caGrid restrictions on use of caDSR types:

· Cyclic package dependencies are not allowed.

· e.g. Package A cannot contain a Class with an association to Class B, if Class B’s containing Package contains a Class with an association to Package A

· Nor can this be true through transitivity
· Data exposed (classes and attributes) must be used under a consistent project version
· That is, even though Classes and Attributes can be versioned individually, in order to use those types on the grid, they need to be packaged together in a consistent project version.

· Data services can only expose a (non-proper) subset of a single project
· one can always create a new project to aggregate existing projects

XML Schema Existence Rules:
· We don’t currently require attribute sharing, as a CDE is an attribute bound to a Class… we enforce at the Class-level, and the class is required to handle the structure of its attributes (e.g. what to call them, whether to use xml attributes or elements, etc)
· Each caDSR data object (as part of a specific Project version) used in the grid must have its XML format modeled in an XML Schema that is registered in the GME. It is expected to be able to be represented as an XML document (a self-standing element). That is, the object must be able to be passed around the grid (as result of a query to a data service, or invocation of an analytical service, as well as act as input to a operation).

· Every caDSR Package (as part of a specific Project version) must have a corresponding XML Schema that is registered in the GME, even if it just imports a series of other XML Schemas and doesn’t define any of its own types.
· Every caDSR Project must have a corresponding XML Schema registered in the GME. It will most likely just imports a series of other XML Schemas (corresponding to its Packages’ schemas), though it may define its own types.
· These rules let the XSD modeler create any level of schema granularity from 1 per project, down to 1 per Class, but there is always a defined way to retrieve all of the types for a given Project, Package, and Class.

· We need a default heuristic for assigning namespaces (can use what we had in 0.5), but user’s should be able to specify a non-default mapping.

caDSR to XML Schema Mapping Rules:

· Project -> Namespace
· Package -> Namespace

· Class -> SchemaTypeReference (must define a global element, should also define a type)
· This is a one-to-one mapping, right? For a given Project/Package, a CDE can only map to a single SchemaTypeReference. However, a CDE can be shared between Projects/Packages and have different Schemas, right?
· Right, a given Class should have one representation in the grid (one XSD definition). However, a CDE may be represented multiple ways, as defined by the containing Class it is used in.
· Attribute -> SchemaTypeReference (+ XPath or XPointer?)
· If we require that the attribute exist as either an attribute of the Class’s Element or as a direct sub-Element, we don’t need a complex description like XPath or XPointer, we can just have a structure to represent “name” and “type (attribute, sub element, or element’s text)”. We will also have to allow for the text of an element (elements that extend string or some other xs type) to be modeled as an attribute of a class because the caDSR does not allow for the extension of basic types. For example, an element that extends xs:string and has attributes would likely be modeled in the caDSR as a class with a value attribute in addition to its other attributes.
· Will this always be the case for existing XSD though? It’s certainly possible to not be. And in the trivial cases, the expression would be simple anyway, so might as well use the more expressive language.
· Association -> SchemaTypeReference (+ XPath or XPointer?)
· We don’t currently specify how Class associations should be modeled. This isn’t necessarily a critical issue because as long as the source Class adheres to the specifications, it is responsible for managing access to the target Class. That is, if the source Class is transported over the grid, it is expected to manage the serialization/deserialization of its associated Classes.

· It is an application specific decision to control the extent to which (if any) associations are populated in transported Classes. For example, the current behavior of data services is that each Class instance (Object) returned, is only has its attributes populated and no associated objects. However, the input to the query operation is (will be) itself a caDSR registered class (CQLQuery – name may change), that does have associated objects populated as it is transported over the grid.
· However, for applications or middleware working directly at the XML layer (such as the workflow infrastructure, distributed query infrastructure, or any generic grid client), the representation of associations may be important. For example, if Class A has two different named associations to Class B, it may be important to know how to extract, from an XML representation of Class A, a particular Class B instance from one of the associations. In this case, there needs to be a well-defined way to go from the logical model of the associations in caDSR, to how it is represented in the corresponding XML Schema definition for Class A.
· There are 3 main approaches to representing Class associations I have seen:
1. Create a sub-element in the source Class’s corresponding Element that shares the name of the target role name. Nest the instances of the target Class as their corresponding Elements. I consider this the preferred approach.
<A>

<bCollection>

<B someAttributeOfB=”foo”/>

<B someAttributeOfB=”foo”/>

</bCollection>

2. Nest the instances of the target Class as their corresponding Elements directly under the corresponding element of the source Class, ignoring the rolename. Basically doesn’t work for multiple named associations to the same class.
<A>

<B someAttributeOfB=”foo”/>
<B someAttributeOfB=”foo”/>

3. Nest sub-elements, that share the name of the target role name, in the source Class’s corresponding Element. These elements are of the “type” of the target Classes corresponding type. Requires not only global element defections for each Class, but also global type definitions. Also generally not what the modeler intended (multiple occurrences of the association name). Also problematic for extracting associated instances and using them on their own. This is what the caCORE SDK 3.1 generated XSDs look like.
<A>

< bCollection someAttributeOfB=”foo”/>

< bCollection someAttributeOfB=”foo”/>

· It seems the best approach is to share a common model for pointing to both attributes and associated classes. This should probably be an (restricted) XPath relative to the containing Class’s representation. For the examples above this would be:
1. /bCollection/B

2. /B

3. /bCollection

· Model designers may wish to provide an arbitrary amount of indirection between associated classes in the schema. For example, a schema defines /A/B/C/D and I only want to expose A->D in my model. However, it seems this can be handled fine by the XPath strategy.
It may be necessary to map XML Schema types to caDSR CDEs. For example, inspect WSDL from a service to determine if it exposes some CDE. This is certainly a one-to-one mapping and should be trivial to implement a reverse-lookup.
Resources discussing UML to XSD Mapping:

· http://www.xml.com/lpt/a/2001/08/22/uml.html
· http://www.xml.com/lpt/a/2001/09/19/uml.html
· http://www.xml.com/lpt/a/2001/10/10/uml.html
· http://www.sparxsystems.com.au/resources/xml_schema_generation.html
SchemaTypeReference (represents a global type in a given schema)
· Schema’s Namespace

· Type (element, complexType, simpleType)
· Name (of the Type)

0.5 Approach:
The caGrid 0.5 Technical Guide has a detailed explanation of the approach in Chapter 4.
It is essentially a rule based approach to naming XML schema namespaces from information in caDSR:
 gme://<Classification Scheme>.<Context Name>/<Classification Scheme Version>/<Classification Scheme Item>
Or in other words:
 gme://<Project Short Name>.<Context Name>/<Project Version>/<Package Name>
Uniqueness assumed (versions aside):
· context name

· project short name in context

· package name in project

· class name in package

· attribute name in class

Issues:

· (critical) The naming assumptions above are not correct (the names used are allowed to be edited).

· (critical) Doesn’t handle external standard schemas (e.g. MAGE-ML)

