] project

The −a option allows you to override the existing CVSROOT env. variable. If you do not include this and the
CVSROOT variable is undefined, the project will not be checked out.
The −r option allows you to declare which revision level of the project you want checked out. By default bfd
will check out the HEAD revision.

Not all projects out there available via CVS are usable by bfd. Specific Ant files are directives need to be
included with the CVS project in order for it work with bfd. Refer to the ICSDE document to understand what
needs to be added.

Using the example in the previous step:

> bfd checkout foo
Delivering a project

Once bfd has successfully built a project, You must 'stamp it' as ready for use by other projects or for
inclusion in a meta−project* inside bfd.

> bfd dl|deliver [−b|−n|−j|−r tag] project

BFD allows you to define what type of delivery you are making. The most common [−b] denotes a bug fix.
[−n] denotes that this delivery has extended the interface of the project (Nothing destructive has been added to
the project). [−j] is used only in the case where you are delivering a major release. If the project is
removing/changing interfaces and may break current implementations, this flag should be used. If you need to
deliver a project from a previous production cycle, the [−r tag] may be used. This will reconstitute the project
from CVS and deliver it.

If a project depends on other bfd controlled projects, attempts to build the primary project will look for the last
'stamped' releases of the required projects to build against. Even if a build of an updated required project was
successful, it will not be considered to be built against until it has been stamped.
The same goes for meta−projects. If a meta−project requires other meta−projects to build, it will only consider
the last 'stamped' versions of each contained meta−project.

Following our foo project:

03/16/04 18:03:04

2/4

http://bfd.lbl.gov/doc/DevEnv.pdf

> bfd deliver −b foo

You will be prompted to OK the delivery tag, if this is what you want, say 'y'. Otherwise you will need to pass
in the −r arg with the tag you want to deliver to.

Producing a project
More specifically, make a release of this project which has the main task of building the projet.

> bfd prod|produce [−r release tag] [−l build dir] project

> bfd prod|produce [−b build dir] project architecture

Where [−r release tag] is used to denote which delivered release version of the project you want to produce.
A project must be delivered before it can be produced. As you saw above, a delivery of a project will return its
release string. [−l build dir] is supplied by BFD to make a sepereate build directory for the project. If it is
missing, all the build and produce generated files will be stored in the project directory. This will sometimes
make for a messy directory and using the −l is highly recommended.

If your project can be built for multiple architectures, you need not re−deliver the project. BFD allows you to
reproduce the project by simply noting the local build dir you initially used with the [−b build dir] flag. As
you can see, by not using the −l flag initially, you can end up with multiple architecture builds in the same
project directory. Yuck! There may also be problems with .h and conf files being overwritten for each arch.
Again, we highly recommend that the −l flag is used for all your BFD projects that are produced.

In a nutshell, this will instruct bfd to run the proper Ant command on the project required to make it a
deliverable and thus usable by other projects.

Concluding our foo project example:

> bfd produce −r V00−00−01 −l foo_debug foo

Note that the release tag was the default value returned when we delivered it above.
Creating a MetaProject

If you are using BFD, you will understand how large software projects grow more complex with both the
amount of code to maintain and their intricate dependencies. Simply using BFD to keep track of each software
component in a serial manner doesn't adhere to the hierarchial structure that each component contributes to.
To solve this, BFD is able to create and manage what is known as a MetaProject.

Consider 5 software components. Each is being developed by a separate effort. There is a main component
that utilizes exposed API from 2 others, and those two both require the two remaining components.
For a developer or seasoned software manager, this is easy to visualize. While this group of projects are of
equal importance as the other components in the entire project, they play no role beside interacting in this
group. By creating a MetaProject within BFD, the user can define both the build and dependency order of
these components. At the highest level. BFD sees this MetaProject as simply another project to build. As an
added bonus, BFD will also allow you to define a MetaProject as constituent of yet another MetaProject. As
you have surmised, this allows you to replicate large, complex build trees by breaking them down into logical
[sic] components. Enough verbage, lets look at the process:

In all cases the []'s should be ignored once a value has been inserted.
Create the empty meta project repository in CVS from your workspace:

> mkdir [META−PROJECT]

By convention, meta project names are all upper−case. This helps to distinguish between projects and
the meta projects that contain them.

1.

03/16/04 18:03:04

3/4

Use the same name of the directory for the name of the new CVS repo. At this time, the repository
will be empty of user files.
Have Ant create the build framework.

> ant −DPROJECT=[META−PROJECT] createProject

This will tell Ant to populate the new directory with the build framework that BFD will use.

2.

Use BFD to create a new metaproject

> bfd meta [META−PROJECT] [list of needed BFD project names]

The list of projects must all be existing projects that have been created with BFD by the
aforementioned steps.

3.

Inform CVS of the new repository.

> cd [META−PROJECT]
> cvs import −m"Some meaningful initial message" [META−PROJECT] BFD
start

4.

Convert metaproject into CVS directory.

> cd ..
> rm −rf [META−PROJECT]
> cvs co [META−PROJECT]

5.

Building a MetaProject
Once you have a metaproject organized, you will need to deliver it periodically 'deliver' it so it can be built
with the latest stable releases of its constituent projects.

In order to do so, you will need to coordinate with the individual project developers and have them Deliver
their projects before you can proceede. Once done, each developer will provide you with a BFD release tag
(e.g. V01−00−06). Each project will then need to be Checked out in your workspace.

> bfd co −r

Repeat the above for each project with its tag.
The metaproject can now be delivered.

> bfd deliver {−b|−n|−j} [meta project]

* A project that is solely composed of other interdependent projects

This page maintained by Martin Stoufer
Page last modified: Monday, 15−Mar−2004 16:35:28 PST

03/16/04 18:03:04

4/4

mailto:MCStoufer@lbl.gov

