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Abstract

Grid computing has reached the stage where deploy-
ments are mature and many collaborations run in produc-
tion mode. Mature Grid deployments offer the opportunity
for revisiting and perhaps updating traditional beliefs re-
lated to workload models, which in turn leads to the re-
evaluation of traditional resource management techniques.

This paper analyzes usage patterns in a typical Grid
community, a large-scale data-intensive scientific collab-
oration in high-energy physics. We focus mainly on data
usage, since data is the major resource for this class of ap-
plications. Our observations led us to propose a new ab-
straction for resource management in scientific data analy-
sis applications: we define a filecule as a group of files that
is always used together. We show that filecules exist and
present their characteristics. The existence of filecules sug-
gests a new granularity for data management, which, if in-
corporated in design, can significantly outperform the tra-
ditional solutions for data caching, replication and place-
ment based on single-file granularity. We reason about the
impact of filecules on resource management and show com-
pelling evidence for using this abstraction when designing
data management services.

1 Introduction

Sustained effort is ongoing to support various scientific
communities and their large-scale data-sharing and data-
analysis needs through a distributed, transparent infras-
tructure (such as for GriPhyN [7], PPDG [28], and other
projects). This infrastructure necessarily includes compo-

nents for file location and management as well as for com-
putation and data transfer scheduling. However, there is lit-
tle information available on the specific usage patterns that
emerge in these data-intensive, scientific projects.

This paper analyzes the characteristics of a production-
mode data-intensive high-energy physics collaboration, the
DZero Experiment [12], hosted at Fermi National Accel-
erator Laboratory (FermiLab). In Grid terminology [17],
the DZero Experiment is a virtual organization consisting of
hundreds of physicists in 70+ institutions from 18 countries.
Its purpose is to provide a worldwide system of shareable
computing and storage resources that can together solve the
common problem of extracting physics results from several
Petabytes of measured and simulated data. In this system,
data files are read-only and the typical jobs analyze and pro-
duce new, processed data files. Tracing system utilization is
possible via a software layer (SAM [24, 33]) that provides
centralized file-based data management.

We analyzed logs from January 2003 to May 2005,
amounting to about 234,000 job runs submitted by 561
users from 34 different Internet domains in 11 countries on
three continents. We have detailed data access information
about half of the jobs: these 115,895 jobs involve more than
13 million accesses to about 1.13 million distinct files (see
Table 1 for the exact figures). Jobs are run on multiple files,
on average 108 files per job. Figure 1 shows the distribution
of the number of files per job.

Our analysis showed an important pattern: scientific data
usage translates into requests for groups of correlated files.
This fact suggests a new granularity for data management,
which can be exploited to design solutions that may signifi-
cantly outperform the traditional solutions based on single-
file granularity. We experiment with one data-management
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Table 1. Characteristics of traces analyzed per data tier.
Data Tier Users Jobs Files Input/Job (MB) Time/Job (hours)

Reconstructed 320 17898 515677 36371 11.01
Root-tuple 63 1307 60719 83041 13.68
Thumbnail 449 94625 428610 53619 4.89
Others 435 120962 N/A N/A 7.68
All 561 233792 N/A N/A 6.87

service, caching, and observe that by applying traditional
caching strategies to filecules instead of files we obtain sig-
nificantly better performance: a 5-fold increase in hit rate.

While it is well acknowledged that scientific applications
often process multiple input files [4, 25, 26, 27], to the best
of our knowledge our study is one of the first quantitative
analysis that focus on the size of the input data in scientific
workloads. Other characterizations of real workloads typi-
cal of Grid communities focused on batch-pipelined scien-
tific workloads [34].

We also evaluate the feasibility of applying known peer-
to-peer strategies—such as BitTorrent—for efficient and
low-cost data transfers based on real usage patterns. We ob-
served that while the size of the data to be transfered may in-
deed justify parallel downloads from multiple sources as in
BitTorrent, the relatively small number of concurrent users
and sites that make use of a particular set of data does not
call for using such a strategy.

In addition, we discuss the effects of filecules on other
resource management services, such as data replication and
replica placement algorithms, data transfer and job schedul-
ing.

Section 2 gives a brief overview of the high-energy
physics collaboration that provided the traces analyzed in
this paper. In Section 3 we formally define filecules and
present their characteristics in terms of size and popularity.
Section 4 is a first proof that managing data at the granu-
larity of filecules has benefits over the traditional single-file
granularity. Section 5 verifies whether using BitTorrent for
scheduling data transfers is appropriate in this environment.
Finally, we conclude with a discussion of the consequences
for resource management that our study highlights in Sec-
tion 6 and summarize our results and plans for future work
in Section 8.

2 The DZero Experiment: A High-Energy
Physics Collaboration

DZero is one of the two experiments currently process-
ing data from the Tevatron collider at Fermilab. DZero stud-
ies particles formed from the annihilation of protons and an-
tiprotons at the TeV energy scale. The signals recorded at

different layers of the detector form a physics event. Events
consist of about 250 KB of information and are stored in
“raw” data files of about 1GB in size. Every bit of raw data
is accessed for further processing/filtering. Data derived
from pre-processing and filtering is then classified based on
the physics events they represent. This section discusses
the typical applications that operate on high energy physics
data, the computing infrastructure of DZero, and the format
of the traces studied in this paper.
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Modern high-energy physics experiments, such as
DZero, typically acquire more than one TB of data per day
and move up to ten times as much. To give an example,
during the past year, the SAM system has stored more than
half a petabyte of data for DZero. Aside from the stream
of data from the detector, various other computing activities
contribute to the one terabyte of derived and simulated data
stored per day.

Three main activities take place within the DZero ex-
periment: data filtering (called “data reconstruction” in the
DZero terminology), the production of simulated events,
and data analysis. The first two activities are indispensable
for the third one.

During data reconstruction, the binary format of every
event from the detector is transformed into a format that
more easily maps to abstract physics concepts, such as par-
ticle tracks, charge, spin, and others. The original format
is instead very closely dependent on the hardware layout of
the detector, in order to guarantee the performance of the
data acquisition system, and is not suitable for data analy-
sis.

The production of simulated events, also called monte-
carlo production, is necessary for understanding and iso-
lating detector characteristics related to hardware, such as
particle detection efficiency, or to physics phenomena, such
as signal to background discrimination.

Finally, data analysis mainly consists of the selection
and statistical study of particles with certain characteristics,
with the goal of achieving physics measurements.
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Figure 1. The number of input files per job.
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The DZero experiment relies on the SAM middleware
[33] for its data handling needs. The SAM system offers
four main services: first, it provides reliable data storage,
either directly from the detector or from data processing fa-
cilities around the world. Second, it enables data distribu-
tion to and from all of the collaborating institutions. Third,
it thoroughly catalogs data for content, provenance, status,
location, processing history, user-defined datasets, and so
on. And finally, it manages the distributed resources to op-
timize their usage and to enforce the policies of the experi-
ment.

SAM categorizes typical high-energy physics computa-
tion activities in application families (reconstruction, anal-
ysis, etc.). Applications belonging to a family are identi-
fied by a name and a version. This categorization is con-
venient for bookkeeping as well as for resource optimiza-
tion. Because of the data intensive nature of the high-energy
physics domain, applications almost always process data.
Such data is organized in “tiers”, defined according to the
format of the physics events. Relevant data tiers, some of
which are analyzed in this paper, are the “raw”, “recon-
structed”, “thumbnail”, and “root-tuple” tiers. The “raw”
tier identifies data coming directly from the detector; the
“reconstructed” and “thumbnail” tiers identify the output of
the reconstruction applications, in two different formats; the
“root-tuple” tier identifies typically highly processed events
in root format [9] and are generally input to analysis appli-
cations.

For the data handling middleware, an application run-
ning on a dataset defines a job or “project”. Projects are
initiated by a user on behalf of a physics group and typi-
cally trigger data movement.
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The studies presented hereby utilize data from the SAM
data processing history database between January 2003 and
March 2005. Two types of traces have been selected for our
studies: file traces and application traces.

File traces show what files have been requested with ev-
ery job run during the period under study. These traces are
used to study the presence of filecules in the DZero com-
puting activity.

Application traces, instead, list summary information
about jobs. The information includes metadata for the ap-
plication (application name, version, and family), for the
dataset processed (data tier), as well as general data, such
as the user name and group that initiated the job and the
location (node name) and start/stop time of the job.
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Figure 3. File size distribution.

3 Filecules

Understanding user behavior by analyzing traces from
real user communities has multiple benefits. First, it quan-



Table 2. Characteristics of analyzed traces per location.
Domain Jobs Submission nodes Sites # users # filecules # files Total data (GB)

.gov 3319711 12 1 466 95234 945031 4930850

.de 390186 5 4 23 33403 100257 268815

.uk 131760 8 4 21 23876 62427 117097

.edu 54672 18 12 32 14504 36868 41081

.cz 7400 1 1 1 4789 7660 9869

.ca 5719 5 2 4 649 8937 22341

.fr 5086 2 1 11 1767 18215 23958

.nl 3854 3 2 8 888 38812 44012

.mx 146 1 1 1 32 1589 349

.br 12 2 2 2 2 2 2

.cn 4 1 1 2 2 62 31

.in 3 1 1 2 2 2 0.70

tifies resource requirements and allows for better resource
provisioning. One of the strongest examples in this class
is the Zipf distribution of web requests and its implications
on caching [8]. Other examples include the quantification
of free riding in Gnutella [3] or the amount of traffic gener-
ated by specific user communities in peer-to-peer activities
[31, 30, 29, 23].

Second, it provides a credible workload for evaluating
new solutions via simulations or emulations. A notable ex-
ample in this context is the study of the Internet topology
[15] that corrected the modeling of the Internet from a ran-
dom to a power-law graph.

Third, understanding usage patterns can lead to new
ways of improving the overall system performance. So-
lutions that took advantage of observed patterns include
file location mechanisms that exploit the relation between
stored files [11], information dissemination techniques [21]
that exploit overlapping user interests in data [22], and
search algorithms [2] adapted to particular overlay topolo-
gies [29].

In this study we analyze the use of data while aiming to
get insight into what data management techniques are bet-
ter suited for this class of data-intensive applications. One
characteristic of many scientific domains is the processing
of large amounts of data organized in multiple files (datasets
or collections) that form the input set for various jobs. Such
collections of files may consist of multiple smaller subsets
of interdependent files that we call filecules.

In particular, we aim to understand the effectiveness of
using filecules as a new abstraction for designing and imple-
menting data management techniques. To this end we look
at particular characteristics that influence data management
decisions and performance, such as size (Figures 6 and 7)
and popularity distribution of filecules (Figure 8), the de-
gree of filecule sharing among various users (Figure 4), the
number of filecules per job (Figure 5), and the number of

jobs submitted to computational resources located at differ-
ent sites in the DZero collaboration (Table 2).

Inspired from the definition of a molecule, we define a
filecule as an aggregate of one or more files in a definite
arrangement held together by special forces related to their
usage. We thus consider a filecule as the smallest unit of
data that still retains its usage properties. We allow one-file
filecules as the equivalent of a monatomic molecule, (i.e.,
a single-atom as found in noble gases) in order to maintain
a single unit of data (instead of multiple-file filecules and
single files).

Formally, a set of files
�������������	��


form a filecule � if and
only if  �����	����� � and ���� such that

����� ��� , then
�����

� � . Some properties result directly from this definition:

1. Any two filecules are disjoint.

2. A filecule has at least one file.

3. The number of requests for a file is identical with the
number of requests for the filecule that includes that
file. Thus, popularity distribution on files and filecules
is the same.

Table 2 presents some statistics on the number of
filecules and access to data from various groups in DZero. It
can also be observed the distribution of user activity (num-
ber of jobs submitted from a particular domain) with the
DZero’s location being by far the most active.

Figure 4 presents the number of users who access the
same filecule over the period of our study. While about 10%
of the filecules are accessed by one user only, a significant
fraction of filecules have a larger user population, capped
at 44. Our studies revealed no correlation between filecule
popularity and filecule size.

It is relevant to note that, due to lack of information
in traces, we cannot distinguish between the popularity of
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Figure 4. Number of users sharing a filecule.
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Figure 5. Number of filecules per job.

physics events recorded in a file and the popularity of that
file. Because in the experiments whose traces we ana-
lyze there is no event index available, processing a data
file means unpacking and looking at each event in the file.
In a previous setup of the DZero experiments, data files
contained an event table, which allowed random access to
events in a file. Because performance and maintain costs
this structure was not maintained for the more recent exper-
iments that we analyze.

�.��� � ��� & � ��� ����& - �+���	� ����& 0(�
��& -

The model traditionally accepted for file size distribution
is heavy tailed. This model was built based on empirical
evidence from file systems [14] and web pages [6]. More
recent studies of peer-to-peer file-sharing applications such
as Gnutella, Kazaa and Napster confirm that different file
size distributions emerge with different content types (pre-
dominantly multimedia in this case) [30]. We observed that
scientific data reflect different file size distribution (Figure
3). Perhaps more important than the distribution itself is
the observation that other rules govern the sizes of scientific
data: First, some characteristics are domain-dependent. For
example, in DZero an event as recorded from the acceler-
ator is about 250 KB and a raw file is a sequence of such
events. Second, deployment specific decisions, such as lim-
its on the size of a file, may dictate file size distribution: in
DZero, raw data is maintained in 1GB files.

Figures 6 and 7 present the size of filecules grouped by
the data tier to which they belong.

�.� � , �	
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The distribution of filecule popularity showed by our
studies (Figure 8) does not follow the traditional Zipf dis-
tribution model. The same phenomenon was revealed in
the study of peer-to-peer networks [30], but the explanation
for this behavior cannot be transferred between the two sys-
tems: while users of music-sharing networks do not repeat-
edly ask for the same file (which reduces the overall popu-
larity of a file, and ”flattens” the distribution), scientists re-
peatedly request the same file for different computations. A
more accurate explanation may be the role of geographical
locality in user interests: the data space may be inherently
partitioned among geographically remote groups who focus
on disjoint parts of the data space.

A rigorous interpretation of data popularity distribution
and its correlation with geographical locality may lead to
improved designs for cache replacement techniques, data
replication, and replica placement. Unfortunately, the geo-
graphical information contained in the DZero traces cannot
be reliably mapped to user location, as it is more a metric of
preferred computing pools.
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Figure 6. Size of filecules (in MB) per data tier. Left: roottuple tier. Center: reconstructed tier. Right:
thumbnail tier.
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Figure 7. Number of files per filecule. Left: roottuple. Center: reconstructed. Right: thumbnail.
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Figure 8. Popularity distribution (number of requests) for filecules per data tier. Left: roottuple.
Center: reconstructed. Right: thumbnail.



 1

 10

 100

 1000

 10000

 0  100  200  300  400  500  600  700

N
um

be
r 

of
 fi

le
cu

le
s

Number of jobs sharing a filecule

Figure 9. Number of requests per filecule.

Figure 9 presents the number of requests per filecule for
the entire set of traces. It shows that while thousands of
filecules are requested fewer than 50 times, there are tens of
filecules that are requested more than 300 times during the
interval of our study.

4 Cache Replacement Policy: Filecules vs.
Files

For an initial evaluation of the advantages of using
filecules vs. files we experimented with a well-known
and very commonly used technique for data management,
caching. A cache in this context is a large storage space
used to store data transferred from another site or from
tapes. We used the least recently used (LRU) algorithm for
data replacement because of its simplicity and because of
its use at FermiLab.

In LRU, to make room for more data, the file with the
oldest timestamp (that is, the least recently used) is evicted.
We compare via simulations the performance of the LRU
cache replacement algorithm at file and filecule granular-
ity. That is, for filecule LRU, we load the entire filecule of
which a requested file is member and evict the least recently
used filecules to make room for it.

We ran experiments for 7 different cache sizes (Figure
10) between 1TB and 100 TB. These are reasonable sizes
for the context we are addressing: for example, disk caches
vary from 1GB to 5 TB in DZero, are up to 150 TB [18] in
CDF [10] and about 70 TB [18] in DESY [13]. The largest
filecule in our experiments is 17TB.

Filecule LRU clearly outperforms file LRU, as can be
seen in Figure 10: the miss rate for filecule LRU is signif-
icantly lower (up to 4 to 5 times for large cache sizes) than
the miss rates for file LRU. However, it is important to note
that the difference in performance is relatively small (about
9.5%) for cache size of 1 TB.

Otoo et al observe in [25] that cache replacement poli-
cies based solely on file popularity are not efficient for envi-
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Figure 10. Miss rate for LRU cache replace-
ment algorithm for file vs. filecule granular-
ity.

ronments where multiple files are requested simultaneously.
They propose a file eviction algorithm that considers, in ad-
dition to file popularity, the membership to a bundle and the
size of the bundle. This strategy does not require the iden-
tification of filecules. We leave as future work the compari-
son of this strategy with filecule LRU on the DZero traces.

5 Using BitTorrent for Filecule Distribution

A question often raised in the research community is
how successfully can solutions from the peer-to-peer do-
main be applied to Grid computing. Common to the two
subdomains of distributed systems is the emphasis on ac-
cess to data [16]. In particular, file location and file transfer
are basic services in both communities.

A peer-to-peer solution of particular interest for the
transfer of large files is BitTorrent. Developed and released
for public use in 2001, BitTorrent [1] is a collaborative file-
sharing protocol that is designed to work efficiently under
flash crowd conditions where large numbers of users are
simultaneously attempting to access and retrieve the same
file. BitTorrent users make available chunks of the file to
other peers while downloading the missing chunks from
other BitTorrent clients. This mechanism reduces the load
on peers that have a complete copy of the file by enabling a
peer to download chunks from many peers. In addition, by
using an exchange mechanism it enforces fair sharing.

BitTorrent is highly successful and is widely used in
distributing large (multi-gigabyte) files. As the number
of peers involved in the transfer of one file increases, the
download time remains constant, demonstrating excellent
scalability. It thus became a potentially interesting tool for
scheduling data transfers in the context of desktop Grids
[36, 35]. However, while effort is channeled toward adapt-
ing BitTorrent for the scientific community, to our knowl-



edge there is no study that attests the feasibility of BitTor-
rent from the perspective of real usage behavior.

The question we answer in this section is: Given the pat-
terns of the DZero collaboration, would a mechanism like
BitTorrent be useful? In particular, are there enough users
who simultaneously use/request the same data? Note that
this question can be posed for any data granularity (i.e., in-
dividual files or filecules).

To answer this question, we focus on a small set of
filecules with larger numbers of users (see Figure 4) and
study the overlapping of usage time. We show the results
for one such filecule in Figures 11 and 12. The filecule we
present consists of 2 files with a total of 2.2 GB, it is ac-
cessed by 42 users from 6 sites in a total of 634 jobs. The
largest group of users comes from FermiLab (38 users with
529 job submissions), followed by Germany with 3 users
and 66 jobs.
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Figure 11. The time intervals in which a
filecule is accessed from various sites.

In Figure 11 each horizontal line corresponds to the in-
terval between the first and the last request for the filecule
considered submitted per site. Because in scientific collab-
orations users are typically members of institutions, it is
likely that users of the same institution will have access to
a common local data storage. This is why in Figure 11 we
consider a site as being one entity, despite the potentially
large number of users at the site who might access data.
The small number of simultaneous accesses to data does
not plead for using BitTorrent in this particular context.

In Figure 12 we disassociate the users from their loca-
tions in an attempt to understand whether a different map-
ping of users to institutions would make BitTorrent a more
appealing solution. Figure 12 thus presents the time interval
between the first and last requests for the same filecule per
user. While more activity is visible (there are periods when
10 users might store at least partial copies of the filecule
and thus could provide data to another user), the load would
hardly justify the use of BitTorrent for data transfers.
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Figure 12. The time intervals in which a
filecule is accessed by users.

However, note that the intervals presented are in fact not
continuous: the assumption made in this analysis is that
filecules are stored for the entire period of their use, which is
an optimistic assumption. However, we want to stress that
this result applies to the particular traces we study, traces
that depend on the characteristics of the scientific computa-
tions and data and may not be portable to a different scien-
tific community.

6 Consequences for Resource Management

We showed that filecules are a useful abstraction for data
caching, but the potential for efficient data management is
not limited to caching. For example, scheduling data trans-
fers while accounting for filecules can lead to significant
improvements.

Proactive data replication is one of the main motivations
for this work and filecules seem to provide the appropri-
ate abstraction. The question ”What files to replicate?” can
be answered based on considerations related to popular-
ity, replication costs, but also membership to filecules and
the status of the filecule (partially or not-replicated) on the
destination storage. Investigating proactive data replication
strategies based on filecules is therefore a relevant direction
to explore.

Our preliminary study identified filecules based on
global knowledge of the long history of the DZero traces
and proved that information about filecules is beneficial for
cache management. However, at the basis of all poten-
tial improvements in data management techniques based on
filecules is the very problem of identifying them. While our
study relied on an off line analysis of traces, in a real setting
we need an infrastructure capable to adaptively and dynam-
ically identify filecules.

If the file requests are centralized at, for example, a
metascheduler, then the problem is trivially solved by main-



taining reasonably long logs and processing them. The
more interesting problem arises, though, if there are no cen-
tral points of collecting file requests or job submissions, as
required for a scalable and reliable architecture.

One solution could be to use the ”concentration” points
that already exist in the system. For example, schedulers
that collect job requests from different sites/groups of users.
The problem in this case might be that such concentrators
represent a relatively small user population and they might
thus collect insufficient information to accurately identify
filecules. Assessing the costs of filecule-aware data repli-
cation under inaccurate identification of filecules is a rele-
vant problem in this context. Because inaccurately identi-
fied filecules can only be larger than the filecules detected
using global knowledge, we expect higher replication costs
in terms of used storage and transfer costs.

Indeed, our preliminary experiments with this scenario
show that larger filecules are identified when only a part of
the jobs submitted, and thus datasets requested, are consid-
ered. For these experiments we considered each site col-
lects its own job submissions and shares no information
with other sites. In this case, not surprisingly, the number of
filecules correctly identified depends on the user activity at
that site: the more job submissions, the more likely that the
filecules will be smaller and thus more accurate. Note that
without global information, identified filecules can only be
larger than real filecules. Also note that the filecules identi-
fied from only partial information are correct from the per-
spective of the local user base.

7 Related Work

Previous work in identifying relationships between files
has been done in the context of web caching and file sys-
tems. Different methods of grouping files based on file re-
lationships have been proposed [5, 19, 20]. Amer et al. [5]
propose a method to group files based on successor rela-
tionship identified from a sequence of accesses. Upon the
request of a file, its entire group is retrieved. Ganger and
Kaashoek [19] use explicit grouping in which files that are
used one after the other are placed in adjacent locations on
the disk and accessed as a whole group. Griffioen and Ap-
pleton [20] consider two files related (and thus, part of the
same group) if they are opened within a specified number
of file open operations from each other.

All previous solutions use access sequences to iden-
tify file relationships and exploit these relationships for
prefetching. Indeed, experimental results show lower cache
miss rates when groups of files are prefetched based on file
relationships [5, 19, 20]. As in some previous solutions,
filecules are multiple-file implicit groups, but, at least in the
context of this article, they are more stable than other group-
ing definitions. For example, in [5, 19, 20], two files are

grouped together if and only if all intermediate accesses be-
tween them remain the same. In contrast, files in a filecule
are related irrespective of intermediate file accesses and the
time of access between them.

In [32] Tait and Duchamp analyze the use of file work-
ing sets for improving cache performance using prefetch-
ing. Their algorithm builds distinct “working” trees based
on file access sequence and patterns. For every job, they
track the file access sequence and compare it with the exist-
ing working trees. Prefetching is delayed until the sequence
matches only one working tree. When a unique working
tree is identified, the remaining files of that working tree are
prefetched. Their experiments with file access traces from
a SunOS machine prove that LRU with prefetching outper-
forms conventional LRU.

In addition to prefetching, file groups have been used
to improve cache replacement algorithms by identifying a
more efficient grouping technique. In the context of scien-
tific applications, Otoo et al. propose a file-bundle algo-
rithm for cache replacement [26, 27, 25]. Their algorithm
maximizes the job throughput by optimizing the set of files
to maintain in cache. Given a queue of requests and an
available cache size, their algorithm identifies the optimal
set of files, according to some cost function, that fit in the
available cache. This optimal set is called a file bundle.
Experiments with synthetic workload and file size distribu-
tions (with file sizes varying between 1MB and 10% of the
cache size) show that the resulting byte miss ratio is signif-
icantly lower than that of the modified Landlord algorithm
proposed in [37].

8 Summary and Future Work

We analyzed traces from a relatively large high-energy
collaboration focusing on aspects related to data usage. We
propose a new abstraction for data management, namely
filecules, and show that it is more efficient for a common
caching technique that the traditional one-file data granu-
larity. We emphasize that this is just a preliminary study
that gave us confidence that more work is worth investing
into this direction.

This paper invites a whole set of new questions. A ques-
tion is how prevalent filecules are in other sciences with
computational problems appropriate for the Grid. The com-
putational requirements of other disciplines that are early
Grid adopters, such as astronomy, medicine, astrophysics,
or biology make us believe that many of our findings will
be transferable to a larger class of applications.

Another question is related to more thorough characteri-
zation of filecules: How dynamic are they? Do files stay in
the same filecules or do they change over time? An experi-
ment that would be perhaps relevant for this questions is to
analyze filecules formed at different times: are two filecules



that contain the same file identical?
Finally, an important set of questions is related to the de-

sign of data management techniques that could benefit from
the filecule abstraction. We plan to design and carefully
investigate the costs and benefits of filecule-aware cache re-
placement policies and to compare them with related ideas.
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