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A critical issue identified in both the tech-
nology roadmap from the Optoelectronics
Industry Development Association and the
roadmaps from the National Electronics
Manufacturing Initiative, Inc. is the need
for predictive computer simulations of
processes, devices, and circuits. The goal of
this paper is to respond to this need by
representing the extensive amounts of theo-
retical data for transport properties in the
multi-dimensional space of mole fractions
of AlAs in Ga1�x Alx As, dopant densities,
and carrier densities in terms of closed
form analytic expressions. Representing
such data in terms of closed-form analytic
expressions is a significant challenge that
arises in developing computationally effi-
cient simulations of microelectronic and
optoelectronic devices. In this paper, we
present a methodology to achieve the
above goal for a class of numerical data in
the bounded two-dimensional space of
mole fraction of AlAs and dopant density.
We then apply this methodology to ob-
tain closed-form analytic expressions for
the effective intrinsic carrier concentra-
tions at 300 K in n-type and p-type
Ga1�x Alx As as functions of the mole
fraction x of AlAs between 0.0 and 0.3. In
these calculations, the donor density ND

for n-type material varies between 1016

cm�3 and 1019 cm�3 and the acceptor
density NA for p-type materials varies be-
tween 1016 cm�3 and 1020 cm�3. We find
that p-type Ga1�x Alx As presents much
greater challenges for obtaining accept-
able analytic fits whenever acceptor densi-
ties are sufficiently near the Mott transi-
tion because of increased scatter in the
numerical computer results for solutions
to the theoretical equations. The Mott tran-
sition region in p-type Ga1�x Alx As is of
technological significance for mobile wire-
less communications systems. This
methodology and its associated principles,
strategies, regression analyses, and graph-
ics are expected to be applicable to other
problems beyond the specific case of ef-
fective intrinsic carrier concentrations such
as interpreting scanning capacitance mi-
croscopy data to obtain two-dimensional
doping profiles.
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1. Introduction and Motivation

Optoelectronic, microwave, and electronic devices
made from III-V compounds have high carrier and/or
doping concentrations in their active regions during op-
eration. Such high concentrations produce changes in
carrier densities of states, band structures, and effective
intrinsic carrier concentrations. These changes then in-
fluence considerably the performance of optical and

electronic devices at 300 K in advanced applications
such as microwave receivers and transmitters, light
sources, and high-speed digital electronics for signal
processing, computing, and wide-band communica-
tions. The properties of the above devices that are al-
tered by high-concentration effects include carrier mo-
bilities, band gaps, band-edge offsets at heterostructure

69



Volume 107, Number 1, January–February 2002
Journal of Research of the National Institute of Standards and Technology

interfaces, densities of initial and final states, effective
intrinsic carrier concentrations, refractive indices, ab-
sorption, and luminescence. Examples of devices for
which the results from this paper are significant include
linear power amplifiers in digital cellular phones and
diode lasers and light emitting diodes in optical commu-
nications systems.

A critical issue identified in both the technology
roadmap from the Optoelectronics Industry Develop-
ment Association (OIDA) [1] and the roadmaps from the
National Electronics Manufacturing Initiative (NEMI)
[2] is the need for commercial simulators of processes,
devices, and circuits that are predictive. Predictive simu-
lators are key to being able to evaluate quickly manufac-
turing options and thereby to shorten product develop-
ment cycles. A critical condition for predictive
simulators is that they require physically and chemically
correct models for input parameters. Predictive device
simulators for bipolar and field-effect transistors require
a variety of physical models and associated input
parameters to describe fully how carrier transport varies
with carrier concentrations, ionized dopant densities,
alloy mole fractions, and temperatures. The effective
intrinsic carrier concentration is an essential input
parameter for bipolar device simulators. The goal of this
paper is to respond to this need by representing the great
amounts of numerical data for the effective intrinsic
carrier concentrations in Ga1�x Alx As, which are
presently in tables [3], in terms of closed-form analytic
expressions. These expressions are given below.
Combining these expressions and the recently reported
minority electron mobilities [4] then gives an internally
self-consistent description of carrier transport in the
p-type bases of GaAs/Ga1�x Alx As heterojunction bipo-
lar transistors (HBTs). This new, self-consistent de-
scription of carrier transport is based on quantum me-
chanics with no fitting parameters extracted from
interpreting electrical measurements on the devices
themselves. It will reduce the number of unknown or
variational parameters in device simulators and should
lead to improved predictive capabilities for device simu-
lators.

The predictions of dc common-emitter gains, RF
power gains, and current-voltage characteristics from
simulators for silicon and III-V semiconductor bipolar
transistors are sensitive to the dependence of the effec-
tive intrinsic carrier concentration nie(NI, x ) on the do-
pant density NI, where I = D for donors, I = A for accep-
tors, and x is the mole fraction of AlAs. But, because
neither theoretical nor experimental data on the varia-
tion of nie(NI, x ) in Ga1�x Alx As with NI and x are known
very well, device simulators for GaAs/Ga1�x Alx As
HBTs usually contain the physically questionable asser-
tion that nie(NI, x ) = ni, where ni is the intrinsic carrier

concentration in the limits that both NI and x approach
zero.

For the reasons cited in the previous paragraph, this
paper focuses on the model for how the effective intrin-
sic carrier concentrations vary with dopant density and
mole fraction of AlAs in Ga1�x Alx As at 300 K. Self-
consistent numerical solutions to the quantum mechani-
cal, non-linear integral-differential equations for carrier
transport in semiconductors result in discrete data
points that by themselves do not readily suggest closed-
form analytic expressions for carrier densities of states,
band structure changes, and thereby, effective intrinsic
carrier concentrations. Interpolating among the discrete
data points in “look-up” tables leads to discontinuities,
particularly when numerical differences must be used to
compute first and higher order derivatives, and, as men-
tioned above, is computationally inefficient. Due to
these computational inefficiencies, industry is reluctant
to incorporate “look-up” tables in semiconductor device
simulators that run on engineering workstations.

The motivation for our performing the following
analyses is to derive closed-form analytic expressions
that will result in more efficient computer simulations
and improved insights on how the many physical mech-
anisms, which influence densities of states and band
structures in ternary compound semiconductors and het-
erostructure devices, affect their electronic and optical
behavior. Our data analyses, presented in the following
sections, enable us to reduce the number of unknown
parameters in numerical simulations that predict electri-
cal and optical performance of devices such as bipolar
transistors, solar cells, laser diodes, and light-emitting
diodes.

The families of curves given in Figs. 1 and 2 represent
graphically the two-dimensional, numerical tables con-
sisting of discrete data points from the calculations re-
ported in Ref. [3]. Such graphical representations are a
common recourse when several complex and competing
physical mechanisms occur and when multidimensional,
closed-form analytic expressions are not available. In-
corporating such discrete data points into physical mod-
els for use in computer simulations is usually not satis-
factory due to excessive CPU time associated with
interpolations between the discrete data points.

We apply in this paper the general strategy given in
Ref. [4] for obtaining closed-form analytic expressions
from multi-dimensional tabular data to the multi-dimen-
sional tabular data in Tables 1 and 2 for effective intrin-
sic carrier concentrations. That general strategy was
based on separable functions, melding functions, trans-
formations, admissible non-linear methods, and regres-
sion analyses to obtain multi-dimensional, closed-form
analytic expressions.
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Fig. 1. Normalized intrinsic carrier concentration ratios nie/ni for n-type Ga1�x Alx As as
functions of the donor density for three representative values of mole fraction of AlAs.
The three dashed curves show results from quantum mechanical calculations based on
the Klauder fifth level of approximation for Ga1�x Alx As with x = 0.0, 0.15, and 0.30.
The three solid curves show the closed-form, analytic fits based on Eq. (10). H. S.
Bennett, High Dopant and Carrier Concentration Effects in Gallium Aluminum Ar-
senide: Densities of States and Effective Intrinsic Carrier Concentrations, J. Appl. Phys.
83, 3102 (1998).

Fig. 2. Normalized effective intrinsic carrier concentration ratios nie/ni for p-type
Ga1�x Alx As as functions of the donor density for three representative values of mole
fraction of AlAs. The three dashed curves show results from quantum mechanical
calculations based on the Klauder fifth level of approximation for Ga1�x Alx As with
x = 0.0, 0.15, and 0.30. The three solid curves show the closed-form, analytic fits
based on Eqs. (11) and (12). H. S. Bennett, High Dopant and Carrier Concentration
Effects in Gallium Aluminum Arsenide: Densities of States and Effective Intrinsic
Carrier Concentrations, J. Appl. Phys. 83, 3102 (1998).
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Table 1. Two-dimensional array of data points from theoretical cal-
culationsa of the normalized effective intrinsic carrier concentration
for n-type Ga1�x Alx As, Yn = nie (n-type; ND, x )/ni, where the acceptor
density is ND, the mole fraction is x , and the intrinsic carrier concen-
tration is ni

ND Yn

x
cm�3 0.00 0.15 0.30

1.00 � 1016 1.1100 1.1060 1.1180
2.00 � 1016 1.1350 1.1480 1.1470
3.00 � 1016 1.1620 1.1610 1.1880
5.00 � 1016 1.1730 1.1880 1.2240
7.00 � 1016 1.1950 1.2360 1.2440
1.00 � 1017 1.2420 1.2380 1.2670
2.00 � 1017 1.2380 1.2650 1.3390
3.00 � 1017 1.2630 1.3480 1.3420
5.00 � 1017 1.2720 1.3370 1.3650
7.00 � 1017 1.2100 1.2860 1.3710
1.00 � 1018 1.1520 1.2440 1.3480
2.00 � 1018 0.9447 1.1000 1.2470
3.00 � 1018 0.7523 0.9454 1.0940
5.00 � 1018 0.4682 0.6648 0.8556
7.00 � 1018 0.3062 0.4651 0.6374
1.00 � 1019 0.1558 0.2846 0.4373

a H. S. Bennett, High Dopant and Carrier Concentration Effects in
Gallium Aluminum Arsenide: Densities of States and Effective Intrin-
sic Carrier Concentrations, J. Appl. Phys. 83, 3102 (1998).

To obtain acceptable analytic fits to the discrete the-
oretical values for the effective intrinsic carrier concen-
trations in semiconductor device simulators that run on
engineering workstations, we want to have relative
residual standard deviations for the analytic fits that are
reasonably small, i.e., usually less than 2 %. And we
want to achieve such residual standard deviations with
as small a number of fitting parameters compared to the
total number of data points as possible.

The development of such analytic fits would repre-
sent a significant increase in computational efficiency
by about a factor of 5 and would give analytic expres-
sions for the normalized effective intrinsic carrier con-
centrations for use in commercial semiconductor device
simulators that are in much closer agreement with
known device physics than the expressions currently
used. The combination of the existing NIST supercom-
puter-generated data for normalized effective intrinsic
carrier concentrations and the derived two-dimensional
analytic fits will lead to computer simulators that are at
once both more parsimonious (have fewer unknown or
tuning-variational parameters) and more accurate (offer
improved predictability).

Table 2. Two-dimensional array of data points from theoretical cal-
culationsa of the normalized effective intrinsic carrier concentration
for p-type Ga1�x Alx As, Yp = nie (p-type; NA, x )/ni, where the acceptor
density is NA, the mole fraction is x , and the intrinsic carrier concen-
tration is ni. The blank entries in this table means that the computer
program did not converge to a solution after several hours

NA Yp

x
cm�3 0.00 0.15 0.30

1.00 � 1016 1.2130
2.00 � 1016 1.2520
3.00 � 1016 1.2130
5.00 � 1016 1.2630 1.2790
7.00 � 1016 1.2920 1.3050 1.3610
1.00 � 1017 1.3270 1.3140 1.4030
1.26 � 1017 1.3590 1.3280 1.4250
1.58 � 1017 1.2810 1.3830 1.4060
2.00 � 1017 1.7860 1.6860 1.4130
2.51 � 1017 1.3410 1.4340 1.7980
3.00 � 1017 1.9170 1.6160 1.7170
3.98 � 1017 1.6700 1.5310 1.7780
5.00 � 1017 1.7110 2.0640 1.7560
6.31 � 1017 1.6900 2.1440 2.2950
7.00 � 1017 1.7230 2.3180 2.3850
7.94 � 1017 1.9230 2.1820 2.3010
1.00 � 1018 1.8410 1.9350 2.0880
1.26 � 1018 1.7740 1.8890 1.9840
1.58 � 1018 1.7290 2.7970 1.9220
2.00 � 1018 2.3430 2.4400 1.2630
2.51 � 1018 1.8800 1.9830 2.0300
3.00 � 1018 2.1420 2.6200 2.6050
3.98 � 1018 2.1010 2.4590 2.3890
5.00 � 1018 2.1570 2.2010 2.3240
6.31 � 1018 2.1970 2.3240 2.4780
7.00 � 1018 2.2300 2.3240 2.3290
7.94 � 1018 2.2210 2.3080 2.4870
1.00 � 1019 2.2640 2.1820 2.2660
1.26 � 1019 2.1490 2.2080 2.4210
1.58 � 1019 2.2250 2.3510 2.5230
2.00 � 1019 2.0840 2.2000 2.3770
3.00 � 1019 1.8870 2.0650 2.1870
5.00 � 1019 1.6470 1.7110 1.8870
7.00 � 1019 1.3820 1.5260 1.6390
1.00 � 1020 1.0990 1.2210 1.3160

a H. S. Bennett, High Dopant and Carrier Concentration Effects in
Gallium Aluminum Arsenide: Densities of States and Effective Intrin-
sic Carrier Concentrations, J. Appl. Phys. 83, 3102 (1998).

2. Effective Intrinsic Carrier
Concentrations

The methodology from Ref. [3] of the quantum me-
chanical calculations on which this paper is based is
summarized here as a way to explain notation and for
completeness. We end this section with a discussion of
possible sources for the scatter in the computed results
near the Mott transition.
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Equations (2), (3), and (6) that are given below for the
electron density, hole density, and the screening radius,
respectively, all depend on knowing the densities of
states for the carriers. Reference [3] contains detailed
discussions on how the integral equations for the densi-
ties of states in the valence and conduction bands are
solved. The solutions involve the discretization of quan-
tum mechanical integral equations that yield large sets
of complex algebraic equations. The complex algebraic
equations are then cast into large matrix equations. After
discretization, the integral equations may be expressed
in terms of matrix equations like the following:

�Jmax

J=1

C (I , J )X (J ) = B (I ), (1)

where X (J ) represents renormalized self-energy fac-
tors, B (I ) represents the inhomogeneous term that is
proportional to the Fourier transform of the scattering
potential, C (I , J ) = A (I , J ) + I is a complex matrix, I is
the identity matrix, and A (I , J ) represents the two-di-
mensional integrands involving renormalized Green’s
functions. The dimension of array X is Jmax, and Jmax

equals the product of the number of values of wave
numbers Nkmax times the number of values of angles
N�max used in performing numerical integrations.

For the case in which Nkmax = 42, N�max = 8, and
Jmax = 336, it takes about 85 h of Cray1 computer time to
calculate nie(N1) for one value of x and 35 values of
dopant densities N1. About 97 % of the total CPU time
is spent in one library subroutine that factors the com-
plex matrix A (I , J ) by Gaussian elimination and esti-
mates its condition in preparation for the next subroutine
that solves the complex system given by Eq. (1) for X(J ),
the discrete representation of the self-energy factors.

The electron n and hole p concentrations at thermal
equilibrium are given, respectively, by

n = �
+�

��

f0(E ) �c(E ) dE (2)

and

p = �
+�

��

[1 � f0(E )] �v(E ) dE , (3)

1 Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation by the National Institute of Standards and
Technology, nor does it imply that the materials or equipment identi-
fied are necessarily the best available for the purpose.

where �c is the density of states for the conduction band,
�v is the density of states for the valence band, E is the
carrier energy,

f0(E ) = [1 + exp{E � EF)/kBT}]�1 (4)

is the Fermi-Dirac distribution function, EF is the Fermi
energy, kB is the Boltzmann constant, and T is the
thermodynamic temperature in kelvins. Because the
carrier-carrier interactions that give rise to exchange and
correlation energies become significant at high concen-
trations, the calculations of n and p from Eqs. (2) and (3)
require estimates for these carrier-carrier interactions. In
terms of the above quantities, the effective intrinsic car-
rier concentration is given by

nie = (n p )1/2. (5)

The quantum mechanical calculations incorporate the
Thomas-Fermi expression for the screening radius,

r 2
s = �

4�e 2

� �
+�

��

df0(E )
dE

[�c(E ) � �v(E )] dE , (6)

and the charge neutrality condition,

NI = n � p , (7)

to compute self-consistently the Fermi energy EF and
the Thomas-Fermi screening radius rs for given ionized
dopant concentration NI and temperature T . The static
dielectric constant is denoted by � in dimensionless
units. The ionized dopant concentration is positive for
n-type material (donor ions) and negative for p-type
material (acceptor ions). The results reported here are
for uncompensated material.

We also use the normalized effective intrinsic carrier
concentration; namely,

nie/ni = (n p )1/2/(n0 p0)1/2. (8)

where the intrinsic carrier concentration ni =
limN I → 0 nie = (n0 p0)1/2.

2.1 n-Type Ga1�x Alx As

The dashed curves in Fig. 1 represent the results cal-
culated from the methods presented in Ref. [3] and give
the normalized effective intrinsic carrier concentration
nie/ni for n-type Ga1�x Alx As at 300 K. They are based on
evaluating nie/ni for 16 values of ND between 1016 cm�3

and 1019 cm�3 and for three values of the mole fraction
of AlAs, x = 0.00, 0.15, and 0.30.
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2.2 p-Type Ga1�x Alx As

The dashed curves in Fig. 2 represent the results cal-
culated from the methods presented in Ref. [3] and give
the normalized effective intrinsic carrier concentration
ratios nie/ni for p-type Ga1�x Alx As at 300 K for 35 val-
ues of NA between 1016 cm�3 and 1020 cm�3 and for three
values of the mole fraction of AlAs x = 0.00, 0.15, and
0.30. The conclusions for p-type Ga1�x Alx As are quali-
tatively similar to those for n-type Ga1�x Alx As
whenever acceptor densities are sufficiently far from the
Mott transition. But considerable scatter in the calcu-
lated nie/ni values occurs for the mid-range of acceptor
densities that spans the Mott transition, particularly for
the decade of acceptor densities from 1018 cm�3 to 1019

cm�3. In this paper, we define the Mott transition as that
doping density for which the screened Coulomb poten-
tial no longer has bound states.

The Mott transition for n-type Ga1�x Alx As occurs for
a range of doping densities that is of much less techno-
logical interest. This is fortunate when computing high
concentration effects in n-type Ga1�x Alx As. However,
the Mott transition for p-type Ga1�x Alx As occurs near
doping densities of technological significance. For ex-
ample, the Mott transition in p-type Ga1�x Alx As occurs
near acceptor densities typically used in the bases of
HBTs for the linear power amplifiers in the front ends of
microwave and millimeter wave receivers.

The ratios of nie/ni are evaluated at 23 acceptor densi-
ties for p-type Ga1�x Alx As between 1017 cm�3 and 1019

cm�3. This number is more than twice the number of
evaluation points over the same two decades given in
Fig. 1 for n-type Ga1�x Alx As. The ratios of nie/ni are
evaluated at 12 values of acceptor density for the decade
between 1018 cm�3 and 1019 cm�3. The observed numer-
ical scatter for the values of nie/ni in p-type Ga1�x Alx As
tend to vary from about 4 % away from the Mott transi-
tion to about 20 % near the Mott transition.

The scatter of nie/ni values in Fig. 2 for the mid-range
of acceptor densities that spans the Mott transition
arises from a combination of six effects:
1) adaptive grid spacings used in the evaluation of the
two dimensional integrals over wave numbers and over
angles;
2) algorithm used to solve the very nonlinear matrix
equations in Ref. [3];
3) method used to locate the band-edges;
4) method used to determine when the distorted,
Klauder densities of states at sufficiently high energies
are asymptotic to the undistorted, parabolic densities of
states;
5) method used to determine when the carrier quantum
mechanical states are spatially compact (localized) and
when they are spatially extended (conducting); and
6) physics of the Mott transition with bifurcation of
bound and continuum states.

Additional theoretical, computational, and experimen-
tal research is needed to determine which of the forego-
ing six effects dominate. Separating the physics effects
(item 6 above) from the numerical effects (items 1 to 5
above) is not possible at present. The authors of Ref. [5]
use interpolation and extrapolation methods to obtain
the variation of n 2

ie/n 2
i with acceptor density (Fig. 3 of

Ref. [5]) from their experimental measurements for
n 2

ie Dmin and Dmin, where Dmin is the minority carrier
diffusivity. They report therein five values of acceptor
densities over the same decade from 1018 cm�3 to
1019 cm�3 and obtain less scatter in the experimentally
extracted data with a larger grid spacing for the dopant
density than the scatter in the theoretically calculated
data with a much smaller grid spacing for the dopant
density, which is reported here.

Attempts to reduce the scatter by decreasing the inte-
gration grid spacings further so that Nkmax = 842,
N�max = 15, and Jmax = 12630, and resulted in failures of
the numerical solutions to converge after unacceptable,
excessive CRAY CPU times. Also, when numerical so-
lutions for Eq. (8) were attempted on clusters of multi-
processor, high-end workstations, similar results oc-
curred.

Because such scatter as shown in Fig. 2 in the vicinity
of the Mott transition is not acceptable for “look-up
tables” in device simulators and because the limited
experimental data suggest a reasonably smooth behavior
in this region, we exercise care in our nonlinear statisti-
cal analyses to avoid fitting the scatter. But, we should
always keep in mind that, even though present experi-
mental data may suggest reasonably smooth behavior of
nie through the Mott transition region, future improved
theoretical and experimental data could reveal additional
structure in the dependence of nie on the dopant density
and mole fraction in the vicinity of the Mott transition.

3. Data Table for Effective Intrinsic
Carrier Concentrations in n-Type
Ga1�x Alx As

This section describes the background details by
which the data in Table 1 for the n-type normalized
effective intrinsic carrier concentrations were obtained.
This data serves as our starting point for deriving the
closed-form analytic expression for the normalized ef-
fective intrinsic carrier concentration in n-type
Ga1�x Alx As.

The theoretical calculations in Ref. [3] were done for
a full factorial design consisting of 16 discrete values of
donor density ND between 1016 cm�3 and 1019 cm�3 and
3 discrete values of mole fraction x between 0.0 and
0.30, namely, x = 0.0, 0.15, and 0.30 [denoted also by
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x = 0.00 (0.15) 0.30], to yield a total of 48 data points.
We also use the notation that x1 = 0.00, x2 = 0.15, and
x3 = 0.30. The self-consistent, numerical solutions to the
quantum mechanical, non-linear integral-differential
equations for nie are given in Table 1 as a two-dimen-
sional array of discrete data points. This data representa-
tion, as opposed to a functional representation, was nec-
essary because the several competing physical
mechanisms do not readily yield any acceptable theoret-
ical closed-form analytic expression.

The 48 data points, presented in Table 1, are repre-
sented graphically in Fig. 1 as a family of three dashed
traces corresponding to the three mole fraction values,
x = 0.00 (0.15) 0.30, respectively. The fixed increment
of xi � xi�1 = 0.15 for all i and a subsequent fortuitous
response surface in the mole-fraction variable will be
advantageously employed later to simplify the fitting
process.

We thus have the task of finding a closed-form, two-
dimensional analytic function Yn

f(X , x ) for the normal-
ized effective intrinsic carrier concentration in n-type
Ga1�x Alx As, such that Yn

f(X , x ) is a good fit to
Yn

f(X , x ) ≈ nie(n-type; ND, x )/ni, where X = log10(ND/1016

cm�3).

4. Data Analysis and Final Results for
nie/ni in n-Type Ga1�x Alx As

We show that using a combination of separable func-
tions, transformations on the discrete data points in Fig.
1, and non-linear regression analyses lead to a single
two-dimensional, closed-form, analytic expression for
the normalized effective intrinsic carrier concentration
at 300 K in n-type Ga1�x Alx As as a function of the mole
fraction x of AlAs between 0.0 and 0.3 and the donor
density ND between 1016 cm�3 and 1019 cm�3. Through-
out our analyses, we rely substantially on graphics and
keep the number of fitting coefficients to a minimum,
subject to the constraint that the residual standard
deviation, Sres(Yf), in the original units satisfies
Sres(Yf) � 0.02. The residual standard deviation is a
measure of the “average” error in a fitted model and
thereby is a metric for assessing the quality of the fit. A
smaller Sres(Yf) indicates a better fit. The residual stan-
dard deviation for a model Yf = f (X , x ), is

Sres(Yf) = ���N
j=1

Yj � Yj
f )2/(N � P )� , (9)

where Yj are the observed data values, the Yj
f are the

predicted values from the fitted model, N is the total
number of data points (here N = 48), and P is the total
number of parameters to be fitted in the model.

We use the NIST-developed DATAPLOT [6] software
for both the exploratory graphics and for the extensive
non-linear statistical analyses. Also, for those cases in
which the residual standard deviations from analyses
based on different functional forms are quantitatively
similar, we select the functional form that will minimize
the CPU time when the closed-form analytical function
is used in commercial simulators and select procedures
that have a minimum of fitting parameters.

Our general strategy here is based on separable func-
tions and on transformations of the response function Yn

that give near-linear separable functions as described
below. We want to obtain the function Yn

f = f (X , x ) in
the two-dimensional continuum space spanned by
X = log(ND/1016 cm�3) and x . This bounded two-dimen-
sional continuum is given in Fig. 1 with 0 � X � 3 and
0.00 � x � 0.30. As with fitted functions, extreme cau-
tion must be exercised in extrapolating beyond these X
and x limits.

We consider the discrete two-dimensional space given
by the 48 data points in Fig. 1 and in Table 1. Using the
methodology in Ref. [4], we find that an acceptable fit,
which meets the conditions on residual standard devia-
tion and number of fitting parameters, is obtained by the
six steps that follow. Steps 1 to 4 are the essential steps
that remain after completing exploratory graphics on the
48 discrete points of the data set.
1. Transform the data Yn = f (X , x ) in Table 1 to the
natural logarithmic space,
yn(X , x ) = ln[Yn(X , x )].
2. Choose the x = 0.0 GaAs data for yn(X , 0) as the base
or reference function and fit yn(X , 0) to the quartic func-
tion A (X ), where
A (X ) = a0 + a1 X + a2 X 2 + a3 X 3 + a4 X 4

This gives values for the fitting parameters ai that will be
used as starting values in later steps.
3. Fit the 2 sets of differences �i(X ) = yn(X , xi) �
yn(X , 0) to Lorentzians Li(X ), where
Li(X ) = mi/[1 + {(X � ci)/di}2].
4. Because the fitting parameters ci and di are essen-
tially independent of the mole fraction, we then fit the
combined sets of differences to the Lorentzian B (X , x ),
where
B (X , x ) = (b0 + b1 x )/[1 + {(X � c )/d}2]
Again, this gives values of additional fitting parameters
for later use.
5. Using the fitting parameters from steps 1 to 4 above
as starting values, fit yn(X , x ) to the function
yn

f(X , x ) = A (X ) + B (X , x )
6. Using the fitting parameters from step 5 as starting
values, fit Yn(X , x ) to the function

Yn
f(X , x ) = exp[A (X ) + B (X , x )]. (10)
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In summary, Eq. (10) for Yn
f(X , x ) is the two-dimen-

sional, closed form analytic expression for the data set
Yn(X , x ) containing 48 discrete data points. The nine
fitting parameters for the normalized effective intrinsic
carrier concentration for n-type Ga1�x Alx As, Yn = nie (n-
type; ND, x )/ni from Eq. (10), are given in Table 3, where
the donor density is ND, the mole fraction of AlAs is x ,
and the intrinsic carrier concentration is ni. All of the
fitting parameters are dimensionless. The residual stan-
dard deviation is Sres(Y ) = 0.017. The other expressions
in Eq. (10) are:

A (X ) = a0 + a1 X + a2 X 2 + a3 X 3 + a4 X 4,
B (X , x ) = (b0 + b1 x )/[1 + {(X � c )/d}2], and

X = log10(ND/1016 cm�3).
The analytic expression in Eq. (10) now enables quan-

tum mechanically based results, which required tens of
hours of supercomputer time, to be readily and effi-
ciently incorporated into commercial, workstation-
based simulations of Ga1�x Alx As devices. However, the
analytic fit in Eq. (10) is valid only within the bounded
space of 0 � X � 3 and 0 � x � 0.30, and must not be
used beyond this bounded two-dimensional space in
which it is derived.

5. Data Table for Effective Intrinsic
Carrier Concentrations in p-Type
Ga1�x Alx As

This section describes the background details by
which the data in Table 2 for the p-type normalized
effective intrinsic carrier concentrations were obtained.
As before in the case of n-type Ga1�x Alx As, this data is
the starting point for deriving the closed-form analytic
expression for the normalized effective intrinsic carrier
concentration in p-type Ga1�x Alx As.

The theoretical calculations in Ref. [3] were done for
a full factorial design consisting of 35 discrete values of
acceptor density NA between 1016 cm�3 and 1020 cm�3

and three discrete values of mole fraction x between 0.0
and 0.30, namely, x = 0.0, 0.15, and 0.30, to yield a total
of 98 data points. The seven entries denoted by blanks
in Table 2 for some NA values between 1016 cm�3 and
5 � 1016 cm�3 when x = 0.15 or x = 0.30 mean that ex-
cessive CPU time would have been required for conver-
gence.

The 98 data points in Table 2 are represented graphi-
cally in Fig. 2 as a family of three dashed traces corre-
sponding to the three mole fraction values x = 0.00
(0.15) 0.30, respectively. Again, the fixed increment of
xi � xi�1 = 0.15 for all i and a subsequent fortuitous

Table 3. The nine fitting parameters for the normalized effective intrinsic carrier concentration
for n-type Ga1�x Alx As, Yn = nie (n-type; ND, x )/ni from Eq. (10), where the donor density is ND,
the mole fraction of AlAs is x , and the intrinsic carrier concentration is n i .

a

Yn
f(X , x ) = exp[A (X ) + B (X , x )], where A (X ) = a0 + a1 X + a2 X 2 + a3 X 3 + a4 X 4, and

B (X , x ) = (b0 + b1 x )/[1 + {(X � c )/d}2], and X = log10(ND/1016 cm�3). All of the fitting parame-
ters are dimensionless. The ratio is the estimated value divided by the estimated standard devia-
tion. The residual standard deviation is Sres(Y ) = 0.017

Reference function Estimated Estimated standard Ratio
fitting parameters value deviation

a0 0.143872 0.1445 � 10�1 10.
a1 0.977773 � 10�1 0.5080 � 10�1 1.9
a2 0.670024 � 10�1 0.1093 0.61
a3 0.213912 � 10�3 0.7608 � 10�1 0.28 � 10�2

a4 �0.897642 � 10�2 0.1902 � 10�1 �0.47

Mole fraction function Estimated Estimated standard Ratio
fitting parameters value deviation

b0 �2.59105 0.3989 �6.5
b1 4.17080 0.5057 8.2
c 3.20507 0.4841 � 10�1 66.
d 0.448472 0.2598 � 10�1 17.

a H. S. Bennett, High Dopant and Carrier Concentration Effects in Gallium Aluminum Arsenide:
Densities of States and Effective Intrinsic Carrier Concentrations, J. Appl. Phys. 83, 3102 (1998).
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response surface in the mole-fraction variable will be
advantageously employed later to simplify the fitting
process.

We now have the task to find a closed-form, two-
dimensional analytic function Yp

f for the normalized
effective intrinsic carrier concentration in p-type
Ga1�x Alx As, such that Yp

f(X , x ) ≈ nie(p-type; NA, x )/ni ,
where X = log10(NA/1016 cm�3). To obtain an acceptable
analytic fit of Yp

f to nie/ni, we want to satisfy for p-type
Ga1�x Alx As the same conditions placed on the relative
residual standard deviation and the number of fitting
parameters for Yp

f as those given in Sec. 4 for Yn
f.

6. Data Analysis and Final Results for nie

in p-Type Ga1�x Alx As

We show in this Section that using a combination of
separable functions, melding functions, and transforma-
tions on the discrete data points in Fig. 2, and non-linear
regression analyses leads to two-dimensional, closed
form analytic expressions for the normalized effective
intrinsic carrier concentration at 300 K in p-type
Ga1�x Alx As as a function of the mole fraction of AlAs
x between 0.0 and 0.3 and the acceptor density N4 be-
tween 1016 cm�3 and 1020 cm�3. Throughout our analy-
ses, we rely substantially on graphics and keep the num-
ber of fitting coefficients to a minimum, subject to the
constraint that the residual standard deviation, Sres(Yf), in
the original units be as small as possible. For this case,
N = 98 in Eq. (9).

We want to obtain the function Yp
f = f (X , x ) in the

two-dimensional continuum space spanned by
X = log(NA/1016 cm�3) and x . This bounded two-dimen-
sional continuum is given in Fig. 2 with 0 � X � 4 and
0.00 � x � 0.30. As with fitted functions, extreme cau-
tion must be exercised in extrapolating beyond these X
and x limits.

Figure 5 of Ref. [3] suggests that the Mott transition
in p-type Ga1�x Alx As occurs somewhere near
NA = 2 � 1018 cm�3 or X = XM = 2.3. This is the region
for which the bound states in the distorted densities of
states due to high concentration effects are merging with
continuum states. Determining the value of XM from
such distorted densities of states is not precise. The main
point is that we expect it to be somewhere in the approx-
imate region 2 � XM � 3. Because of the uncertainty in
XM determined from examining distorted densities of
states, we treat XM in the following statistical analyses of
the theoretical data as another fitting parameter with a
fixed value. The scatter in the data for Yp(X , x ) as shown
in Fig. 2 sufficiently far away from the Mott transition
is minimal and comparable to that in Ref. [4] for the

minority electron mobilities. But, the scatter in the data
for Yp(X , x ) in the vicinity of the Mott transition pre-
sents an additional challenge in obtaining acceptable
analytic fits for use in device simulators. The six possi-
ble reasons for this scatter are given above in Sec. 2.2.

We first perform a Lowess [6] smoothing procedure
on the numerical data in Table 2 to determine a lower
bound on Sres(Yp

f) for any Yp
f with an acceptable number

of fitting parameters. We find that 0.191 < Sres(Yp
f).

Because any given analytic fit to discrete data points
is not unique, we present here two procedures that yield
statistically similar results. By so doing, we hope to
illustrate that there may be some fine structure in nie

near the Mott transition. But, at this stage in interpreting
experimental measurements and in using existing com-
puters to solve complex equations, we simply do not
know whether the fine structure in the second fitting
procedure is physically correct or whether it is an arti-
fact from the fitting procedure itself. The first procedure
is based on a single, separable function to represent
Yp(X , x ) and the second procedure is based on two func-
tions melded at XM = 2.3 to represent Yp(X , x ).

6.1 Single, Separable Function

Again, we consider the discrete two-dimensional
space given by the 98 data points in Fig. 2 and in Table
2. Using the methodology in Ref. [4], we find that an
acceptable fit, which meets the conditions on residual
standard deviation and number of fitting parameters, is
obtained by the following steps:
1. Chose the x = 0.0 GaAs data for Yp(X , 0) as the base
or reference function and fit Yp(X , 0) to the quartic
function A (X ), where
A (X ) = a0 + a1 X + a2 X 2 + a3 X 3 + a4 X 4.
2. Using the fitting parameters ai from step 1 now as
fixed parameters, fit Yp(X , x ) to the function Yp

f(X , x ),
where

Yp
f(X , x ) = A (X ) + B (X , x ) (11)

and B (X , x ) is the Lorentzian expression

B (X , x ) = (b0 + b1 x )/[1 + {(X � c )/d}2]. (12)

Step 2 gives values for the remaining four fitting
parameters b0, b1, c , and d . In summary, Eq. (11) for
Yp

f(X , x ) is the two-dimensional, closed form analytic
expression for the data set Yp(X , x ) containing 98 dis-
crete data points. The nine fitting parameters for the
normalized effective intrinsic carrier concentration for
p-type Ga1�x Alx As, Yp = nie (p-type; NA, x )/ni, from
Eq. (11) are presented in Table 4a, where the acceptor
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Table 4a. The nine fitting parameters for the normalized effective intrinsic carrier concentration
for p-type Ga1�x Alx As, Yp = nie (p-type; NA, x )/ni from Eq. (11), where the acceptor density is NA,
the mole fraction of AlAs is x , and the intrinsic carrier concentration is n i .

a

Y p
f (X , x ) = A (X ) + B (X , x ) , where A (X ) = a 0 + a 1 X + a 2 X 2 + a 3 X 3 + a 4 X 4 , and

B (X , x ) = (b0 + b1 x )/[1 + {(X � c )/d}2], and X = log10(NA/1016 cm�3). All of the fitting parame-
ters are dimensionless. The ratio is the estimated value divided by the estimated standard devia-
tion. The residual standard deviation is Sres(Y ) = 0.205

Reference function Estimated Estimated standard Ratio
fitting parameters value deviation

a0 1.20595 0.1191 10.
a1 0.171915 � 10�1 0.3808 0.45 � 10�1

a2 0.698161 � 10�1 0.3828 0.18
a3 0.107279 0.1424 0.75
a4 �0.319846 � 10�1 0.1747 � 10�1 �1.8

Mole fraction function Estimated Estimated standard Ratio
fitting parameters value deviation

b0 0.350316 0.8791 � 103 0.40 � 10�3

b1 0.102178 � 102 0.2561 � 105 0.40 � 10�3

c 0.414650 � 107 0.8665 � 1010 0.48 � 10�3

d �0.100259 � 107 0.3410 � 1010 �0.29 � 10�3

a H. S. Bennett, High Dopant and Carrier Concentration Effects in Gallium Aluminum Arsenide:
Densities of States and Effective Intrinsic Carrier Concentrations, J. Appl. Phys. 83, 3102 (1998).

density is NA. All of the fitting parameters are
dimensionless. The residual standard deviation is
Sres(Y ) = 0.205. The other expressions in Eq. (11) are:

A (X ) = a0 + a1 X + a2 X 2 + a3 X 3 + a4 X 4,
B (X , x ) = (b0 + b1 x )/[1 + {(X � c )/d}2], and

X = log10(NA/1016 cm�3).
As stated before, the analytic fit in Eq. (11) is valid

only within the bounded space of 0 � X � 4 and
0 � x � 0.30, and it must not be used beyond this
bounded two-dimensional space in which it is derived.
The solid curves in Fig. 2 give the analytic fit from using
Eq. (11).

6.2 Two Functions Melded Near the Mott
Transition

We now consider the case of two functions melded
near the Mott transition. As before, we apply the
methodology in Ref. [4] to the discrete two-dimensional
space given by the 98 data points in Fig. 2 and in Table
2. We find that another statistically acceptable fit is
possible when two melded functions are used by the
following steps:
1. Choose the x = 0.0 GaAs data for Yp(X , 0) as the
base function and fit Yp(X , 0) for all X � XM, where
XM = 2.3, to the Gaussian function Yp

f(X , 0) = F<(X ), for
which F<(X ) = a1 + b1exp[�0.5(X � X1)/�1)2]. This

gives beginning values for the five fitting parameters a1,
b1, X1, �1, and XM.
2. Choose the x = 0.0 GaAs data for Yp(X , 0) as the
base function and fit Yp(X , 0) for all X > XM to the Gaus-
sian function Yp

f(X , 0) = F>(X ), for which
F>(X ) = a2 + b2exp[�0.5(X � X2)/�2)2]. This gives be-
ginning values for the four additional fitting parameters
a2, b2, X2, and �2.
3. Use the unit step function w (X ) to meld or combine
the two functions F<(X ) and F>(X ), where w (X ) = 1 for
X � XM and w (X ) = 0 for X > XM. Then fit Yp(X , 0) for
all X in the region 0.0 � X � 4.0 to the function F (X )
where

F (X ) = w (X )F<(X ) + [1 � w (X )]F>(X ). (13)

4. And finally, using the nine fitting parameters from
step 3 as beginning parameters, fit Yp(X , x ) to the func-
tion Yp

f(X , x ), where

Yp
f(X , x ) = F (X ) + G (x ) and (14)

G (x ) = a0 + b0 x . (15)

Step 4 gives values for the final 11 fitting parameters.
In summary, Eq. (14) for Yp

f(X , x ) is the two-dimen-
sional, closed form analytic expression for the data set
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Yp(X , x ) containing 98 discrete data points. The 11 fit-
ting parameters for the normalized effective intrinsic
carrier concentration for p-type Ga1�x Alx As, Yp = nie (p-
type; NA, x )/ni from Eq. (14), are given in Table 4b.
Again, all of the fitting parameters are dimensionless.
The residual standard deviation is Sres(Yp

f) = 0.198.
The other expressions in Eq. (14) are:

F (X ) = a1 + b1exp[�0.5(X � X1)/�1)2] when X < Xc,
F (X ) = a2 + b2exp[�0.5(X � X2)/�2)2] when X � Xc,
G (x ) = a0 + b0 x , and

X = log10(NA/1016 cm�3).
The crossover or melding boundary is at X = Xc = XM =
2.3 or NA = 2 � 1018 cm�3.

The analytic fit in Eq. (14) is valid only within the
bounded space of 0 � X � 4 and 0 � x � 0.30, and it
must not be used beyond this bounded two-dimensional
space in which it is derived. Again, combining Eq. (14)
with other transport models for mobilities, bandgaps,
and effective intrinsic carrier concentrations that are
derived from the interpretation of electrical measure-
ments on the devices themselves may lead to incorrect
descriptions of the electrical and optical behavior unless
extra care is taken to be consistent.

The solid curves in Fig. 3 give the analytic fits from
Eq. (14). We do not know whether the relative minima
or fine structure at XM in Fig. 3 is physically meaningful
or is due to a partial fitting of the scatter in the data.
More theoretical and experimental research will be
needed to make a decision. Our main purpose in deriv-
ing Eq. (14) is to highlight that statistical analyses with
a slightly smaller Sres(Yp

f) suggests that structure may
exist in Yp(X , x ) near the Mott transition. But, until
better computers and algorithms for calculating nie be-
come available to reduce the numerical and computa-
tional scattering effects numbered 1 to 5 in Sec. 2.2 or
until experiments verify the existence of such structure
in Yp(X , x ) near the Mott transition, we recommend for
device simulation using only the analytic fit based on
Eq. (11) and Table 4a.

7. Potential Significance of Results

Using the above Eq. (11) and applying additional
results from calculations of mobilities in Ref. [7] to
microwave HBTs [8] for linear power amplifiers may

Table 4b. The 11 fitting parameters for the normalized effective intrinsic carrier concentration for
p-type Ga1�x Alx As, Yp = nie (p-type; NA, x )/ni from Eq. (14), where the acceptor density is NA, the
mole fraction of AlAs is x , and the intrinsic carrier concentration is ni.

a Yp
f(X , x ) = F (X ) + G (x ),

w h e r e F ( X ) = a 1 + b 1 e x p [ � 0 . 5 ( X � X 1 ) / � 1 ) 2 ] w h e n X < X c , a n d w h e r e
F (X ) = a2 + b2exp[�0.5(X � X2)/�2)2] when X � Xc. The function G (x ) = a0 + b0 x and
X = log10(NA/1016 cm�3). The crossover or melding boundary is at X = Xc = XM = 2.3 or
NA = 2 � 1018 cm�3. All of the fitting parameters are dimensionless. The ratio is the estimated
value divided by the estimated standard deviation. The residual standard deviation is
Sres(Y ) = 0.198

Reference function Estimated Estimated standard Ratio
fitting parameters value deviation

a1 0.114993 1.415 � 103 0.81 � 10�4

b1 0.776818 0.8468 � 10�1 9.2
X1 2.01657 0.8466 � 10�1 24.
�1 0.440836 0.9605 � 10�1 4.6

a2 �8.67183 � 101 3.362 � 103 �0.26 � 10�1

b2 8.78811 � 101 3.050 � 103 0.29 � 10�1

X2 2.88904 0.4620 � 101 63.
�2 6.94881 1.229 � 102 0.57 � 10�1

Mole fraction function Estimated Estimated standard Ratio
fitting parameters value deviation

a0 1.09872 1.415 � 103 0.78 � 10�3

b0 0.550019 0.1661 3.3

a H. S. Bennett, High Dopant and Carrier Concentration Effects in Gallium Aluminum Arsenide:
Densities of States and Effective Intrinsic Carrier Concentrations, J. Appl. Phys. 83, 3102 (1998).
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Fig. 3. Normalized effective intrinsic carrier concentration ratios nie/ni for n-type
Ga1�x Alx As as functions of the donor density for three representative values of mole fraction
of AlAs. The three dashed curves show results from quantum mechanical calculations based
on the Klauder fifth level of approximation for Ga1�x Alx As with x = 0.0, 0.15, and 0.30. The
three solid curves show the closed-form, analytic fits based on Eqs. (14) and (15). H. S.
Bennett, High Dopant and Carrier Concentration Effects in Gallium Aluminum Arsenide:
Densities of States and Effective Intrinsic Carrier Concentrations, J. Appl. Phys. 83, 3102
(1998).

suggest different design strategies to optimize HBT per-
formance. The calculated changes in carrier densities of
states (DOS), band edges, band offsets, effective carrier
concentrations nie and carrier mobilities due to high do-
pant and carrier concentration effects in Ga1�x Alx As are
given in Refs. [3] and [7] at 300 K for mole fractions x
of AlAs between 0.0 and 0.3, for donor densities ND

between 1016 cm�3 and 1019 cm�3, and for acceptor den-
sities NA between 1016 cm�3 and 1020 cm�3. Only one
quantum mechanical theory is used to treat both sides of
the Mott transition in these calculations that give, with
no fitting parameters to experimental measurements, an
internally self-consistent description of carrier transport
in Ga1�x Alx As/GaAs heterostructures for lasers, light
emitting diodes, digital devices, and microwave devices.
The predicted values for the distorted DOS, band edges,
band offsets, nie, and majority and minority mobilities
differ from those values found in many simulations of
Ga1�x Alx As/GaAs heterostructures. Many simulators
set nie/ni = 1 in Ga1�x Alx As for all ND or NA; approxi-
mate the minority electron mobility �e (p-type; NA)
with the majority electron mobility �e (n-type;
ND = NA); and assert that all mobilities are monotoni-
cally decreasing functions of the dopant density. How-
ever, Fig. 5 in Ref. [7] shows that a relative minimum
exists for �e (p-type; NA), and suggests that a different

design strategy could be significant for linear HBT am-
plifiers in digital cellular phones. Because a relative
minimum in the minority electron mobility as a func-
tion of the acceptor density exists, we have identified
additional design considerations for HBT power ampli-
fiers that would have not otherwise been known. The
above relative minimum in the decade of 1018 cm�3

arises from dependencies of several competing scatter-
ing mechanisms on both the dopant and carrier densi-
ties. This relative minimum occurs because of the reduc-
tion of minority carrier (electron) scattering from
plasmons associated with majority carriers (holes) and
because of the removal of majority carriers (holes) from
scattering the minority carriers (electrons) due to the
Pauli exclusion principle for the majority carriers
(holes).

If other parameters remain essentially the same as NA

increases from 6 � 1018 cm�3 to 6 � 1019 cm�3, then the
following occurs:
1) the minority electron mobility [7] increases by a
factor of 2.5,
2) the base transit time decreases by about a factor of
2.5, and
3) the base resistivity [9] decreases by about a factor of
10.
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Combining these last three results into expressions
from compact models [9] for microwave HBTs predicts
increases in operating frequencies of about 40 % and in
figures of merit (maximum frequencies at unity gain) of
about 300 %. These estimates are considered to be up-
per limits because more rigorous simulations depend
noticeably on both processing and operating parameters
whose choices are determined by the application.

8. Conclusions

We have constructed two-dimensional, closed-form
analytic functions for the normalized effective intrinsic
carrier concentrations in Ga1�x Alx As at 300 K that are
functions of dopant densities and mole fractions of
AlAs. The results are important for device modeling
because of the need to have accurate values for normal-
ized effective intrinsic carrier concentrations, which in
turn allow improved design of Ga1�x Alx As heterostruc-
tures used in telecommunications and optoelectronic
systems; for example, digital cellular phones and modu-
lators in optical communications systems.

The mobilities reported in Refs. [4] and [7] and the
effective intrinsic carrier concentrations reported in this
paper should be used together as a consistent set of input
models for device simulators. Combining portions of
the results in Ref. [4] or [7] and in this paper with other
models for these quantities derived from the interpreta-
tion of electrical measurements on devices themselves
requires care to make certain that the resulting descrip-
tions are physically consistent.

The next tasks are to put these results into optoelec-
tronic, microwave, and electronic device simulators; to
determine the differences in predictions between the
usual physical models used in simulators and the alter-
native physical models given is this paper; and to com-
pare such predictions with measurements on devices of
interest to companies and researchers. By so doing,
more predictive simulations should be possible.
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