Destriping MODIS data using the FOV Overlapping Method (FOM)

R. Episcopo^{1,2} M. di Bisceglie^{1,2} C. Galdi² P. Antonelli¹

Mediterranean Agency for Remote Sensing and Environmental Control
 Universita' degli Studi del Sannio – Dipartimento di Ingegneria

Outline

Stripes: how they appear
MODIS: a quick look at the instrument
Review of the "open literature" solutions
The FOV Overlapping Method (FOM)

0.2

0.1

0.08

0.06

0.04

MODIS/Terra - Band 24 - 2004.07.21 09:45

MODIS

MODIS

FOM

Required Primary Use Band Bandwidth Spectral Radiance² SNR³ Land/Cloud/Aerosols 1 620 - 670 21.8 128 Boundaries 841 - 876 24.7 201 2 Land/Cloud/Aerosols 3 459 - 479 35.3 243 Properties 545 - 565 29.0 228 4 74 5 1230 - 1250 5.4 1628 - 1652 7.3 275 6 2105 - 2155 1.0 7 110 Ocean Color/ 8 405 - 420 44.9 880 Phytoplankton/ 9 438 - 448 41.9 838 Biogeochemistry 10 483 - 493 32.1 802 11 526 - 536 27.9 754 12 546 - 556 21.0 750 13 662 - 672 9.5 910 8.7 1087 14 673 - 683 15 743 - 753 10.2 586 16 862 - 877 6.2 516 Atmospheric 17 890 - 920 10.0 167 Water Vapor 57 18 931 - 941 3.6 19 915 - 965 15.0 250

Primary Atmospheric	Band	Bandwidth ¹	T _{typical}	Radiance ²	$NE^{\Delta}T(K)$	NE∆T (K)
Application			(K)	at T _{typical}	Specification	Predicted
Surface Temperature	20	3.660-3.840	300	0.45	0.05	0.05
	22	3.929-3.989	300	0.67	0.07	0.05
	23	4.020-4.080	300	0.79	0.07	0.05
Temperature profile	24	4.433-4.498	250	0.17	0.25	0.15
	25	4.482-4.549	275	0.59	0.25	0.10
Moisture profile	27	6.535-6.895	240	1.16	0.25	0.05
	28	7.175-7.475	250	2.18	0.25	0.05
	29	8.400-8.700	300	9.58	0.05	0.05
Ozone	30	9.580-9.880	250	3.69	0.25	0.05
Surface Temperature	31	10.780-11.280	300	9.55	0.05	0.05
	32	11.770-12.270	300	8.94	0.05	0.05
Temperature profile	33	13.185-13.485	260	4.52	0.25	0.15
	34	13.485-13.785	250	3.76	0.25	0.20
	35	13.785-14.085	240	3.11	0.25	0.25
	36	14.085-14.385	220	2.08	0.35	0.35

MODIS

MODIS FOM

· · · · · - - 32

TP 1/93

 $\Delta L_{BCS}(B, T_{instr}) = a_0^{BCS}(B, T_{instr}) + a_1^{BCS}(B, T_{instr}) \cdot dn_{BCS} + a_2^{BCS}(B, T_{instr}) \cdot dn_{BCS}^2 + a_2^{$

Review of the open literature solutions

MODIS

FOM

Spatial filtering

Statistics matching

Equalization

Spatial filtering

Spatial filtering

Moment matching

Moment matching

Histogram matching

Histogram matching

Stripes The FOV Overlapping Method MODIS

the "bow-tie" effect as calibration side information

FOM

- the simple idea
- the multistage design
 - metrics and classification
 - pre-equalization
 - destriping model
 - mirror side dependance
- results
- the time variation issue

the simple idea

the simple idea

the simple idea

the simple idea

Stripes MODIS Review FOM

Identify the reference detector

Define a model for the striping

Equalize the detectors

The FOV Overlapping Method

- whe "bow-tie" effect as calibration side information
- \checkmark the simple idea
- the multistage design
 - metrics and classification
 - pre-equalization
 - destriping model
 - mirror side dependance
- results
- The time variation issue

the multistage design

$n \setminus n+1$	d_6	d_7	d_8	d_9	d_{10}
d_1	X	X	Χ	X	X
d_2		Χ	Χ	Χ	Χ
d_3			Χ	X	X
d_4				X	X
d_5					Х

International EOS/NPP Direct Readout Meeting - 03/06 October 2005 - Benevento, Italy Stage 0: Identify the Overlapping the multistage Stage 1: Classify the detectors (DIF e OOF) design Stage 2: Compute the reference (Pre-equalization) Stage 3: Destripe the OOF detectors Stage 4: Equalize excluded detectors

MODIS FOM

the multistage design

metrics and classification

the multistage design

metrics and classification

Stripes MODIS Review FOM

detector "i" is classified as OOF if its distances are larger that a specified threshold. The procedure is iterative, detector classification order is based on the number of available overlap with in-family detectors detector "i" is classified as OOF if its distances are larger that a specified threshold. The procedure is iterative and is computed, at each iteration, on a reduced set.

1	- 0.00777	0.00649	0.00769	0.00714	0.01070 -
2	- NaN	0.00293	0.00384	0.00308	0.00359 –
3	- NaN	NaN	0.00414	0.00325	0.00382 -
4	- NaN	NaN	NaN	0.00286	0.00318 -
5	- NaN	NaN	NaN	NaN	0.00271 -
	6	7	8	9	10

btb distances

the multistage design

metrics and classification

The FOV Overlapping Method

- whe "bow-tie" effect as calibration side information
- \checkmark the simple idea
- the multistage design
 - > metrics and classification
 - pre-equalization
 - destriping model
 - mirror side dependance
- results
- the time variation issue

the multistage design

MODIS

Review

 $\mathbf{\hat{R}}$

R

FOM

2 4 5 7 9 10

 $a_0(d_{dif(1)})\mathbf{1} + a_1(d_{dif(1)}) \mathbf{R}_{d_{dif(1)}}$

 $a_0(d_{dif(N_{dif})})\mathbf{1} + a_1(d_{dif(N_{dif})}) \mathbf{R}_{d_{dif(N_{dif})}})$

The FOV Overlapping Method

- whe "bow-tie" effect as calibration side information
- \checkmark the simple idea
- the multistage design
 - > metrics and classification
 - > pre-equalization
 - destriping model
 - mirror side dependance
- results
- The time variation issue

 $m^2 ste\mu m$

 R_{j}

M

the multistage design

0.05 0.1 0.15 0.2 0.25 $R_i^{eq} = \begin{bmatrix} W \\ m^2 ste \mu m \end{bmatrix}$

the multistage design

the multistage design

the multistage design

the multistage design

the multistage design

destriping model

The FOV Overlapping Method

- whe "bow-tie" effect as calibration side information
- \checkmark the simple idea
- the multistage design
 - > metrics and classification
 - > pre-equalization
 - > destriping model
 - mirror side dependance
- results
- The time variation issue

the multistage design

mirror side dependance

Stripes MODIS Review FOM

original sub-set

the multistage design

mirror side dependance

Stripes MODIS Review FOM

without de-banding

the multistage design

mirror side dependance

Stripes MODIS Review FOM

with MS dependance applied

The FOV Overlapping Method

- the "bow-tie" effect as calibration side information
- \checkmark the simple idea
- \checkmark the multistage design
 - > metrics and classification
 - > pre-equalization
 - > destriping model
 - > mirror side dependance
- results
- The time variation issue

results

results

results

The FOV Overlapping Method

- the "bow-tie" effect as calibration side information
- \checkmark the simple idea
- \checkmark the multistage design
 - > metrics and classification
 - > pre-equalization
 - > destriping model
 - > mirror side dependance
- ✓ results
- The time variation issue

time variation scale

the authors would like to thank:

for helpful discussions and suggestions

SSEC: L. Gumley, P. Menzel, C. Moeller

for helpful documentation, tables and more...

NASA & Goddard Space Flight Center